Inorg. Chem. 2008, 47, 349-359

Comparative Studies on Exchange Reactions of Hexafluoroacetylacetonate in Bis(hexafluoroacetylacetonato)(dimethyl sulfoxide)dioxouranium(VI) in Nonagueous Solvent and Supercritical **CO**₂

Yoshihiro Kachi,[†] Yoshihito Kayaki,[‡] Takehiko Tsukahara,[§] Takao Ikariya,[‡] and Yasuhisa Ikeda^{*,†}

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 O-okayama, Meguro-ku, Tokyo 152-8550, Japan, Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1-S1-39 O-okayama, Meguro-ku, Tokyo 152-8552, Japan, Department of Applied Chemistry, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

Received June 23, 2007

Exchange reactions of hexafluoroacetylacetonate (hfacac) in $UO_2(hfacac)_2DMSO$ (DMSO = dimethyl sulfoxide) in $o-C_6D_4Cl_2$ and supercritical CO₂ (sc-CO₂) have been studied using the NMR line-broadening method to compare reactivity in a nonaqueous solvent with that in sc-CO₂. It was found that the exchange rates of hfacac in both systems are dependent on the concentration of the enol isomer ([Henol]) of hexafluoroacetylacetone and become slow with an increase in the concentration of free DMSO ([DMSO]). The exchange reaction between free and coordinated DMSO in UO₂(hfacac)₂DMSO has been also examined in o-C₆D₄Cl₂ and sc-CO₂. As a result, the exchange rate of DMSO was found to depend on [DMSO]. From these results, the hfacac exchange reactions in UO_2 (hfacac)₂DMSO in o-C₆D₄Cl₂ and sc-CO₂ were proposed to proceed through the mechanism that the ringopening for one of two coordinated hfacac in UO₂(hfacac)₂DMSO is the rate-determining step, and the resulting vacant site is coordinated by the incoming Henol, followed by the proton transfer from Henol to hfacac and the ring closure of unidentate hfacac. The rate constants at 60 °C and the activation parameters (ΔH^{\ddagger} and ΔS^{\ddagger}) for the ring-opening path are $35.8 \pm 3.2 \text{ s}^{-1}$, $57.8 \pm 2.7 \text{ kJ} \cdot \text{mol}^{-1}$, and $-42.9 \pm 7.7 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ for the o-C₆D₄Cl₂ system, and $518 \pm 50 \text{ s}^{-1}$, $18.9 \pm 1.8 \text{ kJ} \cdot \text{mol}^{-1}$, and $-138 \pm 5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ for the sc-CO₂ system, respectively. Differences in kinetic parameters between sc-CO₂ and o-C₆D₄Cl₂ systems were proposed to be attributed to the solute-solvent interactions such as Lewis acid–Lewis base interactions and hydrogen bondings between sc-CO₂ and β -diketones.

Introduction

Supercritical CO₂ (sc-CO₂) has been extensively studied as a medium for organic reactions, extractions, dyeing, washing, and drying.¹⁻⁴ Especially, in the extraction field,

- * To whom correspondence should be addressed. E-mail: yikeda@ nr.titech.ac.jp (Y.I.), Phone and Fax: +81-3-5734-3061.
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technol-
- ogy. [‡] Department of Applied Chemistry, Tokyo Institute of Technology. [§] Department of Applied Chemistry, The University of Tokyo.
- (1) Kiran, E.; Sengeers, J. M. H. L. Supercritical Fluids-Fundamentals for Application; Kluwer: Dordrecht, The Netherlands, 1994.
- (2) Hutchenson, K. W.; Foster, N. R. Innovations in Supercritical Fluids; American Chemical Society: Washington, 1995.
- (3) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1999, 99, 475-494.
- (4) Kajimoto, O. Chem. Rev. 1999, 99, 355-389.

10.1021/ic701234q CCC: \$40.75 © 2008 American Chemical Society Published on Web 12/07/2007

sc-CO₂ has become of interest as an alternative to organic solvents, for example, as a separation medium for metal ions in spent nuclear fuel reprocessing or radioactive waste treatment.5-11 However, it is well-known that the direct extraction of metal ions to the sc-CO₂ phase is difficult.⁹⁻¹¹

(5) Carrott, M. J.; Waller, B. E.; Smart, N. G.; Wai, C. M. Chem. Commun. 1998, 373-374.

- (8) Galand, N.; Wipff, G. J. Phys. Chem. B 2005, 109, 277-287.
- (9) Lin, Y.; Brauer, R. D.; Laintz, K. E.; Wai, C. M. Anal. Chem. 1993, 65, 2549-2551
- (10) Lin, Y.; Wai, C. M. Anal. Chem. 1994, 66, 1971-1975.
- (11) Darr, J. A.; Poliakoff, M. Chem. Rev. 1999, 99, 495-541.

⁽⁶⁾ Meguro, Y.; Iso, S.; Sasaki, T.; Yoshida, Z. Anal. Chem. 1998, 70, 774-779.

⁽⁷⁾ Tomioka, O.; Meguro, Y.; Enokida, Y.; Yamamoto, I. Yoshida, Z. J. Nucl. Sci. Technol. 2001, 38, 1097-1102.

Hence, the techniques using sc-CO₂ containing extractants such as tributyl phosphate and β -diketones have been developed extensively.^{5–8}

To use extensively sc-CO₂ as a medium for the extraction methods, it is necessary to clarify the factors for controlling the solubility of solutes such as extractants and their metal complexes in sc-CO₂ and to design the CO₂-philic compounds with selectivity toward metal ions. Thus, many studies on solute-solvent interactions in sc-CO₂ have been performed.¹²⁻³⁰ Such studies have revealed that the solubility of compounds in sc-CO₂ is enhanced by fluorination.^{10,21-25} Moreover, it has been elucidated that hydrocarbons with carbonyl group(s) such as aldehydes, ketones, and acetates have the Lewis acid-Lewis base (LA-LB) interactions and hydrogen bondings with sc-CO₂ and that the LA-LB interactions of solutes play important roles for the enhancement of solubility of solutes.²⁶⁻³⁰ Recently, we reported that the CO₂-philicity of solutes in sc-CO₂ can be estimated from chemical shifts of ¹³C NMR of CO₂ in sc-CO₂ containing solutes.³¹ More recently, we measured the Raman spectra of sc-CO₂ containing β -diketones and their uranyl complexes, and clarified that the LA-LB interactions between carbonyl oxygens of β -diketones and CO₂ carbon, and the hydrogen bonding between -OH of β -diketones and CO_2 oxygen are formed.³² Furthermore, on the basis of this knowledge, we measured the Raman spectra of sc-CO₂ containing compounds with different donicity (donor number, DN) such as acetic anhydride, methyl acetate, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and found out that the

- (12) Blitz, J. P.; Yonker, C. R.; Smith, R. D. J. Phys. Chem. 1989, 93, 6661-6665.
- (13) Fulton, J. L.; Yee, G. G.; Smith, R. D. J. Am. Chem. Soc. 1991, 113, 8327–8334.
- (14) Sun, Y.; Bennet, G.; Johnston, K. P.; Fox, M. A. J. Phys. Chem. 1992, 96, 10001–10007.
- (15) Meredith, J. C.; Johnston, K. P.; Seminario, J. M.; Kazarian, S. G.; Eckert, C. A. J. Phys. Chem. 1996, 100, 10837–10848.
- (16) Diep, P.; Jordan, K. D.; Johnson, J. K.; Beckman, E. J. J. Phys. Chem. A 1998, 102, 2231–2236.
- (17) Nelson, M. R.; Borkman, R. F. J. Phys. Chem. A 1998, 102, 7860– 7863.
- (18) Danten, Y.; Tassaing, T.; Besnard, M. J. Phys. Chem. A 2002, 106, 11831–11840.
- (19) Raveendran, P.; Wallen, S. L. J. Phys. Chem. B 2003, 107, 1473– 1477.
- (20) Raveendran, P.; Ikushima, Y.; Wallen, S. L. Acc. Chem. Res. 2005, 38, 478-485.
- (21) Yee, G. G.; Fulton, J. L.; Smith, R. D. J. Phys. Chem. **1992**, *96*, 6172–6181.
- (22) Smart, N. G.; Carleson, T.; Kast, T.; Clifford, A. A.; Burford, M. D.; Wai, C. M. *Talanta* **1997**, *44*, 137–150.
- (23) Wai, C. M.; Wang, S. J. Chromatogr. A 1997, 785, 369-383.
- (24) Dardin, A.; DeSimone, J. M.; Samulski, E. T. J. Phys. Chem. B 1998, 102, 1775–1780.
- (25) Yonker, C. R.; Palmer, B. J. J. Phys. Chem. A 2001, 105, 308-314.
- (26) Akimoto, S.; Kajimoto, O. Chem. Phys. Lett. 1993, 209, 263–268.
 (27) Felker, P. M.; Maxton, P. M.; Schaeffer, M. W. Chem. Rev. 1994,
- 94, 1787–1805.
 (28) Lalanne, P.; Rey, S.; Cansell, F.; Tassaing, T.; Besnard, M. J. Supercrit.
- *Fluids* **2001**, *19*, 199–207. (29) Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. **2002**, *124*, 12590–
- (23) Ravendran, F., Wanch, S. E. J. Am. Chem. Soc. 2002, 124, 12390 12599.
- (30) Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Phys. Chem. A 2003, 107, 10311–10323.
- (31) Tsukahara, T.; Kayaki, Y.; Ikariya, T.; Ikeda, Y. Angew. Chem., Int. Ed. 2004, 43, 3719–3722.
- (32) Kachi, Y.; Tsukahara, T.; Kayaki, Y.; Ikariya, T.; Ikeda, Y. J. Supercrit. Fluids 2007, 40, 20–26.

