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A new approach to the old idea of deriving a bond-valence vector from the well-known bond-valence concept has
been proposed. The foundation of the proposal is the previous electrostatic model in which bond valences are
interpreted as electric fluxes. The outcome of this approach is actual vectorial quantities whose magnitudes are
strictly but nonlinearly related to the scalar bond valences and are directed along the bond lines. It has been
proved that the sum of all these bond-valence vectors drawn from a coordination center to its ligating atoms will
be close to zero for the complete coordination sphere. Therefore, unlike the scalar bond valences, the obtained
vectors provide information about the spatial arrangement of ligands. The geometrical consequences of the proposed
bond-valence vector (BVV) model are analyzed for the geometries of the carbonates, phosphates, and five-coordinated
organoaluminum compounds with COs, PO,, and AICO, skeletons, respectively, retrieved from the Cambridge
Structural Database. For acyclic carbonates this BVV model allows one to predict the O—C—-0 angles with a mean
absolute error of 1.0° using the empirical C—0 distances only. Furthermore, this BVV model is able to quantitatively
describe the strains in cyclic carbonates. The preliminary studies for NO,E, POsE, and SOsE systems with a
strongly stereoactive lone electron pair (E) show that the model may serve as a quantitative description of the lone
electron pair effect on the coordination sphere. A great advantage of the presented BVV approach is that the
derived relation between a bond-valence vector, bond valence, and bond length is given by an uncomplicated
equation allowing quick and simple computations, thus providing a new analytical tool for describing the geometry
of a coordination sphere that may be applied for structure validation.

Introduction sphere’™> All existing concepts of a vectorial description

Since the introduction of the bond number concept by of the coordipati(_)n sphere pos:,tula_tte that (i) vectors (_jrawn
Pauling there has been continuous interest in the bond- from a coordmatl_on center to its Ilgands_have magnitudes
valence (BV) model and its application for interpretation and €dual (or proportional) to the corresponding bond valences
prediction of bond lengths in various chemical systems in and (ii) for a_ComD'Ete coordination sphere the bond-valence
the solid staté.The well-established BV model operates with Vector sum is close to zef$. Nevertheless, in all models
bond valence as a scalar quantity, and the bond valences ofe bond-valence vectors are only arbitrarily derived from
all bonds from a given atom sum to the valence of that atom. the scalar bond valences. In contrast, in this paper it is shown
However, the scalar bond valences do not provide informa- that use of a simple electrostatic model of bond valence gives
tion about the spatial arrangement of ligands. Since, for both & foundation to derive an actual vectorial quantity with a
covalent and ionic bonds, a more strongly bonded ligand magnitude strictly but nonlinearly related (approximately by
(greater bond valence) subtends a greater solid angle at théhe quadratic function) to the scalar bond valence. The
coordination center, it has already been postulated to Vvalidity of the proposed bond-valence vector (BVV) model
transform the bond valence into a vector quantity which can has been proven for a variety of molecules of the main-group

be used to characterize the role of a ligand in the coordination€lements, and the usefulness of this new approach for
analysis of the coordination sphere geometry is presented.
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Bond-Valence Vectors

The correlation between the bond length) (between the Results
ith andjth atoms and the valence of this borgj) (is most
often presented in an inverse exponential, negative power
or polynomial form. The most widely used empirical
expression for calculation o has the forrh

Bond-Valence Vector Model.Let us now consider the
'simplest, unstrained structural fragment comprising a coor-
dination center without lone electron pairs (i.e., the atomic
core) and surrounded by more electronegative, monodentate
donor ligands. The space around the nucleus of the coordina-

