Kinetic Evidence for High Reactivity of 3-Nitrophenylboronic Acid Compared to Its Conjugate Boronate Ion in Reactions with Ethylene and Propylene Glycols

Chiaki Miyamoto, † **Kazunori Suzuki**, † **Satoshi Iwatsuki**, ‡ **Masahiko Inamo**, § **Hideo D. Takagi**, ⊥ **and Koji Ishihara*** ,†,¶

*Department of Chemistry and Biochemistry, School of Ad*V*anced Science and Engineering, Waseda Uni*V*ersity, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan, Department of Chemistry of Functional Molecules, Konan Uni*V*ersity, Higashinada-ku, Kobe 658-8501, Japan, Department of Chemistry, Aichi University of Education, Kariya 448-8542, Japan, Inorganic Chemistry Division, Research Center for Materials Science, Nagoya Uni*V*ersity, Furo-cho, Chikusa, Nagoya 464-8602, Japan, and Materials Research Laboratory for Bioscience and Photonics, Graduate School of Science and Engineering, Waseda Uni*V*ersity, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan*

Received November 26, 2007

The rate constants for a boronate ion were determined for the first time using the reaction systems of 3-nitrophenylboronic acid $(3-NO₂PhB(OH)₂)$ with ethylene glycol (EG) and propylene glycol (PG) in an alkaline solution: the rate constants (25 \degree C, $I = 0.10$ M) for the reactions of $3\text{-}NO_2\text{}PhB(OH)_3^-$ are 1.2 M⁻¹ s⁻¹ (EG) and 1.5 M^{-1} s⁻¹ (PG), which are at least 10³ times smaller than those for the reactions of 3-NO₂PhB(OH)₂ $[1.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ (EG) and 5.8×10^3 M⁻¹ s⁻¹ (PG)].

Much attention has been paid to the reactions of boric and boronic acids with aliphatic dihydric alcohols including sugars in various fields of chemistry and biochemistry, 1 e.g., in the areas of molecular design of boronic acid chemosensors² and saccharide recognizations.³ In these areas, it has been presumed that only a boronate ion $[RB(OH)₃^-]$ reacts with carbohydrates because the sensors are mainly operative only in an alkaline solution.4,5 Many kinetic studies on the complex formation reactions of boric and boronic acids with

- (2) *Creative Chemical Sensor Systems*; Schrader, T., Ed.; Topics in Current Chemistry 277; Springer: Berlin, 2007.
- (3) James, T. D.; Phillips, M. D.; Shinkai, S. In *Boronic Acids in Saccharide Recognition*; Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, U.K., 2006.
- (4) Nguyen, B. T.; Anslyn, E. V. *Coord. Chem. Re*V*.* **²⁰⁰⁶**, *²⁵⁰*, 3118– 3127 , and references cited therein.

10.1021/ic702317n CCC: \$40.75 2008 American Chemical Society **Inorganic Chemistry,** Vol. 47, No. 5, 2008 **1417** Published on Web 02/09/2008

bidentate ligands (eq 1)^{6–21} have been carried out to date, and it has been concluded on the basis of the estimated upper limit of the rate constants of boronate ions that a boronate ion is at least several orders of magnitude more reactive than its conjugate boronic acid. $⁶$ However, the reactive species</sup> have not been specifically identified, except in our recent work,²² and the rate constant for a boronate ion has not been directly measured so far.

Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 1417-¹⁴¹⁹

Inorganic Chemi

- (5) (a) Shinkai, S.; Takeuchi, M. *Biosens. Bioelectron.* **2004**, *20*, 1250– 1259. (b) Springsteen, G.; Wang, B. *Tetrahedron* **2002**, *58*, 5291– 5300. (c) Ni, W.; Fang, H.; Springsteen, G.; Wang, B. *J. Org. Chem.* **2004**, *69*, 1999–2007. (d) Yan, J.; Springsteen, G.; Deeter, S.; Wang, G. *Tetrahedron* **2004**, *60*, 11205–11209. (e) Badugu, R.; Lakowicz, J. R.; Geddes, C. D. *Bioorg. Med. Chem.* **2005**, *13*, 113–119.
- (6) Babcock, L.; Pizer, R. *Inorg. Chem.* **1980**, *19*, 56–61.
- (7) Yamamoto, Y.; Matsumura, T.; Takao, N.; Yamagishi, H.; Takahashi, M.; Iwatsuki, S.; Ishihara, K. *Inorg. Chim. Acta* **2005**, *358*, 3355– 3361 , and references cited therein.
- (8) Pizer, R.; Tihal, C. A *Inorg. Chem.* **1992**, *31*, 3243–3247.
- (9) Matsumura, T.; Iwatsuki, S.; Ishihara, K. *Inorg. Chem. Commun.* **2005**, *8*, 713–716.
- (10) Ito, H.; Kono, Y.; Machida, A.; Mitsumoto, Y.; Omori, K.; Nakamura, N.; Ishihara, K. *Inorg. Chim. Acta* **2003**, *344*, 28–36.
- (11) Kustin, K.; Pizer, R. *J. Am. Chem. Soc.* **1969**, *91*, 317–322.
- (12) Friedman, S.; Pace, B.; Pizer, R. *J. Am. Chem. Soc.* **1974**, *96*, 5381– 5384.
- (13) Friedman, S.; Pizer, R. *J. Am. Chem. Soc.* **1975**, *97*, 6059–6062.
- (14) Lorber, G.; Pizer, R. *Inorg. Chem.* **1976**, *15*, 978–980.
- (15) Pizer, R.; Babcock, L. *Inorg. Chem.* **1977**, *16*, 1677–1681.
- (16) Pizer, R.; Selzer, R. *Inorg. Chem.* **1984**, *23*, 3023–3026.
- (17) Ishihara, K.; Mouri, Y.; Funahashi, S.; Tanaka, M. *Inorg. Chem.* **1991**, *30*, 2356–2360.
- (18) Takao, N.; Suto, A.; Kondo, Y.; Ishihara, K. *Inorg. Chim. Acta* **1999**, *290*, 222–227.
- (19) Ishihara, K.; Nagasawa, A.; Umemoto, K.; Ito, H.; Saito, K. *Inorg. Chem.* **1994**, *33*, 3811–3816.
- (20) Kono, Y.; Ishihara, K.; Nagasawa, A.; Umemoto, K.; Saito, K. *Inorg. Chim. Acta* **1997**, *262*, 91–96.
- (21) Pizer, D; Tihal, C. A. *Polyhedron* **1996**, *15*, 3411–3416 , and references cited therein.
- (22) Iwatsuki, S.; Nakajima, S.; Inamo, M.; Takagi, H. D.; Ishihara, K. *Inorg. Chem.* **2007**, *46*, 354–356.

^{*} To whom correspondence should be addressed. E-mail:

[†] School of Advanced Science and Engineering, Waseda University.
‡ Konan University. §
Å Aichi University of Education.
⊥ Nagoya University. ¶ Graduate School of Science and Engineering, Waseda University.

⁽¹⁾ *Boronic Acids*; Hall, D. G., Ed.; Wiley-VCH; Weinheim, Germany, 2005.

Mainly because most reactions of boronic acids are accompanied with no explicit UV–vis spectral change and the reactivities of bidentate ligands $(H₂L)$ toward boronic acids decrease with increasing deprotonation of H_2L (H_2L) $> H L^{-} > L^{2-}$, 10 setting up reaction systems without "proton ambiguity"^{10,23} is very difficult. For example, we performed a kinetic study on the reaction of boric acid $[B(OH)₃, pK_a = 8.98]$ with a reagent for the determination of boron, chromotropic acid (H₂cht²⁻, p $K_{a3} = 5.35$, p K_{a4} $=$ 13.0), in the pH range of 8.2–9.2,¹⁰ where only two reaction pathways, $B(OH)_{3}$ + Hcht³⁻ and $B(OH)_{4}^{-}$ + Fraction pathways, $B(OH)_{3} + HCH^{2}$ and $B(OH)_{4} + Hch^{3-}$, were expected; i.e., no proton ambiguity would exist. However, unfortunately, this approach failed to succeed because of an unexpected proton ambiguity arising from the much higher reactivity of H_2 cht²⁻ than Hcht³⁻.

Recently, we have positively made use of proton ambiguity to correct the widespread misunderstanding of the reactivity of a boronate ion and succeeded in lowering the upper limit of the rate constant of a boronate ion,²² which has led to important conclusions, that *trigonal boronic acid is always a reactive species irrespective of the pH of the solution* and *the reactivity of its conjugate tetrahedral boronate ion is comparable with or less than that of the boronic acid.*

In this study, we set up the following reaction systems to avoid proton ambiguity: the reactions of 3-nitrophenylboronic acid $(3-NO_2PhB(OH)_2, pK_a = 7.04)^7$ with ethylene glycol (EG) and propylene glycol (PG) having high p K_{a1} [p K_{a1} = 15.4 \pm 0.2 (EG)^{24,25}] in buffered solution $pH = 10.3-10.8$, 0.10 M CAPS (*N*-cyclohexyl-3-aminopropanesulfonic acid)].