extent of red shifts in Raman bands of CO_2 is used as the measure for the strength of LA–LB interactions formed between CO_2 and the solutes in sc- CO_2 .³²

In spite of many studies on the solute—solvent interactions as described above, complex formation reactions of metal ions with extractants and ligand exchange reactions of metal complexes in sc-CO₂, which are the most fundamental data for understanding extraction mechanisms of metal ions in sc-CO₂ medium, have not been studied sufficiently.^{33–35}

For uranyl complexes, many studies on ligand exchange reactions have been undertaken in aqueous and nonaqueous solvents.36-58 Especially, inter- and/or intramolecular exchange reactions of β -diketonates in UO₂(β -diketonato)₂L $[\beta$ -diketonates = acetylacetonate (acac), dibenzoylmethanate (dbm), hexafluoroacetylacetonate (hfacac), L = oxygendonor ligands such as DMSO, DMF, and so on] have been studied in nonaqueous solvents.^{42,47-50,52} In the exchange reactions of acac in $UO_2(acac)_2L$ (L = DMSO, DMF) in o-C₆D₄Cl₂, we found that the apparent first-order exchange rate constants (k_{ex}) increase and approach limiting values with an increase in concentration of the enol isomer of acetylacetone (Hacac) and that the k_{ex} values decrease with increasing concentrations of free L.50,52 From such results, we proposed the exchange reaction mechanism that the ring-opening for one of two coordinated acac in UO₂(acac)₂L is the rate-

- (33) Inada, Y.; Sato, H.; Liu, S.; Horita, T.; Funahashi, S. J. Phys. Chem. A 2003, 107, 1525–1531.
- (34) Inada, Y.; Horita, T.; Yokooka, Y.; Funahashi, S. J. Supercrit. Fluids 2004, 31, 175–183.
- (35) Liu, S.; Inada, Y.; Funahashi, S. J. Supercrit. Fluids **2004**, *30*, 237–246.
- (36) Gordon, G.; Taube, H. J. Inorg. Nucl. Chem. 1961, 16, 272-278.
- (37) Bowen, R. P.; Lincoln, S. F.; Williams, E. H. Inorg. Chem. 1976, 15, 2126–2129.
- (38) Lincoln, S. F. Pure Appl. Chem. 1979, 51, 2059-2065.
- (39) Honan, G. J.; Lincoln, S. F.; Williams, E. H. Aust. J. Chem. 1979, 32, 1851–1855.
- (40) Ikeda, Y.; Soya, S.; Fukutomi, H. J. Inorg. Nucl. Chem. 1979, 41, 1333–1337.
- (41) Kramer, G. M.; Dines, M. B.; Melchior, M. T.; Maas, Jr. E. T. *Inorg. Chem.* **1981**, *20*, 3–6.
- (42) Kramer, G. M.; Maas, E. T., Jr.; Dines, M. B. Inorg. Chem. 1981, 20, 1418–1420.
- (43) Kramer, G. M.; Dines, M. B.; Kaldor, A.; Hall, R.; McClure. D. Inorg. Chem. 1981, 20, 1421–1426.
- (44) Kramer, G. M.; Maas, E. T., Jr. Inorg. Chem. 1981, 20, 3514-3516.
- (45) Bray, R. G.; Kramer, G. M. Inorg. Chem. 1983, 22, 1843-1848.
- (46) Doine, H.; Ikeda, Y.; Tomiyasu, H.; Fukutomi, H. Bull. Chem. Soc. Jpn. 1983, 56, 1989–1994.
- (47) Ikeda, Y.; Tomiyasu, H.; Fukutomi, H. Bull. Chem. Soc. Jpn. 1983, 56, 1060–1066.
- (48) Ikeda, Y.; Tomiyasu, H.; Fukutomi, H. Bull. Chem. Soc. Jpn. 1984, 57, 2925–2929.
- (49) Ikeda, Y.; Tomiyasu, H.; Fukutomi, H. Inorg. Chem. **1984**, 23, 1356–1360.
- (50) Ikeda, Y.; Tomiyasu, H.; Fukutomi, H. Inorg. Chem. **1984**, 23, 3197–3202.
- (51) Lincoln, S. F. White, A. Inorg. Chim. Acta 1985, 110, 107-112.
- (52) Fukutomi, H.; Ikeda, Y. Inorg. Chim. Acta 1986, 115, 223-227.
- (53) White, A.; Lincoln, S. F. J. Chem. Soc., Dalton Trans. 1987, 2885– 2888.
- (54) Farkas, I.; Grenthe, I. J. Phys. Chem. A 2000, 104, 1201-1206.
- (55) Vallet, V.; Wahlgren, U.; Schimmelpfennig, B.; Szabó, Z.; Grenthe, I. J. Am. Chem. Soc. 2001, 123, 11999–12008.
- (56) Vallet, V.; Wahlgren, U.; Szabó, Z.; Grenthe, I. Inorg. Chem. 2002, 41, 5626-5633.
- (57) Vallet, V.; Szabó, Z.; Grenthe, I. J. Chem. Soc., Dalton Trans. 2004, 3799–3907.
- (58) Szabó, Z.; Toraishi, T.; Vallet, V.; Grenthe, I. Coord. Chem. Rev. 2006, 250, 784–815.

Exchange Reactions of Hexafluoroacetylacetonate

determining step, and the resulting vacant site is coordinated by the entering Hacac, followed by the proton transfer from Hacac to acac and the ring closure of unidentate acac.^{50,52}

As mentioned above, there are solute—solvent interactions between CO₂ and β -diketones or oxygen donor compounds.^{31,32} Hence, such interactions should affect ligand exchange reactions in UO₂(β -diketonato)₂L complexes in sc-CO₂ and lead to different phenomena from those in the nonaqueous solvents. However, little information is available concerning comparative studies on the exchange reactions of uranyl complexes in nonaqueous solvents and sc-CO₂.³³ Such data should be helpful for understanding the differences in the reactivity of solutes in nonaqueous solvents and sc-CO₂ and for designing supercritical extraction processes of metal ions.

In the present study, hence, we have examined the ligand exchange reactions in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ and sc-CO₂ to compare the reactivity of the $UO_2(hfacac)_2DMSO$ in both media.

Experimental Section

Materials. The UO₂(hfacac)₂DMSO complex was synthesized by the same method as reported previously.⁵⁹ Hexafluoroacetylacetone (Hhfacac, Wako Pure Chemical Ind. Ltd., 99%) was purified by distillation. Dimethyl sulfoxide (Wako, 99%), DMSO- d_6 (Kanto Chemical Co., Inc., 98 atom% D), o-C₆H₄Cl₂ (Kanto Chemical Co., Inc., 99%), o-C₆D₄Cl₂ (Sigma-Aldrich Co., 98 atom% D), and CD₂-Cl₂ (Kanto, 99.8 atom% D) were stored over 4 Å molecular sieves prior to use. Pure grade CO₂ (Tomoe Shokai Co., Ltd., 99.999%) was used.