§ = expl(t; — d;)/b] @) tion center can then be roughly divided into two parts: the

inner-electron part (core electrons) and the valence-electron

whered; is the experimental bond length whiteandbare  hart Thus, a closed equipotential surf@embracing most
empirically determined constants for the giverj bond.  of the inner shell electrons of the central atom can be defined
Brown tabulated these parameters for numerous bond typesgssuming that the net charge enclosed in the surface is equal
and they are easily available on the Wef.is equal tothe  to the charge of the atomic core. Such a near-spherical
length of a conceptual bond of a unit valence. When no syrface has a radius close to the ionic radius of the given
experimental data are present, it is possible to estimate theatomic core. For example, the radii of carbon or phosphorus
ri value from the sum of atomic radii of thith andjth atoms  cores cover the localization region ofEsd 1822 closed
modified by an electronegativity-related correction térfine shells, respectively. Thus, according to Brown’s model, the
parameterb is generally treated as a ‘universal’ constant, electric flux, ®;, out of a closed spherical surfac®,obeys
often taken to be 0.37 A2 Nevertheless, one should be aware Gauss’ law

of the close correspondence between bhgarameter and
the bond-specific softness parameter. This justifies use of ®; = f€EdA =Q (2)
specific (individual) values ob to a given bond?

A valuable physical interpretation of the bond-valence
model has been provided by Brown and his colleagtes.

Examination of the electrostatic field generated by ions was is the permittivity of free space. According to the model

performed, starting from the ionic model of the bond. It has presented by Brown and his colleagtiethie sphereS can

been shown that the Coulomb field around each ion could e geparated into bond regidBscharacterized by the scalar
be naturally divided into localized regions (bonds) which gjectrostatic fluxesb; related to thes; valences of thé—j
are characterized by electric fluxes linking neighboring ions j54s

of opposite charge. The hypothesis that the fluxes are the

same as the bond valences was proposed and verified. Brown o = Z D =Q (3)
and his colleagues consequently stated that Gauss’ law is ]

mathematically equivalent to the bond-valence-sum rule.
Moreover, the bond-valeneelectric flux equivalence is
fulfilled regardless of the bond character, i.e., the degree of
ionicity. Nevertheless, it was pointed out that such a simple
electrostatic model describes the structure well only if the ) . . )
atoms carry a charge and are spherically symmetric, i.e., if N @n idealized case of spherical symmetry the electric
the monopole term of the Coulomb field strongly dominates field, E, W!” be pe_rpend_|cular to th_e sphgre and almost
over the multipole terms. Thus, the model is expected to the same in magnitude in each point, which leads to the

work well when the central atom is hard by means of Sduations

whereQ; is the charge of the core of the centitdl atom,E
is the electric field, & is a differential area element with an
outward facing surface normal defining its direction, apd

where

O = [q coEdA=5,(34) (4)

Pearson’s definition, whereas for soft centers with asym- Q = 47R%E )
metries in the distribution of electron density around the : 0e

central atom the effects of the multipoles should be included g

in the model for the hypothesis to be fulfilled. This is a case

of electronically strained structures represented by com- A

pounds with stereoactive lone pairs or transition-metal Si ZAJEOECZM—RfQi 6)

complexes comprising’é@nd d cations as well as those with
octahedral coordination that show Jatireller distortions. whereE; is the field on the sphere embracing the atomic

core of radiusR. and A; is the area of the surfacs.

(6) S»‘rlt;wn, . D.; Altermatt, DActa Crystallogr., Sect. B985 B41, 244— To find a vector that has the property of summing to zero
(7) Brown, I. D. http:/iwww.ccp14.ac.ukiccplweb-mirrors/i_d_brown/ I will (':ons.|der integration of the electric fl_eld regardless of
bond_valence_param/, 2006. the direction of the surface, i.e., whe\ ds treated as a

(8) gzggeffe, M.; Brese, N. EJ. Am. Chem. Sodl991 113 3226~ scalar. Thus, integration of the new vectorial quantity=d

(9) Brese, N. E.; O'Keeffe, MActa Crystallogr., Sect. B991, B47, 192— €oEdA over the whole sphere in the case of an idealized
197. spherically symmetric field gives the zero vector

(10) Urusov, V. SActa Crystallogr., Sect. B995 B51, 641—-649.

