Kinetic Evidence for High Reactivity of 3-Nitrophenylboronic Acid Compared to Its Conjugate Boronate Ion in Reactions with Ethylene and Propylene Glycols

Chiaki Miyamoto,[†] Kazunori Suzuki,[†] Satoshi Iwatsuki,[‡] Masahiko Inamo,[§] Hideo D. Takagi,[⊥] and Koji Ishihara^{*,†,1}

Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan, Department of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe 658-8501, Japan, Department of Chemistry, Aichi University of Education, Kariya 448-8542, Japan, Inorganic Chemistry Division, Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan, and Materials Research Laboratory for Bioscience and Photonics, Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received November 26, 2007

The rate constants for a boronate ion were determined for the first time using the reaction systems of 3-nitrophenylboronic acid (3-NO₂PhB(OH)₂) with ethylene glycol (EG) and propylene glycol (PG) in an alkaline solution: the rate constants (25 °C, I = 0.10 M) for the reactions of 3-NO₂PhB(OH)₃⁻ are 1.2 M⁻¹ s⁻¹ (EG) and 1.5 M⁻¹ s⁻¹ (PG), which are at least 10³ times smaller than those for the reactions of 3-NO₂PhB(OH)₂ [1.0 × 10⁴ M⁻¹ s⁻¹ (EG) and 5.8 × 10³ M⁻¹ s⁻¹ (PG)].

Much attention has been paid to the reactions of boric and boronic acids with aliphatic dihydric alcohols including sugars in various fields of chemistry and biochemistry,¹ e.g., in the areas of molecular design of boronic acid chemosensors² and saccharide recognizations.³ In these areas, it has been presumed that only a boronate ion [RB(OH)₃⁻] reacts with carbohydrates because the sensors are mainly operative only in an alkaline solution.^{4,5} Many kinetic studies on the complex formation reactions of boric and boronic acids with

§ Aichi University of Education.

- [¶] Graduate School of Science and Engineering, Waseda University.
- (1) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH; Weinheim, Germany, 2005.
- (2) Creative Chemical Sensor Systems; Schrader, T., Ed.; Topics in Current Chemistry 277; Springer: Berlin, 2007.
- (3) James, T. D.; Phillips, M. D.; Shinkai, S. In *Boronic Acids in Saccharide Recognition*; Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, U.K., 2006.
- (4) Nguyen, B. T.; Anslyn, E. V. Coord. Chem. Rev. 2006, 250, 3118– 3127, and references cited therein.

10.1021/ic702317n CCC: \$40.75 © 2008 American Chemical Society Published on Web 02/09/2008

bidentate ligands $(eq 1)^{6-21}$ have been carried out to date, and it has been concluded on the basis of the estimated upper limit of the rate constants of boronate ions that a boronate ion is at least several orders of magnitude more reactive than its conjugate boronic acid.⁶ However, the reactive species have not been specifically identified, except in our recent work,²² and the rate constant for a boronate ion has not been directly measured so far.