Measurements of NMR and Raman Spectra of o-C₆D₄Cl₂ and sc-CO₂ Containing Solutes. ¹H and ¹⁹F NMR spectra of o-C₆D₄-Cl₂ containing solutes were measured using a JEOL JNM LA 300 WB FT-NMR spectrometer at atmospheric pressure in the temperature range from 40 to 120 °C. In the sc-CO₂ system, the pressure was controlled at 25 MPa in the same temperature range. A zirconia cell (ZC inner diameter, 5.4 mm; outer diameter, 9.0 mm; length, 152.0 mm) was used as a high-pressure NMR sample tube. NMR measurements were performed by the following procedures: (i) putting UO₂(hfacac)₂DMSO into the ZC, (ii) inserting a glass capillary (diameter, 4.2 mm; length, 142.9 mm) containing DMSO d_6 as an internal lock into the ZC, (iii) adding Hhfacac to the ZC by using a microsyringe, (iv) fixing the ZC to the Ti-Al sample holder and connecting the sample holder with a stainless steel inlet tube, (v) charging CO₂ gas into the ZC using a syringe pump (ISCO Model-260D). The pressure and temperature of the samples were controlled by using a back-pressure regulator (JASCO 880-81) and by providing heated air from the lower part of probe, respectively.^{31,60}

Raman spectra of $UO_2(hfacac)_2DMSO$ in $o-C_6H_4Cl_2$ were measured by a Raman spectrophotometer (JASCO RMP-200) equipped with a single monochromatic spectrograph system with a grating of 1800 lines/mm at atmospheric pressure. In the case of the sc-CO₂ system, we used a high-pressure cell (TAIATSU Glass Co., Ltd.), and the pressure and temperature were controlled at 25 MPa and 40 °C. The high-pressure cell body (volume = 819 cm³) is made from stainless steel (SUS316) with three sapphire windows. The optical path length of the cell and the volume of the sample are 2.6 cm and 8.1 cm³, respectively. The light source is a semiconductor laser (Nd:YVO₄), operating at 532 nm with a power of 100 mW. The high-pressure Raman measurements were performed by the same method as reported previously.³²

Measurements of the Keto–Enol Equilibrium Constant for Hexafluoroacetylacetone. Hexafluoroacetylacetone has keto and enol forms (abbreviated as Keto and Henol). The tautomeric ratios of Hhfacac (2.83×10^{-2} M, M = mol·dm⁻³) in *o*-C₆D₄Cl₂ were measured from the areas of ¹⁹F NMR peaks due to the –CF₃ of Keto and Henol in the range from 40 to 120 °C. The same measurements in sc-CO₂ containing Hhfacac (2.96×10^{-2} M) were carried out in the range from 40 to 120 °C at 25 MPa. The equilibrium constants, $K_{\text{keto-enol}} = [\text{Keto}]/[\text{Henol}]$, were evaluated from the ratios measured.

Plots of ln $K_{\text{keto-enol}}$ versus the reciprocal temperature are shown in Figure S1 in the Supporting Information. The values of ΔH and ΔS for $K_{\text{keto-enol}}$ were obtained as 21.9 \pm 1.3 kJ·mol⁻¹ and 28.4 \pm 3.7 J·K⁻¹·mol⁻¹ in *o*-C₆D₄Cl₂, and 14.5 \pm 1.1 kJ·mol⁻¹ and 7.3 \pm 3.1 J·K⁻¹·mol⁻¹ in sc-CO₂.

Kinetic Analyses. Kinetic analyses of ligand exchange reactions in UO₂(hfacac)₂DMSO were carried out using a computer program based on a two-site exchange as mentioned previously.^{52,61} In the present study, gNMR was used as a computer program.⁶² Input parameters for this program are the chemical shifts and the full widths at half-maximum (fwhm) of signals corresponding to the coordinated and free ligands. In o-C₆D₄Cl₂, the chemical shifts and fwhm at a temperature, in which the exchange is negligibly slow reactions, are used as the input parameters. In the sc-CO₂ system, the chemical shifts and fwhm of NMR signals in sc-CO₂ containing only free ligand (Hhfacac and DMSO) and UO2(hfacac)2DMSO were measured at each temperature and used as input data, because NMR resolution becomes lower due to the convection of sc-CO₂ with the approach to the critical density of CO₂ with an increase in temperature.⁶³ The apparent first-order rate constants (k_{ex}) for the ligand exchange reactions were obtained from the best-fit τ -values by using the following equations:

$$\tau = \tau_c P_f = \tau_f P_c, \, k_{ex} = 1/\tau_c \tag{1}$$

where τ and *P* with the subscripts of c and f express the mean lifetimes and the mole fractions of the coordinated ligand and the free one, respectively.

Results and Discussion

Structure of UO₂(hfacac)₂DMSO in o-C₆D₄Cl₂ and sc-CO₂ Containing Free Hhfacac. It has been known that the UO₂(hfacac)₂L (L = unidentate ligands) complexes have a pentagonal bipyramidal structure and cause the following displacement reactions in nonaqueous solvents,

$$UO_2(hfacac)_2L + L' = UO_2(hfacac)_2L' + L \qquad (2)$$

where L' is L itself or other unidentate ligands.⁴¹⁻⁴⁵

Hence, to examine the structures of UO₂(hfacac)₂DMSO in o-C₆D₄Cl₂ and sc-CO₂ containing free Hhfacac, we measured ¹H and ¹⁹F NMR spectra of o-C₆D₄Cl₂ and sc-CO₂ containing UO₂(hfacac)₂DMSO (1.01 × 10⁻², 1.03 × 10⁻² M) and free Hhfacac (2.83 × 10⁻², 2.96 × 10⁻² M),

⁽⁵⁹⁾ Mizuguchi, K.; Lee, S.-H.; Ikeda, Y.; Tomiyasu, H. J. Alloys Compd. 1998, 271–273, 163–167.

⁽⁶⁰⁾ Kayaki, Y.; Suzuki, T.; Noguchi, Y.; Sakurai, S.; Imanari, M.; Ikariya, T. Chem. Lett. 2002, 31, 424–425.

⁽⁶¹⁾ Binsch, G. Top. Stereochem. 1968, 3, 97-192.

⁽⁶²⁾ Budzelaar, P. H. M. gNMR, version 5.0; Adept Scientific.

⁽⁶³⁾ Li, H.; Ji, X.; Yan, J. Int. J. Energy Res. 2006, 30, 135-148.

Figure 1. ¹H (a) and ¹⁹F (b) NMR spectra of o-C₆D₄Cl₂ containing UO₂(hfacac)₂DMSO (1.01 × 10⁻² M) and free Hhfacac (2.83 × 10⁻² M) at 40 and 120 °C.

Figure 2. ¹H (a) and ¹⁹F (b) NMR spectra of sc-CO₂ containing UO₂(hfacac)₂DMSO (1.03×10^{-2} M) and free Hhfacac (2.96×10^{-2} M) at 40 and 120 °C.

respectively. The results are shown in Figures 1 and 2. Signals a, b, and c in part (a) in Figure 1 and part (a) in Figure 2 are assigned as the -CH groups of coordinated hfacac and free Henol and the -CH₃ group of coordinated DMSO, respectively. The -CH₂ group due to free Keto could not be observed in both systems, because the amount of Keto is small in the present samples. Signals d, e, and f in part (b) of Figure 1 and part (b) of Figure 2 correspond to the -CF₃ groups of coordinated hfacac, and those of free Henol and Keto, respectively. From the area ratios of signals b and c to a and of signal e to d at 40 °C, it was found that two hfacac and one DMSO coordinate to the uranyl ion. The chemical shifts of signals b and c were found to be constant regardless of an increase in temperature. These results indicate that even in the $o-C_6D_4Cl_2$ and sc-CO₂ systems containing free Hhfacac the UO2(hfacac)2DMSO complex maintains the pentagonal bipyramidal structure and that the following equilibrium does not exist in both systems:

 $UO_2(hfacac)_2DMSO + Hhfacac$

= UO₂(hfacac)₂Hhfacac + DMSO (3)

Moreover, the chemical shift differences ($\Delta\delta$) between signals a and b, and signals d and e are 0.45 and 1.25 ppm for the *o*-C₆D₄Cl₂ system, and 0.32 and 1.09 ppm for the sc-CO₂ system (Figures S2 and S3 in the Supporting Information). The $\Delta\delta$ values in the *o*-C₆D₄Cl₂ system are larger than those in sc-CO₂. This suggests that hfacac of UO₂(hfacac)₂DMSO in the *o*-C₆D₄Cl₂ coordinates to the uranyl ion more strongly than that in sc-CO₂.