(11) Preiser, C.; Lsel, J.; Brown, |. D.; Kunz, M.; Skowron, AActa _ _
Crystallogr., Sect. BL999 B55, 698-711. Vi=feEdA=0 ()
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Figure 1. Schematic representation of a coordination center with assigned
bond-valence vectorsj;, and zeroing of the bond-valence vector sum for
the case of tetragonal geometry.

Division of the sphere into th§; valence regions allows us
to define individual bond-valence vectarsin an analogous
manner

v = LJ €,E dA (8)
Thus, the resultant zero vectarcan be regarded as the sum
over all vj vectors, which represent bonds between the

coordination centeri, and all ligating atomsj, within the
coordination sphere (Figure 1)

vi=Zv”=0

J

9)

The length of thev; vector will be, therefore, directly
connected with the bond-valensg However, due to the
curvature of the surfac§; the length of thes; vector is not
equal to the bond-valensg. To derive the relation between

sj andyv; it is reasonable to assume that the surfcen

the sphere is of a circular spherical cap shape. This is
undoubtedly true for the case of linear two-coordinate
systems but is only an estimation for higher coordination
numbers. In the latter case the bond surfgcakes the form

of a spherical polygon and in general can be asymmetrically

arranged around the bond direction. Nevertheless, because

of the difficulty in defining (in most cases) both the bond
path and the bond surface, the following useful simplification
has been introduced. It was assumed that the bond surfac
S; takes the form of a circular cap and is cut-out sym-
metrically around the bond direction on the spherical surface
of radiusR; by a cone with the vertex located at the center
of the sphere such that the area of the cap is equsgj-to
47RZ2Q: (cf. eq 6). If E is perpendicular to the spherical
surface with constant magnitud&( = E.), then the integral

in eq 4 can be written as

5= 27 ERA(L — cosd;) = %(1 —cosyy)  (10)

where 2 is the opening angle of the cone.

e

Zachara

By eliminating thed; value from both equations we easily
get the final relation

Si

3

Summarizing the above-presented simplified electrostatic
model the following theses are proposed. (i) The bond
between the coordination centeand the more electrone-
gative ligating atonj of s; valence can be represented by
the bond-valence vectas of the length defined by eq 12
and directed fromtoj. (i) In stable symmetric coordination
spheres the vector-sum of all these vectors tends to be zero
vector (eq 9).

It should be clearly stated that the bond-valence vectors
of the magnitude given by the eq 12 and the direction along
the bond line are only an approximation of the actual vectors
from egs 8 and 9. The exact equations for the particular case
in which the bond surfac&; takes the form of a regular
spherical polygon are presented in the Supporting Informa-
tion. Examples of calculations performed according to both
the exact equation and eq 12 show that the discrepancies
between the obtained values are insignificant. Therefore,
despite considerable simplifications, the proposed relations
are reasonably well obeyed in practice as shown below.

Vil = ﬁj( (12)

Discussion

To provide a necessary test of the BVV model an analysis
of selected molecules using empirical structural data was
undertaken. It is obvious that eq 9 cannot hold for the
electronically strained structures with asymmetry in the
distribution of electron density in the core region when
multipole terms are important nor for systems in which the
coordination center has at least one lone electron pair in the
valence shell. Moreover, one can expect a nonzero bond-
valence vector sum for structures in which there are
additional constraints introduced by steric factors (e.g.,
strained ring systems, congested coordination spheres with
strong interligand repulsion) causing bond angles to be
Strained.

Linear AXY Molecules. In the particular case of simple
two-coordinated unstrained linear molecules X—Y the
relation presented in eq 9 is always satisfied, although two
bond valences can be different. This relationship can easily
be obtained by considering the equation

A AX AY AX] QA A QA

The length of the resultant bond valence vedtaf equals
zero if sax + say = Qa, that is, if the bond valence sum rule

) (13)

Consequently, according to eq 8 the bond-valence vectoris fulfilled. It should be pointed out that while the bond

vj is aligned along the—j bond line to the negatively charged
jth ligand and has a magnitude proportional to the area of
the planar base of the cap

_ Q .
V| = meoE R sinf o = Zl Sirf 9, (11)
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valence vectors necessarily sum to zero, the same is not true
of the traditionally defined valence vectors with magnitudes
equal to the bond valence.