The rate constants were measured with a stopped-flow spectrophotometer under pseudo-first-order conditions of $C_B \ll C_L$, where C_B and C_L denote the total concentrations of boronic acid $(RB(OH)_2)$ and the ligand (H_2L) , respectively (experimental details are given in the Supporting Information). The reaction gave an excellent fit to first-order kinetics with respect to the total concentration of uncomplexed boronic acid and boronate ion [B′] $(d[RB(OH)(L)^{-}]/dt = k_{obs}[B'],$ where $[B'] = [RB(OH)₂]$ + $[RB(OH)₃^-]$ in the present conditions). The rate constants obtained (k_{obs}) were dependent on both C_{L} and $[H^+]$ for both systems, as shown in Figure 1. Therefore, k_{obs} is expressed by eq 2 at a given [H⁺]. There are two possible parallel reaction pathways under the present conditions, as shown in Scheme 1, because the reactivity of HL⁻ is lower than that of H₂L and [HL⁻] << [H₂L].¹⁰

Figure 1. Dependence of k_{obs} on C_{PG} for the reaction of $3-NO_2PhB(OH)_2$ $(6.0 \times 10^{-4} \text{ M})$ with PG in an alkaline solution at $I = 0.10 \text{ M}$ and $T = 25$ °C. CAPS buffer (0.10 M) was used. $[H^+]/M = 5.01 \times 10^{-11}$ (circle), 3.98 \times 10⁻¹¹ (square), 3.16 \times 10⁻¹¹ (triangle), 2.51 \times 10⁻¹¹ (wedge), 2.00 \times 10^{-11} (diamond), 1.58×10^{-11} (cross). The straight lines were drawn by applying a linear least-squares fitting of eq 2 to the experimental data.

Scheme 1. Plausible Reaction Pathways

RB(OH)₂ + H₂L
$$
\xrightarrow[k]{} RB(OH)(L)^{-}
$$
 + H₃O⁺
+ H⁺ \parallel K_a^B
RB(OH)₃⁻ + H₂L $\xrightarrow[k]{} \xrightarrow[k]{} RB(OH)(L)^{-}$ + 2H₂O

For Scheme 1, k_{obs} is given by eq 3, where K_a^B $[RB(OH)_3^-][H^+][RB(OH)_2]^{-1}$ and $K^* = K_a^B[H^+]^{-1} + 1$.
A comparison between eqs. 2 and 3 gives eqs. 4 and 5 A comparison between eqs 2 and 3 gives eqs 4 and 5.

$$
k_{\text{obs}} = k_{\text{f}} C_{\text{L}} + k_{\text{d}} \tag{2}
$$

$$
k_{\text{obs}} = (k_1 + k_2 K_a^{\text{B}} [\text{H}^+]^{-1}) \text{K}^{*-1} C_{\text{L}} + k_{-1} [\text{H}^+] + k_{-2} \quad (3)
$$

$$
k_{\rm f} \mathbf{K}^* = k_1 + k_2 K_{\rm a}^{\rm B} [\mathbf{H}^+]^{-1}
$$
 (4)

$$
k_{\rm d} = k_{-1}[\text{H}^+] + k_{-2} \tag{5}
$$

The linear plots of $k_f K^*$ vs $[H^+]^{-1}$ and k_d vs $[H^+]$ (Figure S1 in the Supporting Information) indicate participation of the k_1 (k_{-1}) and k_2 (k_{-2}) paths. It was confirmed for both the EG and PG systems that the relationship $K_1 = K_2 K_a^B$
(Scheme 1) held within experimental uncertainties where (Scheme 1) held within experimental uncertainties, where K_1 and K_2 were calculated from the relationships $K_1 = k_1/2$ k_{-1} and $K_2 = k_2/k_{-2}$. So, the rate constants were refined by applying a nonlinear least-squares fitting of eq 3 to the kinetic data (Figure 1) and are tabulated in Table 1.