From NMR results, it is expected that the U=O bond strength of UO₂(hfacac)₂DMSO in *o*-C₆H₄Cl₂ is weaker than that of UO₂(hfacac)₂DMSO in sc-CO₂, and hence the U=O stretching band of $UO_2(hfacac)_2DMSO$ in $o-C_6H_4Cl_2$ should be observed at a lower wavenumber than that in sc-CO₂. In fact, the U=O symmetric stretching (v_1) bands of UO₂(hfacac)₂-DMSO (1.0 \times 10⁻² M) in *o*-C₆H₄Cl₂ and sc-CO₂ were observed at 854 ± 1 and 859 ± 1 cm⁻¹, respectively (Figure S4 in the Supporting Information). To confirm the significance of the difference (Δv_1 , 5 cm⁻¹) in the v_1 bands of $UO_2(hfacac)_2DMSO in o-C_6H_4Cl_2 and sc-CO_2, we measured$ the Raman spectra of UO₂(acac)₂DMSO and UO₂(acac)₂-DMF in o-C₆H₄Cl₂. The v_1 bands of UO₂(acac)₂DMSO and $UO_2(acac)_2DMF$ were observed at 830 \pm 1 and 834 \pm 1 cm⁻¹, respectively (Figure S4 in the Supporting Information). The Δv_1 value of 4 cm⁻¹ should reflect the difference in the donicity of DMSO and DMF, that is, DMSO coordinates to the uranyl ion more strongly than DMF. In addition, the Δv_1 value between UO2(hfacac)2DMSO(854 cm⁻¹) and UO2(acac)2-DMSO (830 cm⁻¹) in o-C₆H₄Cl₂ is 24 cm⁻¹, which also reflects the difference in the strength of the coordination of

Table 1. Solution Compositions and Kinetic Parameters for the Exchange Reactions of hfacac in $UO_2(hfacac)_2DMSO$ in *o*-C₆D₄Cl₂ (i - xii) and sc-CO₂ (I - XII)

	[UO ₂ (hfacac) ₂ DMSO]	[Henol]	[DMSO]	$k_{\rm hf}~(80~^{\circ}{\rm C})$	ΔH^{\ddagger}	ΔS^{\ddagger}
solution number	$10^{-2} { m M}$	$10^{-2} { m M}$	$10^{-3} \mathrm{M}$	s ⁻¹	$kJ \cdot mol^{-1}$	$\overline{J \cdot mol^{-1} \cdot K^{-1}}$
i	1.08	0.623	0	8.35	46.4 ± 2.1	-95.8 ± 5.5
ii	1.08	1.63	0	18.8	41.3 ± 1.8	-106 ± 5
iii	1.05	2.31	0	23.4	44.3 ± 1.4	-98.5 ± 3.7
iv	1.01	2.83	0	27.2	42.3 ± 1.7	-99.1 ± 4.8
v	1.05	4.31	0	43.7	41.7 ± 1.8	-98.6 ± 5.9
vi	1.05	5.36	0	48.0	37.0 ± 1.4	-110 ± 4
vii	1.05	8.77	0	64.3	36.3 ± 1.0	-109 ± 3
viii	1.01	2.83	0	27.2	42.3 ± 1.7	-99.1 ± 4.8
ix	1.01	2.83	5.01	21.3	44.3 ± 1.4	-96.8 ± 7.5
х	1.01	2.83	10.6	24.1	44.5 ± 2.7	-95.4 ± 7.6
xi	1.01	2.83	14.8	18.2	49.8 ± 2.2	-82.1 ± 6.3
xii	1.01	2.83	19.9	17.2	46.7 ± 2.7	-90.5 ± 7.3
Ι	1.03	0.907	0	4.84	25.3 ± 0.7	-162 ± 2
II	1.06	1.98	0	8.58	24.6 ± 0.8	-159 ± 3
III	1.03	2.96	0	10.4	27.8 ± 0.9	-148 ± 2
IV	1.03	4.09	0	13.4	25.5 ± 1.0	-154 ± 3
V	1.03	4.66	0	17.9	23.8 ± 1.2	-156 ± 3
VI	0.989	5.62	0	22.9	24.0 ± 1.8	-153 ± 5
VII	0.972	7.50	0	28.7	22.2 ± 0.8	-157 ± 2
VIII	1.01	2.96	0	10.4	27.8 ± 0.9	-148 ± 2
IX	0.989	2.94	2.01	8.81	27.6 ± 1.3	-150 ± 4
Х	1.00	2.89	4.78	7.84	26.0 ± 1.8	-154 ± 5
XI	1.03	2.78	6.97	7.00	27.2 ± 1.7	-152 ± 5
XII	0.989	2.80	9.67	7.00	26.5 ± 1.5	-154 ± 4

acac and hfacac. These results are consistent with previous studies that the ν_1 bands of the uranyl complexes shift toward a lower wavenumber with an increase in the donicity (strength of coordination) of ligands coordinated to the equatorial plane of the uranyl moiety.^{64,65}

From the results of NMR and Raman spectra, it is concluded that the hfacac of $UO_2(hfacac)_2DMSO$ in $o-C_6D_4$ -Cl₂ coordinates to the uranyl ion more strongly than that in sc-CO₂.

Exchange Reactions between Free Hhfacac and Coordinated hfacac in UO₂(hfacac)₂DMSO in *o*-C₆D₄Cl₂ and sc-CO₂. As seen in Figures 1 and 2, the signals of the –CH group (a and b) and the –CF₃ group (d and e) for coordinated hfacac and free Hhfacac become broad with increasing temperature, whereas the signal of –CF₃ group (f) for Keto does not show such a broadening. From the similarity to the NMR spectral changes of UO₂(acac)₂L (L = DMSO, DMF) in *o*-C₆D₄Cl₂,^{50,52} it was found that Henol exchanges with the coordinated hfacac in UO₂(hfacac)₂DMSO in *o*-C₆D₄-Cl₂ and sc-CO₂ as follows:

 $UO_2(hfacac)_2DMSO + Henol^* =$ $UO_2(hfacac)(hfacac^*)DMSO + Henol$ (4)

where the asterisk denotes the exchanging species.

Hence, we measured signals d and e of the same samples as those in Figures 1 and 2 at various temperatures to obtain kinetic data (Figure S5 in the Supporting Information).

The apparent first-order rate constants (k_{hf}) for the hfacac exchange reaction in UO₂(hfacac)₂DMSO were evaluated

from the τ -values using eq 1. It was also confirmed that the $k_{\rm hf}$ values evaluated using the signals of the -CH group (a and b) are almost same as those using the $-CF_3$ group (d and e). The $k_{\rm hf}$ values for the samples (i-vii) and (I-VII) listed in Table 1 were measured, and their logarithmic values were plotted against the reciprocal temperature in Figure 3. The $k_{\rm hf}$ values in sc-CO₂ are found to be smaller than those in o-C₆D₄Cl₂. However, pressure in o-C₆D₄Cl₂ the system differs from that in the sc-CO₂ system. Hence, the $k_{\rm hf}$ values in the $o-C_6D_4Cl_2$ system (sample vi in Table 1) were measured at various temperatures under atmospheric pressure and 25 MPa. The $k_{\rm hf}$ values at 25 MPa were found to be almost the same as those at atmospheric pressure (Figure S6 in the Supporting Information). This indicates that the differences in $k_{\rm hf}$ values between $o-C_6D_4Cl_2$ and sc-CO₂ systems are due to those in the solvents.

Furthermore, it is found from Figure 3 that the k_{hf} values increase with increasing [Henol] in both systems. Hence, the

Figure 3. Semilogarithmic plots of k_{hf} versus 1/T for the exchange reactions of hfacac in UO₂(hfacac)₂DMSO in *o*-C₆D₄Cl₂ and sc-CO₂. The symbols of \bullet , \blacktriangle , \bullet , \blacksquare , \bigcirc , \triangle , \diamondsuit , and \Box correspond to data for solutions (i, iii, iv, vii ,I, III, IV, and VII) in Table 1.

⁽⁶⁴⁾ Zazhogin, A. A.; Lutz, H. D.; Komyak, A. I. J. Mol. Struct. 1999, 482–483, 189–193.