Three-Coordinated Molecules.In order to verify the
applicability of the bond-valence vector method to three-
coordinated centers, 70 structures of carbonate derivatives
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Figure 2. Histogram of the length of the resultant bond-valence vector,
v, for carbonates.

collected in the CSE-*3have been chosen. The set of crystal
data concerning C£skeletons was restricted to fragments
without strains introduced by cyclic systems, including
H-bridged ring motives. For all €0 bonds the bond
valences were calculated using an exponential relation (eq
1) with parametersc_o = 1.390 A andb = 0.37 A® The
analyzed carbonates show diversifiedt@ bond valences
ranging between 1.0 and 1.9 v.u. (valence units). All
structural fragments are indeed planar, and the maximum
observed deviation of the carbon atom position from the
plane defined by the oxygen atomsic) is 0.032 A.
According to eq 12 the length of the bond-valence vectors
Vco and the resultant vectorc were calculated by setting
the carbon core charg@c = 4.

Figure 2 presents a histogram of the length of the resultant
vector vc whose quantities ought to be zero according to
the bond-valence vector sum rule (eq 9). As expected, the
majority of |v¢| values (90%) is less than 0.05 and the
maximum value 0.116. However, for vectorial quantities it
is more informative to show their spatial distribution. For
this purpose, the orientation of the resultart vectors
relative to the C@skeleton were analyzed using the three-

dimensional Cartesian coordinate system. For almost planar

CGO; moieties it was convenient to place the origin on the
carbon atom and define three orthogonal axes as follows:

(12) (a) Allen, F. H.Acta Crystallogr., Sect. R002 B58 380-388. (b)
Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.;
McCabe, P.; Pearson, J.; Taylor, Rcta Crystallogr., Sect. R002

B58 389-397.

The CSD (version 5.27, Aug 2006) search was restricted to the
structures containing the GBkeleton with an acyclic carbon atom.
Only structures with & factor of less than 0.05, the mea(C—C)

< 0.01 A, and those that had no errors and no disorder were
considered. The bond-valence-sum rule was checked, and three

(13)

Figure 3. Distribution of the resultant bond-valence vectaexs,calculated
for carbonates and projected on the {@olecular plane with thg axis
directed along the shortest€0O bond.

they axis along the shortest-@0' bond, thex axis in the
O!CC?plane, and the axis perpendicular to this plane being
close to the molecule plane. The scatter plot presented in
Figure 3 clearly shows that the resultant vectgrgrojected

on thexy plane are distributed close to the origin, i.e., the
zero vector.

It is obvious that the component of resultanic vectors
(vcy) correlate well with parameters describing deviation of
CO; skeleton from planarity. Indeed, the simple linear
relation betweemc, anddc of the formuc, = 2.05(3)c was
found 2= 0.985,dc in A). One should notice that for planar
molecular moieties eq 9 allows us to evaluate@©-O bond
angles using a simple trigonometric relation on the basis of
bond valences only, that is, if eq 9 is obeyed the three bond-
valence vectors must form a closed triangle from which the
bond angles can be calculated. A comparison of the observed
angles with calculated ones is presented in Figure 4. The
obtained relation is linear with a regression coefficient
0.967. The linear regression parameters, the slope and
intercept, are equal to 0.997(11) and 0.4(14¢spectively.