It is obvious from Table 1 that the reactivities of trigonal $3-NO_2PhB(OH)_2$ toward both EG and PG are at least several thousand times higher than that of tetrahedral $3-NO_2PhB(OH)_3^-$, which is consistent with the previous findings for the reactions of some boronic acids with aromatic diols.²² This is the reason why $3-NO_2PhB(OH)_2$ is still reactive even in a strongly alkaline solution in which a trace of trigonal boronic acid exists. It is calculated from Table 1 that the reaction of $3-NO_2PhB(OH)_2$ with PG proceeds through both the k_1 path $(k_1C_1/K^* + k_{-1}[H^+])$ and the k_2 path $(k_2 K_a^B C_L[H^+]^{-1}/K^* + k_{-2})$ with a ratio of 21:79 at 25
 ${}^{\circ}C$, $C_2 = 2.0 \times 10^{-4}$ M, $C_1 = 0.20$ M, and $H = 11.2$ °C, $C_B = 2.0 \times 10^{-4}$ M, $C_L = 0.20$ M, and pH = 11.2, which is the thermodynamically optimum pH $[(pK_a^B)]$ pK_a^L)/2 = 11.2] for the system. In conclusion, trigonal
boronic acid is always a reactive species irrespective of pH boronic acid is always a reactive species irrespective of pH

⁽²³⁾ Jordan, R. B. *Reaction Mechanisms of Inorganic and Organometallic Systems*, 2nd ed.; Oxford University Press: Oxford, U.K., 1998; p 88.

⁽²⁴⁾ Velinov, G.; Zikolov, P.; Tchakarova, P.; Budevsky, O. *Talanta* **1974**, *21*, 163–168.

⁽²⁵⁾ The pK_a value of PG has not been reported but is expected to be comparable with or higher than that of EG.

Table 1. Rate Constants for the Reactions of 3-NO₂PhB(OH)₂ with EG and PG in an Alkaline Solution^a

	$3-NO_2PhB(OH)$			$3-NO_2PhB(OH)3$		
$\rm H_2L$	k_1/M^{-1} s ⁻¹	$k=1/10^{10}$ M ⁻¹ s ⁻¹	$K_1^b/10^{-7}$	k_2/M^{-1} s ⁻¹	$k = \frac{2}{5}$	K_2^b/M^{-1}
EG	10100 ± 200	4.30 ± 0.16	2.3	1.18 ± 0.04	0.460 ± 0.052	2.6
PG	5770 ± 100	1.04 ± 0.05	5.5	1.47 ± 0.03	$0.242 + 0.021$	6.,
\overline{a} $\overline{$						

 $a \neq I = 0.10$ M (0.10 M CAPS buffer) and $T = 25$ °C. *b* Calculated from the relationships $K_1 = k_1/k_{-1}$ and $K_2 = k_2/k_{-2}$.

of the solution, whereas its conjugate tetrahedral boronate ion is reactive in solutions having a pH substantially higher than pK_a^B of its conjugate acid, in which a boronate ion exists overwhelmingly. It is of note that the k_{-1} values for both systems are close to those for the diffusion-controlled protonation of acids, which means that the activated complex for the k_{-1} path would be similar to the protonated reaction product, RB(OH)(L)(H).

As described in the previous reports, $22,26$ the present system is expressed by eq 6, where $[B'] = [RB(OH)₂]$ + $[RB(OH)₃^-] = [RB(OH)₂](1 + K_a^B/(H⁺]).$

$$
B' + H_2 L \stackrel{K'}{\Longleftarrow} R B(OH)(L) \tag{6}
$$

Then, the conditional formation constant K' depending on $[H^+]$ is given by eq 7.

$$
K' = \frac{[RB(OH)(L)^{-}]}{[B'][H_2L]} = \frac{K_1}{K^*[H^+]} = \frac{K_1}{[H^+] + K_a^B}
$$
(7)

(26) Nakano, E.; Iwatsuki, S.; Inamo, M.; Takagi, H. D.; Ishihara, K. *Talanta* **2008**, *74*, 533–538.

Equation 7 indicates that *K*′ decreases to zero at pH values lower than 5 because K_1 is very small (Table 1); that is, no reaction substantially proceeds.

In the present kinetic study, we obtained for the first time the reaction rate constants of a boronate ion with aliphatic diols and showed explicitly that they are much smaller than those of boronic acid, which breaks down the fixed idea that a boronate ion reacts much faster than its conjugate boronic acid.

Acknowledgment. We express our thanks for financial support from a Waseda University Grant for Special Research Projects (Grant 2007B-119).

Supporting Information Available: Experimental details, kinetic data, etc., for the reactions of $3-NO_2PhB(OH)_2$ with ethylene glycol and propylene glycol (Tables S1 and S2 and Figures S1-S6). This material is available free of charge via the Internet at http://pubs.acs.org.

IC702317N