⁽⁶⁵⁾ Koshino, N.; Harada, M.; Nogami, M.; Morita, Y.; Kikuchi, T.; Ikeda, Y. Inorg. Chim. Acta 2005, 358, 1857–1864.

Figure 4. Plots of $k_{\rm hf}$ versus [Henol] for the exchange reactions of hfacac in UO₂(hfacac)₂DMSO. (a): (•) 40 °C, (•) 60 °C, (•) 80 °C, (•) 100 °C in the *o*-C₆D₄Cl₂ system. (b): (○) 40 °C, (△) 60 °C, (◇) 80 °C, (□) 100 °C in the sc-CO₂ system.

Figure 5. Plots of k_{hf}^{-1} versus [Henol]⁻¹ for the exchange reactions of hfacac in UO₂(hfacac)₂DMSO in *o*-C₆D₄Cl₂. (•) 40 °C, (•) 60 °C, (•) 80 °C, (•) 100 °C.

Table 2. Values of k_a , k_b , k_m , and k_n in the *o*-C₆D₄Cl₂ System at Various Temperatures

Temperature	k _a	k _b	k _m	k _n
°C	$10^{-3} { m s}$	10 ⁻⁴ M·s	$10^{-2} {\rm s}$	$10^{-1} \mathrm{M} \cdot \mathrm{s}$
40	72.9 ± 10.4	55.9 ± 0.3	23.4 ± 5.6	233 ± 46
60	27.9 ± 3.1	27.3 ± 0.6	11.5 ± 0.4	75.7 ± 3.4
70	16.3 ± 1.5	11.2 ± 0.3	6.89 ± 0.26	25.0 ± 2.1
80	8.33 ± 1.77	6.99 ± 0.27	3.75 ± 0.38	10.1 ± 3.1
90	4.23 ± 1.25	4.88 ± 0.70	2.21 ± 0.18	5.27 ± 1.48
100	2.91 ± 1.28	3.06 ± 0.47	1.37 ± 0.05	4.94 ± 0.37

 $k_{\rm hf}$ values were plotted against [Henol] as shown in Figure 4. The $k_{\rm hf}$ values for the o-C₆D₄Cl₂ system are found to approach constant values with an increase in [Henol]. This result is consistent with the exchange reaction of acac in UO₂(acac)₂L in o-C₆H₄Cl₂.^{50,52} Plots of 1/ $k_{\rm hf}$ versus [Henol] give straight lines with intercepts (Figure 5) and result in the following equation:

$$1/k_{\rm hf} = k_{\rm a} + k_{\rm b} [{\rm Henol}]^{-1}$$
(5)

The values of k_a and k_b were obtained from the intercepts and the slopes in Figure 5, respectively, and are listed in Table 2.

Figure 6. Plots of k_{hf} versus [DMSO] for the exchange reactions of hfacac in UO₂(hfacac)₂DMSO. (a): (\bullet) 40 °C, (\blacktriangle) 60 °C, (\bullet) 80 °C, (\blacksquare) 100 °C in the *o*-C₆D₄Cl₂ system. (b): (\bigcirc) 40 °C, (\bigtriangleup) 60 °C, (\diamondsuit) 80 °C, (\Box) 100 °C in the sc-CO₂ system.

Table 3. Values of k_c , k_o , and k_p in sc-CO₂ System at Various Temperatures

Temperature	kc	$k_{ m o}$	$k_{ m p}$
°C	$10^2 \mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$	$10^{-2} { m s}$	M·s
40 60	0.915 ± 0.055 1 97 ± 0.04	38.3 ± 1.5 17.9 ± 0.7	13.0 ± 2.51 6 53 ± 1 28
70 80	2.60 ± 0.07 3.83 ± 0.09	13.6 ± 0.8 0.24 ± 0.56	6.71 ± 1.46 3.42 ± 0.03
90 100	5.83 ± 0.09 4.68 ± 0.14 5.72 ± 0.16	9.24 ± 0.36 7.53 ± 0.76 6.17 ± 0.48	1.29 ± 0.13 0.991 ± 0.082

On the other hand, in the sc-CO₂ system, the plots of $k_{\rm hf}$ versus [Henol] give straight lines as shown in Figure 4, that is, the following equation can be derived:

$$k_{\rm hf} = k_{\rm c}[{\rm Henol}] \tag{6}$$

The k_c values were obtained from the slopes in Figure 4 and are listed in Table 3.

From these results, it is clear that there is difference in the exchange reactions of hfacac in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ and sc-CO₂ systems, as will be described later in the proposed mechanisms.

Effect of Added DMSO on the Exchange Rates of hfacac in o-C₆D₄Cl₂ and sc-CO₂. It has been known that the coordinated DMSO in $UO_2(\beta$ -diketonato)₂DMSO (β diketonates = acac, dbm, hfacac) rapidly exchanges with free DMSO at room temperature^{41,47,49} and that the LA-LB interactions exist between DMSO and CO2 in sc-CO2.31,32 Considering these facts, the exchange reaction of hfacac in the present study should be affected by the free DMSO. To examine the effect of free DMSO on the hfacac exchange reactions in UO₂(hfacac)₂DMSO in *o*-C₆D₄Cl₂ and sc-CO₂, the kinetic experiments were carried out using the sample solutions (viii-xii and VIII-XII) listed in Table 1. The resulting $k_{\rm hf}$ values were plotted against [DMSO] in Figure 6. As seen from this figure, the $k_{\rm hf}$ values become small, with an increase in [DMSO], and the average reduction ratio (33.3%) of $k_{\rm hf}$ values in the o-C₆D₄Cl₂ system is smaller than that (25.6%) in sc-CO₂. This result suggests that the effect of free DMSO on the exchange reaction of hfacac in

Figure 7. Plots of $1/k_{hf}$ versus [DMSO] for the exchange reactions of hfacac in UO₂(hfacac)₂DMSO. (a): (\bullet) 40 °C, (\blacktriangle) 60 °C, (\bullet) 80 °C, (\blacksquare) 100 °C in the *o*-C₆D₄Cl₂ system. (b): (\bigcirc) 40 °C, (\triangle) 60 °C, (\diamondsuit) 80 °C, (\Box) 100 °C in the sc-CO₂ system.

Figure 8. Plots of k_{ds} versus [DMSO] for the exchange reactions of DMSO in UO₂(hfacac)₂DMSO. (a): (•) 40 °C, (•) 60 °C, (•) 80 °C, (=) 100 °C in the o-C₆D₄Cl₂ system. (b): (○) 40 °C, (△) 60 °C, (◇) 80 °C, (□) 100 °C in the sc-CO₂ system.

UO₂(hfacac)₂DMSO in the sc-CO₂ system is depressed by sc-CO₂ and that the LA–LB interaction between CO₂ and DMSO affects the ligand exchange reaction in UO₂(hfacac)₂-DMSO. However, the ΔH^{\dagger} values for $k_{\rm hf}$ in the presence of free DMSO are almost the same as those in the absence of free DMSO (Table 1). This suggests that the rate-determining step in the hfacac exchange should be same regardless of

the presence of free DMSO. The plots of the $1/k_{\rm hf}$ values against [DMSO] for the o-C₆D₄Cl₂ and sc-CO₂ systems give straight lines with intercepts as shown in Figure 7. These results give the following equations.

$$\frac{1}{k_{\rm hf}} = k_{\rm m} + k_{\rm n} [\rm DMSO] \text{ (for the } o\text{-}C_6 D_4 Cl_2 \text{ system) (7)}$$
$$\frac{1}{k_{\rm hf}} = k_{\rm o} + k_{\rm n} [\rm DMSO] \text{ (for the sc-}CO_2 \text{ system) (8)}$$

The values of $k_{\rm m}$, $k_{\rm n}$, $k_{\rm o}$, and $k_{\rm p}$ were obtained from the intercepts and slopes in Figure 7 and are listed in Tables 2 and 3.