In comparison, applying eq 9 for the bond-valence vectors
calculated according to earlier mod&lsn which the length

of the vector magnitude is equal to the appropriate bond
valence also provides a linear relation (crosses in Figure 4),
but the slope is much greater than 1 [2.69(3)] and the
intercept equals-202(3Y. It should be emphasized that in
the view of the proposed relation 11, the earlier matfels
are valid only if the second term is constant for all bonds,
i.e., the bond valences do not differ significantly from one
another.

structures that showed a carbon valence-sum greater than 4.5 or less 1 N€ presented analyses demonstrate that the BVV model

than 3.5 v.u. were rejected. In addition, crystal structures showing
eight-membered hydrogen-bridged ring motives §86-HO.C) were
manually excluded. The resulting data set comprises 70 entries wit
90 CG; fragments.

h

accurately describes the molecular geometry of carbonates
and predicts the value of the-€C—O angles with a mean
absolute error of 10using the empirical €0 distances.

Inorganic Chemistry, Vol. 46, No. 23, 2007 9763
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Figure 5. Distribution of the resultant bond-valence vectaxs,projected

on the CQ molecular plane with thg axis directed along the shortestC

O bond for (i) cyclic carbonates with six-membered ring (squares), (ii) cyclic
carbonates with five-membered ring (iii) H-bonded dimeric bicarbonate
anions (circles), and (iv) chelating carbonate groups (

magnitude are smaller than in the previous group (an average

vey = 0.062 v.u.), which is consistent, for example, with the
Figure 4. Scatter plots of the calculated (vertical axis) vs observed €valuated ring-strain energy difference between five- and six-
(horizontal axis) GC—_O a_mglesfor carbonates_. The magnitud_e of thedC _ membered cyclic carbonat&sFor the hydrogen-bridged
283gl"gIfr?ecz;Sfég:i;é'Lgﬁgﬁtﬁfﬁcsiz?ggg‘gs)tf’ €q 12 (circles) and (i dimeric structures the effect is much less marked but stil

visible (an averagec, = 0.033 v.u.). This feature may be

Sterically Strained Carbonates.A detailed analysis of  the result of short repulsive‘HH contacts of about 2.2 A.
the differences between predicted and observed angles forThe significance of such interactions is often overlooked,
structures with strains introduced by cyclic systems allows put as stated by Steiner, they impose serious constraints on
us to divide the data into several subsets containing structureghe geometry of cyclic H-bonded structuféThe opposite
with various types of strains. Accordingly, one may distin- propensity is observed in chelating carbonates. The interac-
guish four groups of molecules: cyclic carbonates comprising tion of both oxygen atoms with the metallic coordination
five- and six-membered rings, chelate carbonate complexescenter resulted in a slight decrease of interna-0O—03
and H-bonded dimeric bicarbonate anions (inset in Figure angle, and hence, small negative values of tgecompo-
5).214 nents (meanc, = —0.022) are observed.

The scatter plot of the resultant bond-valence vecters Four-Coordinated Molecules.To confirm the validity of
projected on thexy plane (Figure 5) shows systematic the BVV model for four-coordinated molecules the experi-
deviation ofucy components (along-€0" “double” bonds)  mental points for the phosphate derivatives with as PO
from zero for each group. The highest positive deviation of skeleton exhibiting relatively wide spectra of bond valences
~0.15 v.u. is observed for cyclocarbonates with a six- were selected. As in the case of carbonates, only highly
membered ring, indicating that the large ring strains cause agccurate structural data for acyclic phosphates were retrieved
considerable increase (by an average) i@ the value of  from CSD1217The bond valences and bond-valence vectors
the internal 3—-C—03 angle relative to unstrained acyC"C for all P—O bonds were calculated using eqs 1 and 12,

systems. The deviation ot, components from zero in five- respectively, and settinQr = 5. The appropriate parameters,
membered cyclic carbonates and, accordingly, the ring-strain

(15) Tomita, H.; Sanda, F.; Endo, J..Polym. Sci., Part A: Polym. Chem.
(14) Crystal data for cyclic carbonates comprising five- or six-membered 2001, 39, 162-168.

ring, chelating carbonate group, and H-bonded dimeric bicarbonate (16) Steiner, TAngew. Chem., Int. EQ002 41, 48—76.

anions with eight-membered ring were retrieved from the CSD (version (17) Crystallographic coordinates for the phosphate derivatives were

5.27, Aug 2006). Structures were includedRif< 0.05, the meaw- retrieved from the CSD (version 5.27, Aug 2006). Structures were
(C—C) =< 0.01 A, and the coordinate set is error free. The bond- only included in this study iR < 0.05, the mean(C—C) < 0.005 A,
valence-sum rule was checked, and structures that showed a carbon and the coordinate set is error free. The bond-valence-sum rule was
valence-sum greater than 4.5 v.u. were rejected. The resulting four checked, and two structures that showed a phosphorus valence-sum
data sets comprise 35(30), 19(19), 14(13), and 46(38) fragments greater than 5.5 v.u. were rejected. In addition, crystal structures
(entries) for five-membered, six-membered, chelated, and H-bonded showing disorder were excluded. The resulting data set comprises 316
ring moieties, respectively. structures and 414 RGragments.
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Figure 6. Histogram of the length of the resultant bond-valence vector,
vp, for phosphates.

Figure 7. Scatter plot of the residual bond-valence vectayspj vs
appropriate bond-valenceg() for phosphates.

re—o = 1.617 A andb = 0.37 A, were taken according to
Brown and Altermatf. The frequency distribution of the
calculated lengths of the resultant bond-valence vectprs,
are presented in Figure 6, and almost all of the vectors are
shorter than 0.1.

In order to clarify the presentation, the resultapbond-

valence vector for each molecular moiety has been projected

on the direction of each of the four— bonds. In
consequence, for each molecularfgment one obtains
four residual vectorsdvp, showing the magnitude of
deviation along bond lines from zero predicted by the model.
Figure 7 presents the scatter plotdek; versus the appropri-
ate bond valencesy;. In the case of 1656 PO bonds, for
significant variation ofsy values from 0.9 to 1.5 v.u. the
spread ofdvp; values around zero is relatively small and
rangest0.1 v.u. (esd= 0.032). Moreover, what is essential
is that these two variables do not correlate= 0.01) and

Ouvpj values are spread around zero with a normal distribution.
Thus, the condition of zeroing ofp may be regarded as
fulfilled. It is worth mentioning that the results obtained from
the vectorial approach are generally in line with the correla-
tions found by Murray-Rust et al. for deformed tetrahedral
molecules of approximat&;, symmetry that mapSyl
reaction pathways

Five-Coordinated Organoaluminum Complexes. In
order to show the wide range of applicability of the proposed
model, the case of heteroligand systems has also been
analyzed. For this purpose, due to my particular interest in
organoaluminum compounds, | chose five-coordinate alu-
minum complexes with CAlQskeletons, i.e., monoalkyla-
luminum complexes with four ligating oxygen atoms. In such
compounds the coordination sphere usually takes the inter-
mediate form between the trigonal bipyramid and square
pyramid with the carbon atom in equatorial and apical
positions, respectively. Moreover, it is important to realize
that such systems cannot be treated as unstrained structures
due to the presence of various ring constraints, and thus,
deviations from the model are expected. Nevertheless, these
structures still serve as a reliable source of information.

Crystal data for 24 complexes served for further analysis.
Bond valences were calculated using eq 1 with the following
parameters:ra-o = 1.630 A ra-c = 1.914 A® and a
common constanh = 0.37 A. It has been confirmed that
the chosen compounds obey the bond valences sum rule,
and the sum of experimental bond valences for aluminum
ranges from 2.7 to 3.1 v.u. The length of the bond-valence
vector was calculated for each aluminum center. Surprisingly,
even with the presence of structural strains the lengths of
the resultant bond-valence vectgy are short and in most
cases (22 fragments) less than 0.1 v.u., whereas the maximum
equals 0.142 v.u. The residual vectods,; (i.e., the
projection of the resultant vectory on the AFX; bond
direction) for all bonds were calculated in the same manner
as in the case of phosphates. The obtained results are
presented in Figure 8 as a scatter plobofy; vs saj. As in
the previous cases and despite the structural straing,
are close to zero and almost all of them are in the range of
+0.1 v.u. From the point of view of the BVV model the
Al—C bond plays the most important role in the coordination
sphere since it has the most covalent character and thus the

(18) Murray-Rust, P.; Bugi, H.-B.; Dunitz, J. D.J. Am. Chem. Sod975
97, 921-922.