Exchange Reactions between Free DMSO and Coordinated DMSO in UO₂(hfacac)₂DMSO in *o*-C₆D₄Cl₂ and sc-CO₂. To examine the effect of free DMSO on the exchange reaction of hfacac in UO2(hfacac)2DMSO in $o-C_6D_4Cl_2$ and sc-CO₂ in more detail, the kinetic studies on the DMSO exchange reactions between free and coordinated sites in UO₂(hfacac)₂DMSO in both systems were carried out using sample solutions (xiii-xvii, XIII-XVIII) listed in Table 4. In the temperature region of 40 to 100 °C, one peak corresponding to the -CH₃ proton signal of DMSO was observed in both systems (see the left side of Figures S7 and S8 in the Supporting Information). These results are consistent with the phenomena observed in DMSO exchanges in UO₂(β -diketonato)₂DMSO (β -diketonates = acac, dbm, hfacac) in CD₂Cl₂,^{41,47,49} indicating that in this temperature range the free DMSO exchanges very rapidly with the coordinated DMSO in UO2(hfacac)2DMSO in o-C6D4Cl2 and sc-CO₂. However, the coalescence signals of the $-CH_3$ group in the sc-CO₂ system become broad with an increase in the temperature in spite of the rapid exchange region (Figure S8 in the Supporting Information). This is due to the lowering of the NMR resolution as mentioned in Experimental Section. In fact, the $-CH_3$ ($-CF_3$) signals of the ligands in sc-CO₂ containing only UO2(hfacac)2DMSO or ligands also become broad with increasing temperature (Figure S9 in the Supporting Information). By considering these results, we carried out the line shape analyses of NMR spectra in Figures S7 and S8 to obtain kinetic data. The apparent first-order rate constants (k_{ds}) for the DMSO exchange reactions in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ and sc-CO₂ were plotted

Table 4. Solution Compositions and Kinetic Parameters for the Exchange Reactions of DMSO in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ (xiii – xvii) and sc-CO₂ (XIII– XVIII)

Solution Number	[UO2(hfacac)2DMSO]	[DMSO]	<i>k</i> _{ds} (80 °C)	ΔH^{\ddagger}	ΔS^{\ddagger}
	10 ⁻² M	10 ⁻³ M	s ⁻¹	$kJ \cdot mol^{-1}$	$\overline{\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}}$
xiii	1.01	2.65	5.89×10^{4}	11.5 ± 0.2	-122 ± 1
xiv	1.05	3.61	8.15×10^{4}	11.8 ± 0.8	-119 ± 1
XV	1.05	5.16	1.17×10^{5}	10.4 ± 0.4	-120 ± 2
xvi	1.05	6.68	1.42×10^{5}	11.3 ± 0.4	-116 ± 3
xvii	1.08	8.81	1.78×10^{5}	10.6 ± 0.6	-115 ± 2
XIII	1.07	1.29	1.54×10^{3}	17.8 ± 0.8	-131 ± 3
XIV	1.07	2.20	2.29×10^{3}	15.6 ± 0.7	-142 ± 2
XV	1.07	4.56	5.43×10^{3}	12.0 ± 0.7	-141 ± 4
XVI	1.04	8.37	8.67×10^{3}	15.5 ± 0.9	-128 ± 2
XVII	1.07	9.28	9.72×10^{3}	14.8 ± 0.8	-129 ± 2
XVIII	1.04	10.1	11.1×10^{3}	16.3 ± 0.8	-123 ± 2

Scheme 1

Table 5. Values of k_y and k_z at Various Temperatures and Kinetic Parameters in the o-C₆D₄Cl₂ and sc-CO₂ Systems

_	Temperature/°C	40	60	70	80	90	100
o-C ₆ D ₄ Cl ₂	$k_{\rm y}/10^7 \ { m M}^{-1}{ m \cdot}{ m s}^{-1}$	1.18 ± 0.02	1.74 ± 0.02 $\Delta H^{\ddagger} = 11.2$	$1.93 \pm 0.02 \\ \pm 0.5 \text{ kJ} \cdot \text{mol}^{-1}, \Delta$	2.19 ± 0.03 $S^{\ddagger} = -74.1 \pm 1.6$ J	2.51 ± 0.02 \cdot mol ⁻¹ ·K ⁻¹	2.87 ± 0.02
sc-CO ₂	$k_{\rm z}/10^5 {\rm M}^{-1}{\rm \cdot s}^{-1}$	4.31 ± 0.23	7.08 ± 0.17 $\Delta H^{\ddagger} = 13.4$	$8.74 \pm 0.14 \pm 1.1 \text{ kJ} \cdot \text{mol}^{-1}, \Delta$	10.7 ± 0.2 $S^{\ddagger} = -93.5 \pm 3.2$ J	11.9 ± 0.21 $-100 \text{mol}^{-1} \cdot \text{K}^{-1}$	13.3 ± 0.3

against [DMSO] as shown in Figure 8. From this figure, the following equations can be derived.

$$k_{\rm ds} = k_{\rm v}$$
[DMSO] (for the *o*-C₆D₄Cl₂ system) (9)

$$k_{\rm ds} = k_{\rm z}$$
[DMSO] (for the sc-CO₂ system) (10)

These results suggest that the DMSO exchange reactions in $UO_2(hfacac)_2DMSO$ in both systems proceed associatively. The k_y and k_z values obtained from the slopes in Figure 8 are listed in Table 5. The values of k_z are fairly smaller than those of k_y . This difference must be due to that the associative approach of free DMSO to $UO_2(hfacac)_2DMSO$ is hindered by the formation of the LA–LB interaction between free DMSO and sc-CO₂.

Mechanism. The exchange reactions of hfacac in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ and sc-CO₂ depend on

[Henol] as shown in Figures 4. This suggests that the hfacac exchange reactions in UO₂(hfacac)₂DMSO proceed associatively. However, the associative (A) mechanism⁶⁶ should be ruled out in both systems, because in the o-C₆D₄Cl₂ system the $k_{\rm hf}$ values for the hfacac exchange reaction do not increase linearly but asymptoticically with increasing [Henol], and in the o-C₆D₄Cl₂ and sc-CO₂ systems the $k_{\rm hf}$ values do not decrease linearly with an increase in [DMSO] as shown in Figure 6.

Considering the similarity to the acac exchange reactions in UO₂(acac)₂L (L = DMSO, DMF),^{50,52} two mechanisms shown in Scheme 1 should be proposed. In Mechanism 1 (I \rightarrow II \rightarrow III \rightarrow III' \rightarrow I'), k_{hf} is expressed as follows.

⁽⁶⁶⁾ Langford, C. H.; Gray, H. B. Ligand Substitution Processes; W. A. Benjamin: New York, 1966.

Exchange Reactions of Hexafluoroacetylacetonate

$$k_{\rm hf} = k_1 k_2 [\text{Henol}] / (k_{-1} + k_2 [\text{Henol}])$$
 (11)

$$1/k_{\rm hf} = 1/k_1 + k_{-1}/(k_1k_2)[\text{Henol}]^{-1}$$
 (12)

Eq 12 is consistent with eq 5 for the o-C₆D₄Cl₂ system, and hence k_a and k_b are related as follows:

$$k_{\rm a} = 1/k_1, \, k_{\rm b} = k_{-1}/(k_1k_2) \tag{13}$$

In the sc-CO₂ system, it is expected that the ring closure of unidentate hfacac in the II \rightarrow I pathway occurs more rapidly than the coordination of the incoming Henol* (II \rightarrow III), because of difficulty in the approach of the relatively bulky Henol* to intermediate II through the existence of the LA–LB interaction and hydrogen bonding between Henol and CO₂.^{31,32} Thus, the condition $k_{-1} \gg k_2$ [Henol] should hold under the experimental conditions in the sc-CO₂ system, and the following eq 14 can be derived from eq 11.

$$k_{\rm hf} = (k_1 k_2 / k_{-1})$$
[Henol] (14)

Eq 14 is consistent with eq 6, and hence k_c is related as follows:

$$k_{\rm c} = k_1 k_2 / k_{-1} \tag{15}$$

In Mechanism 2 ($I \rightarrow V \rightarrow III \rightarrow III' \rightarrow I'$), V is an outersphere complex and K_{OS} is the outer-sphere complex formation constant. In this mechanism, k_{hf} is given by eq 16.^{50,52}

$$k_{\rm hf} = k_{\rm I} K_{\rm OS} [{\rm Henol}] / (1 + K_{\rm OS} [{\rm Henol}])$$
(16)

$$1/k_{\rm hf} = 1/k_{\rm I} + 1/(k_{\rm I}K_{\rm OS})[{\rm Henol}]^{-1}$$
 (17)

Eq 17 is also consistent with eq 5. Hence, the following relationships are obtained.

$$k_{\rm a} = 1/k_{\rm I}, k_{\rm b} = 1/(k_{\rm I}K_{\rm OS})$$
 (18)

If the condition, K_{OS} [Henol] \ll 1, holds in the sc-CO₂ system, the following equation can be derived and is consistent with eq 6.

$$k_{\rm hf} = k_{\rm I} K_{\rm OS} [\text{Henol}] \tag{19}$$

It is likely that the values of $K_{\rm OS}$ [Henol] are less than 1 in the sc-CO₂ system because UO₂(hfacac)₂DMSO and Henol are noncharged species, [Henol] in the present study is in the range from 9.07 × 10⁻³ to 7.50 × 10⁻² M, and the approach of Henol to UO₂(hfacac)₂DMSO should be inhibited by the intermolecular interactions between Henol and CO₂.^{31,32} Thus, k_c is related as follows:

$$k_{\rm c} = k_{\rm I} K_{\rm OS} \tag{20}$$

Furthermore, the DMSO exchange reactions in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ and sc-CO₂ systems proceed associatively. Hence, it is expected that the free DMSO participates in the hfacac exchange reaction in $UO_2(hfacac)_2DMSO$ as shown in Scheme 1. In Mechanism 1, DMSO* competes with Henol* in the coordination to the vacant site of intermediate II. In this mechanism, k_{hf} is expressed as follows:

$$k_{\rm hf} = k_1 k_2 [\text{Henol}] / (k_{-1} + k_2 [\text{Henol}] + k_3 [\text{DMSO}])$$
 (21)

$$1/k_{\rm hf} = (k_{-1} + k_2[{\rm Henol}])/(k_1k_2[{\rm Henol}]) + k_3/(k_1k_2[{\rm Henol}])[{\rm DMSO}]$$
 (22)

On the other hand, in Mechanism 2, DMSO* forms an outer-sphere complex (V') with $UO_2(hfacac)_2DMSO$. From this mechanism, the following equations are derived.

$$k_{\rm hf} = k_{\rm I} K_{\rm OS} [\text{Henol}] / (1 + K_{\rm OS} [\text{Henol}] + K_{\rm OS}' [\text{DMSO}]) \quad (23)$$

$$1/k_{\rm hf} = (1 + K_{\rm OS} [\text{Henol}]) / (k_{\rm I} K_{\rm OS} [\text{Henol}]) + K_{\rm OS}' / (k_{\rm I} K_{\rm OS} [\text{Henol}]) [\text{DMSO}] \quad (24)$$

It is apparent that eqs 22 and 24 are correlated with eqs 7 and 8 as follows.

$$k_{\rm m} = k_{\rm o} = (k_{-1} + k_2 [\text{Henol}])/(k_1 k_2 [\text{Henol}]),$$

 $k_{\rm n} = k_{\rm p} = k_3/(k_1 k_2 [\text{Henol}])$ (25)

$$k_{\rm m} = k_{\rm o} = (1 + K_{\rm OS} \text{ [Henol]})/(k_{\rm I}K_{\rm OS}\text{[Henol]}),$$
$$k_{\rm n} = k_{\rm p} = K_{\rm OS}'/(k_{\rm I}K_{\rm OS}\text{[Henol]}) (26)$$

From eqs 13, 15, 18, and 20, the relations of $k_1 = k_1$ and $k_2/k_{-1} = K_{OS}$ can be derived. The values of k_1 or k_1 , k_2/k_{-1} or K_{OS} , k_3/k_2 , and K_{OS}' in o-C₆D₄Cl₂ and sc-CO₂ systems were calculated from the values (k_a , k_b , k_m , k_n , k_c , k_o , and k_p) in Tables 2 and 3 and the average value (2.87 × 10⁻² and 2.83 × 10⁻² M) of [Henol] in solutions viii—xii and VIII—XII, respectively. The results are listed in Tables 6 and 7 with the activation parameters for k_1 or k_1 in o-C₆D₄Cl₂ and sc-CO₂ systems.

As seen from Tables 6 and 7, the K_{os} values in sc-CO₂ system are less than 1. This result supports that the condition of K_{OS} [Henol] \ll 1 in Mechanism 2 holds in sc-CO₂ system. However, the K_{OS}' values in o-C₆D₄Cl₂ and sc-CO₂ systems are much larger than the value (0.86 M⁻¹) expected from the Fuoss–Eigen equation⁶⁷ (for an interaction distance of 7 Å) and the value (4.9 M⁻¹ at 25 °C) obtained for the DMSO exchange in the UO₂(acac)₂DMSO in CD₂Cl₂.⁴⁷

Therefore, it is proposed that the exchange reactions of hfacac in $UO_2(hfacac)_2DMSO$ in $o-C_6D_4Cl_2$ and sc-CO₂ proceed through Mechanism 1.

Comparisons of Kinetic Parameters for *o*-C₆D₄Cl₂ and sc-CO₂ Systems. On the basis of Mechanism 1, we discuss the differences in the kinetic parameters for the exchange reactions of hfacac in UO₂(hfacac)₂DMSO in the *o*-C₆D₄Cl₂ and sc-CO₂ systems. The k_1 values in the *o*-C₆D₄Cl₂ system are smaller than those in sc-CO₂ (Tables 6 and 7). This suggests that the ring-opening of coordinated hfacac in UO₂(hfacac)₂DMSO takes place more easily in sc-CO₂ than in *o*-C₆D₄Cl₂, that is, the hfacac ligand of UO₂(hfacac)₂-DMSO in sc-CO₂ coordinates to the uranyl moiety more weakly than in *o*-C₆D₄Cl₂. This consideration is supported by the results of structural experiments using NMR and Raman spectrometers (Figures S2–S4 in the Supporting Information), and the fact that the ΔH^{\ddagger} value for k_1 in sc-CO₂ system is smaller than that in *o*-C₆D₄Cl₂. Furthermore,

⁽⁶⁷⁾ Fuoss, R. M. J. Am. Chem. Soc. 1958, 80, 5059-5061.

Table 6. Values of k_1 or k_1 , k_2/k_{-1} or K_{OS} , k_3/k_2 , and K_{OS}' at Various Temperatures and Kinetic Parameters for k_1 or k_1 and k_3 Pathways in the o-C₆D₄Cl₂ System^{*a*}

Temperature	k_1 or k_I	k_2/k_{-1} or $K_{\rm OS}$		K_{OS}'
°C	s^{-1}	M^{-1}	k_{3}/k_{2}	M^{-1}
40	13.7 ± 1.9	14.1 ± 3.0	9.16 ± 0.61	120 ± 26
60	35.8 ± 3.2	10.2 ± 1.6	7.78 ± 0.70	79.4 ± 10.1
70	61.3 ± 5.5	14.6 ± 1.3	4.40 ± 0.95	64.1 ± 8.0
80	120 ± 23	11.9 ± 2.3	3.48 ± 1.48	41.5 ± 12.7
90	236 ± 70	8.67 ± 2.6	2.58 ± 1.49	31.0 ± 8.7
100	344 ± 151	9.51 ± 4.2	3.87 ± 1.60	46.3 ± 3.5

^{*a*} Kinetic parameters for k_1 or k_1 : $\Delta H^{\ddagger} = 57.8 \pm 2.7 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\ddagger} = -42.9 \pm 7.7 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Table 7. Values of k_1 or k_1 , k_2/k_{-1} or K_{OS} , k_3/k_2 , and K_{OS}' at Various Temperatures and Kinetic Parameters for k_1 or k_1 and k_3 Pathways in sc-CO₂ System^{*a*}

Temperature	k_1 or k_I	k_2/k_{-1} or $k_{\rm OS}$		K_{OS}'
°C	10^2 s^{-1}	M^{-1}	k_3/k_2	M^{-1}
40	2.33 ± 0.56	0.393 ± 0.088	86.8 ± 26.8	34.1 ± 7.0
60	5.18 ± 0.50	0.380 ± 0.036	97.1 ± 21.2	36.9 ± 7.3
70	6.18 ± 0.74	0.422 ± 0.049	119 ± 30	50.2 ± 11.0
80	7.61 ± 0.75	0.503 ± 0.048	74.7 ± 21.6	37.6 ± 10.3
90	11.6 ± 1.72	0.404 ± 0.059	41.9 ± 7.7	15.7 ± 1.8
100	15.9 ± 1.76	0.348 ± 0.053	44.2 ± 37.0	17.3 ± 13.5