(19) Crystallographic coordinates for organoaluminum complexes were
retrieved from the CSD (version 5.27, Aug 2006). Structures were
included if R < 0.075 and the coordinate set is error free. Crystal
structures showing disorder were excluded. The resulting data set
comprises 24 structures and 25 Algftagments.

(20) Owing to discrepancy between values reportedr fpro parameter
(1.620 and 1.644 A in ref 7 and 1.651 A in ref 9) and lack of data for
the AI-C bond, the appropriate bond-valence parameters were
calculated. For that purpose, high-accuracy structural data '6f Al
complexes comprising Al§) AlO4, and AIG central skeletons were
retrieved from CSD (version 5.28, Jan 206¥ = 0.05,0(C—C) =
0.005 A, no errors, no disorder). The resulting data sets comprised
35(27), 23(28), and 34(22) fragments(entries) for AlI@IO4, and
AIC, moieties, respectively. Then thig o andra—c values which
minimized the sum of the squares of the difference between the
expected valence of aluminum (3) and the valence calculated from
the bond-valence sum were evaluated. The resulting, andra—c
bond-valence parameters are equal to 1.630 and 1.614 A, respectively.
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Figure 8. Scatter plot of residual bond-valence vectoraf) vs
appropriate bond-valencea() for five-coordinated aluminum complexes
with CAIO,4 skeleton. The squares and crosses correspond-t&CAind
Al—0 bonds, respectively.

highest bond valence (0.8@.95 v.u.), although independent

Zachara

Figure 9. Length of the resultant bond-valence vector plotted against bond-
valence-sum for NgE, PQE, and SGQE polyhedra. Dashed lines denote
the length of bond-valence vectors calculated for bond-valence equal to 2.

pair valences” according to eq 12, the respective values are
obtained: 1.78, 1.78, and 1.87. They are close to the value
of 2, i.e., the lone electron pair charge. The discrepancies
between these values and 2 may be understood in terms of
a stronger penetration of the atomic core region by non-

of the bond character (and bond valence) the residual vectorsbonding electrons than in the case of bonding ones. This

are small. Among all 24 studied structures one (MOTCAZ)
exhibits an atypical TBP coordination with the carbon atom
and an oxygen atom located in axial positions. In this
particular case the resultavy; vector is also very short and
equals 0.026 v.u., which shows the versatility of this BVV
model.

Stereoactive Lone Pairs.An additional comment is
required for electronically strained structures, especially for
the structures where the coordination center is comprised of
a lone electron pair (LEP), which can be treated as a pseudo
ligand. Previously, Browhand Wang et a? described the
stereochemical influence of LEP with the vectorial approach.
In order to measure the influence of LEP on the coordination
environments an appropriate vector called the eccentricity
parameter was definéd.By analogy, the proposed BVV
model may also deliver a vectorial description of the lone
electron pair effect on the coordination sphere.

In order to show the way a lone pair is represented in the
BVV model NOE, PQE, and SQE systems have been
analyzed. Their selection is due to the fact that in these

systems the lone electron pairs are strongly stereoactive. In

this work only the preliminary results are presented because

the detailed analysis is beyond the scope of this paper and

requires a wider discussion. The core charges of nitrogen,
phosphorus, and sulfur are taken as%,5+, and 6+,
respectively. The resultant bond-valence vectors calculated
from bond lengths and angfég®are plotted against experi-
mental bond-valence sums (Figure 9). In all cases the
variation of the resultant bond-valence vectors is rather small
(esd is equal to 0.025 for N, 0.031 for PGE, and 0.057

for SO;E). When the mean values of the resultant vectors
(1.15, 1.15, and 1.29) are used to calculate the “lone electron

(21) MOTCAZ is (us-0x0)-hexakis¢2-methoxo)-hexachloromethyl-tris-
(tetrahydrofuran)aluminum-trizirconium: Sobota, P.; Przybylak, S.;
Utko, J.; Jerzykiewicz, L. BOrganometallic2002 21, 3497-3499.