^{*a*} Kinetic parameters for k_1 or k_1 : $\Delta H^{\pm} = 18.9 \pm 1.8 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\pm} = -138 \pm 5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

the ΔS^4 value for k_1 in the sc-CO₂ system is more negative than that in *o*-C₆D₄Cl₂, as listed in Table 7. This is considered to be due to the formation of intermolecular interactions between unidentate hfacac and CO₂.^{31,32}

The values of k_3 are larger than those of k_2 in both systems (Tables 6 and 7). This is reasonable, because the k_2 and k_3 pathways correspond to the coordination of Henol and DMSO to the vacant site in the intermediate II, and the DMSO molecule with smaller size and larger donicity than Henol (donor number (DN) of DMSO = 29.8, DN of Hacac = 20.0)⁶⁸ should more easily coordinate to such a site. The exchange reactions of DMSO in UO2(hfacac)2DMSO in o-C₆D₄Cl₂ and sc-CO₂ systems depend on [DMSO] and hence should proceed associatively as mentioned above. From this viewpoint, it is reasonable to presume that the values of k_3 are equal to or larger than the k_y and k_z values listed in Table 5 because the free DMSO should enter more easily the vacant site of the intermediate II in Scheme 1 compared with the association to complex I. On the basis of this assumption, the values of k_{-1} and k_2 , which should be equivalent to or smaller than the real values, were estimated from the values of k_2/k_{-1} and k_3/k_2 in Tables 6 and 7 using the $k_{\rm v}$ and $k_{\rm z}$ values in Table 5. The results are listed in Tables 8 and 9 with the k_3 values. It is found that the k_2 and k_3 values in the o-C₆D₄Cl₂ system are about 250 and 25 times larger than those in sc-CO₂, respectively (Tables 8 and 9). These differences are also explained by the LA-LB interactions and the hydrogen bondings between free Henol or DMSO and CO₂ because such interactions should inhibit the associative entering of Henol and DMSO to the coordination site of intermediate II.

Table 8. Values of k_{-1} , k_2 , and k_3 in the o-C₆D₄Cl₂ System at Various Temperatures^{*a*}

Temperature	k_{-1}	k_2	k_3^a
°C	$10^5 {\rm ~s^{-1}}$	$10^{6} \mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$	$10^7 \mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$
40	0.915 ± 0.201	1.29 ± 0.07	1.18 ± 0.02
60	2.20 ± 0.40	2.24 ± 0.20	1.74 ± 0.02
70	2.97 ± 0.69	4.34 ± 0.94	1.91 ± 0.03
80	5.29 ± 2.49	6.23 ± 2.68	2.19 ± 0.03
90	11.2 ± 7.28	9.69 ± 5.60	2.50 ± 0.03
100	7.79 ± 4.72	7.42 ± 3.07	2.87 ± 0.02

^{*a*} The assumption, $k_3 \ge k_y$.

Table 9. Values of k_{-1} , k_2 , and k_3 in sc-CO₂ System at Various Temperatures^{*a*}

Temperature	k_{-1}	k_2	k_3^a
°C	10^4 s^{-1}	$10^3 M^{-1} \cdot s^{-1}$	$10^5 \mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$
40	1.26 ± 0.49	4.97 ± 1.56	4.31 ± 0.23
60	1.92 ± 0.46	7.29 ± 1.60	7.08 ± 0.17
70	1.74 ± 0.48	7.34 ± 1.85	8.74 ± 0.12
80	2.84 ± 0.87	14.3 ± 4.15	10.7 ± 0.2
90	7.03 ± 1.65	28.4 ± 5.24	11.9 ± 0.2
100	8.65 ± 4.56	30.1 ± 15.2	13.3 ± 0.3

^{*a*} The assumption, $k_3 \ge k_z$.

The values of k_{-1} and k_2 in the o-C₆D₄Cl₂ system are found to be larger than those in $sc-CO_2$ (Tables 8 and 9). This is also reasonably explained by the LA-LB interaction between CO_2 and Henol in the sc- CO_2 system, that is, the k_{-1} pathway should be blocked by the interaction of CO₂ between the end of the unidentate hfacac in the intermediate II, and the existence of the intermolecular interaction between Henol and CO₂ makes the approach of the relatively bulky Henol* to the intermediate II (k_2 pathway) difficult. Furthermore, the k_1 values in the o-C₆D₄Cl₂ system are much smaller than the k_2 [Henol] values (8.04 × 10³ to 6.51 × 10⁵ s⁻¹), and those in the sc-CO₂ system are almost equivalent to k_2 [Henol] values $(4.51 \times 10^1 \text{ to } 2.26 \times 10^3 \text{ s}^{-1})$. From these results, it is reasonable to consider that the rate-determining step in the exchange reaction of hfacac in UO₂(hfacac)₂DMSO in $o-C_6D_4Cl_2$ and sc-CO₂ is the ring-opening for one of two coordinated hfacac in UO2(hfacac)2DMSO.

Conclusions

In the present study, we have examined the structures of the UO₂(hfacac)₂DMSO complex in o-C₆D₄Cl₂ and sc-CO₂ and the ligand exchange reactions of UO₂(hfacac)₂DMSO in both media using ¹H and ¹⁹F NMR spectroscopy. As a result, it was found that the UO₂(hfacac)₂DMSO complex in both media has a pentagonal bipyramidal structure, and that hfacac of UO₂(hfacac)₂DMSO coordinates to a uranyl moiety more strongly in o-C₆D₄Cl₂ than in sc-CO₂.

Furthermore, it was found that in both o-C₆D₄Cl₂ and sc-CO₂ systems the exchange rates of hfacac in UO₂(hfacac)₂-DMSO depend on [Henol] and decrease with an increase in [DMSO] and that the exchange rate constants of DMSO in UO₂(hfacac)₂DMSO depend on [DMSO]. From these results, it was proposed that the exchange reaction of hfacac in UO₂(hfacac)₂DMSO proceeds through the mechanism, where the ring-opening for one of two coordinated hfacac in UO₂(hfacac)₂DMSO is the rate-determining step, the resulting

⁽⁶⁸⁾ Linert, W.; Fukuda, Y.; Camard, A. Coord. Chem. Rev. 2001, 218, 113–152.

Exchange Reactions of Hexafluoroacetylacetonate

vacant site is coordinated by the incoming Henol, followed by the proton transfer and the ring closure of unidentate hfacac. The rate constant at 60 °C and its activation parameters (ΔH^{\ddagger} , ΔS^{\ddagger}) for the ring-opening process are 35.8 \pm 3.2 s⁻¹, 57.8 \pm 2.7 kJ·mol⁻¹, and -42.9 \pm 7.7 J mol⁻¹·K⁻¹ for the *o*-C₆D₄Cl₂ system, and 518 \pm 50 s⁻¹, 18.9 \pm 1.8 kJ·mol⁻¹, and -138 \pm 5 J mol⁻¹·K⁻¹ for the sc-CO₂ system. The values of the rate constants corresponding to the ring closure of unidentate hfacac, the coordination of Hhfacac to the vacant site, and the DMSO exchange in the sc-CO₂ system are smaller than those in the *o*-C₆D₄Cl₂ one. It is proposed that such a difference is due to the existence of the solute—solvent interaction between Hhfacac or DMSO and CO₂ under supercritical conditions. **Supporting Information Available:** Plots of ln $K_{\text{keto-enol}}$ versus reciprocal temperature (Figure S1); ¹H and ¹⁹F NMR spectral data in *o*-C₆D₄Cl₂ and sc-CO₂ containing only UO₂(hfacac)₂DMSO or ligands (Hhfacac and DMSO) (Figures S2, S3, and S9); Raman spectra of the U=O bond (ν_1) for UO₂(β -diketonato)₂L (β -diketonates = acac, hfacac, L = DMSO, DMF) in o-C₆D₄Cl₂ and sc-CO₂ (Figure S4); experimental and calculated line shapes of ¹H and ¹⁹F NMR spectral data in *o*-C₆D₄Cl₂ and sc-CO₂ containing free ligands (Henol and DMSO) and the coordinated ligand (hfacac and DMSO) in UO₂(hfacac)₂DMSO (Figures S5, S7, and S8); semilogarithmic plots of k_{hf} versus reciprocal temperature (Figure S6). This material is available free of charge via the Internet at http://pubs.acs.org.

IC701234Q