(22) Wang, X.; Liebau, FZ. Kristallogr. 1996 211, 437—439.

(23) Wang, X.; Liebau, FActa Crystallogr., Sect. R007, B63 216-228.
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conclusion is consistent with the VSEPR proposal that the
lone pair is only a partial lone pair with some of its electron
density in the valence shell and some in the ébfherefore,

| propose, similarly as for the bonds, to ascribe the appropri-
ate electric flux to nonbonding electrons. In this sense the
lone electron pair may be described by a valence close to 2,
as it was proposed a long time ago by Brof¥irand the
corresponding lone-pair valence vector. It is noteworthy that
the BVV approach may be used to describe the lone electron
pair by a vector only when the LEP is strongly stereoactive
because in such a case the system lone electron @@mic
core may be described as a dipole. In other instances, for
proper description, the higher multipoles must be taken into
account. On this basis the BVV model may serve as a
guantitative description of the lone electron pair effect, that

(24) Crystallographic coordinates for BB and SQE skeletons were
retrieved from the CSD (version 5.28, Jan 2007). Structures were
included if R < 0.05 and the coordinate set was error free. Crystal
structures showing disorder were excluded. Bond valences were
calculated using eq 1 with the following parameters:o = 1.630 A
(ref 6) andrs—o = 1.644 A (ref 7). The bond-valence-sum rule was
checked, and if the value differed by 0.30 v.u. or more from the
expected oxidation state$8 for P and+4 for S), then those structures
were rejected. The resulting data sets comprise 58(31) and 56(47)
fragments(entries) for P8 and SQE, respectively.

(25) Crystallographic coordinates for NBskeletons were retrieved from
the CSD (version 5.28, Jan 2007). Structures were includ&isf
0.05, the meaw(C—C) < 0.005 A, and the coordinate set was error
and disorder free. Since the previously reported bond-valence param-
eterry—o = 1.361 A for N'"'—0O bonds (ref 6) considerably underes-
timates the bond-valence-sum of nitrogen, theo parameter which
minimized the sum of the squares of the difference between the
expected valence of nitrogen (3) and the valence calculated from the
bond-valence-sum was estimated. Further, for each fragment the bond-
valence-sum rule was checked, and if the value differed by 0.30 v.u.
or more from the expected oxidation state 6f,3hen those structures
were rejected, and subsequently, a mgue was evaluated. The final
rn—o value of 1.397 A was calculated using the data set of 54 entries
containing 68 NQ skeletons.

(26) Pilme, J.; Robinson, E. A,; Gillespie, R. l&org. Chem.2006 45,
6198-6204.

(27) Brown, I. D.J. Am. Chem. S0d.98Q 102 2112-2113.
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is, it can be used as a link between the bond-valence andof coordination spheres. It allows us to identify and
the VSEPR model& guantitatively estimate both steric and electronic factors,
The present study does not deal with d- and f-element which cause deformation of the “ideal’ structure. In this
complexes since the description of d- and f-valence electronssense, along with the bond-valence model, the BVV model
requires special treatment and more sophisticated modelsmay be applied for structure validation. A great advantage
Additionally, a distortion of the core region of these elements of this approach is that the relation between a bond length,
from a spherical shape occiffswhereas the sphericity of  bond valence, and bond-valence vector is shown by an
the central core is the main assumption of the BVV model. uncomplicated equation allowing quick and simple computa-
) tions.
Conclusions
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