Inorg. Chem. 2008, 47, 1417-1419

Inorganic Cher

- (5) (a) Shinkai, S.; Takeuchi, M. Biosens. Bioelectron. 2004, 20, 1250–1259. (b) Springsteen, G.; Wang, B. Tetrahedron 2002, 58, 5291–5300. (c) Ni, W.; Fang, H.; Springsteen, G.; Wang, B. J. Org. Chem. 2004, 69, 1999–2007. (d) Yan, J.; Springsteen, G.; Deeter, S.; Wang, G. Tetrahedron 2004, 60, 11205–11209. (e) Badugu, R.; Lakowicz, J. R.; Geddes, C. D. Bioorg. Med. Chem. 2005, 13, 113–119.
- (6) Babcock, L.; Pizer, R. Inorg. Chem. 1980, 19, 56-61.
- (7) Yamamoto, Y.; Matsumura, T.; Takao, N.; Yamagishi, H.; Takahashi, M.; Iwatsuki, S.; Ishihara, K. *Inorg. Chim. Acta* 2005, 358, 3355– 3361, and references cited therein.
- (8) Pizer, R.; Tihal, C. A Inorg. Chem. 1992, 31, 3243-3247.
- (9) Matsumura, T.; Iwatsuki, S.; Ishihara, K. Inorg. Chem. Commun. 2005, 8, 713–716.
- (10) Ito, H.; Kono, Y.; Machida, A.; Mitsumoto, Y.; Omori, K.; Nakamura, N.; Ishihara, K. *Inorg. Chim. Acta* **2003**, *344*, 28–36.
- (11) Kustin, K.; Pizer, R. J. Am. Chem. Soc. 1969, 91, 317-322.
- (12) Friedman, S.; Pace, B.; Pizer, R. J. Am. Chem. Soc. 1974, 96, 5381– 5384.
- (13) Friedman, S.; Pizer, R. J. Am. Chem. Soc. 1975, 97, 6059-6062.
- (14) Lorber, G.; Pizer, R. Inorg. Chem. 1976, 15, 978-980.
- (15) Pizer, R.; Babcock, L. Inorg. Chem. 1977, 16, 1677-1681.
- (16) Pizer, R.; Selzer, R. Inorg. Chem. 1984, 23, 3023-3026.
- (17) Ishihara, K.; Mouri, Y.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1991, 30, 2356–2360.
- (18) Takao, N.; Suto, A.; Kondo, Y.; Ishihara, K. *Inorg. Chim. Acta* **1999**, 290, 222–227.
- (19) Ishihara, K.; Nagasawa, A.; Umemoto, K.; Ito, H.; Saito, K. Inorg. Chem. 1994, 33, 3811–3816.
- (20) Kono, Y.; Ishihara, K.; Nagasawa, A.; Umemoto, K.; Saito, K. Inorg. Chim. Acta 1997, 262, 91–96.
- (21) Pizer, D; Tihal, C. A. *Polyhedron* **1996**, *15*, 3411–3416, and references cited therein.
- (22) Iwatsuki, S.; Nakajima, S.; Inamo, M.; Takagi, H. D.; Ishihara, K. Inorg. Chem. 2007, 46, 354–356.

^{*} To whom correspondence should be addressed. E-mail: ishi3719@waseda.jp.

[†] School of Advanced Science and Engineering, Waseda University.

^{*} Konan University.

[⊥] Nagoya University.

Mainly because most reactions of boronic acids are accompanied with no explicit UV–vis spectral change and the reactivities of bidentate ligands (H₂L) toward boronic acids decrease with increasing deprotonation of H₂L (H₂L > HL⁻ > L²⁻),¹⁰ setting up reaction systems without "proton ambiguity"^{10,23} is very difficult. For example, we performed a kinetic study on the reaction of boric acid [B(OH)₃, pK_a = 8.98] with a reagent for the determination of boron, chromotropic acid (H₂cht²⁻, pK_{a3} = 5.35, pK_{a4} = 13.0), in the pH range of 8.2–9.2,¹⁰ where only two reaction pathways, B(OH)₃ + Hcht³⁻ and B(OH)₄⁻ + Hcht³⁻, were expected; i.e., no proton ambiguity would exist. However, unfortunately, this approach failed to succeed because of an unexpected proton ambiguity arising from the much higher reactivity of H₂cht²⁻ than Hcht³⁻.

Recently, we have positively made use of proton ambiguity to correct the widespread misunderstanding of the reactivity of a boronate ion and succeeded in lowering the upper limit of the rate constant of a boronate ion,²² which has led to important conclusions, that *trigonal boronic acid is always a reactive species irrespective of the pH of the solution* and *the reactivity of its conjugate tetrahedral boronate ion is comparable with or less than that of the boronic acid.*

In this study, we set up the following reaction systems to avoid proton ambiguity: the reactions of 3-nitrophenylboronic acid (3-NO₂PhB(OH)₂, $pK_a = 7.04$)⁷ with ethylene glycol (EG) and propylene glycol (PG) having high pK_{a1} [$pK_{a1} = 15.4 \pm 0.2$ (EG)^{24,25}] in buffered solution [pH = 10.3-10.8, 0.10 M CAPS (*N*-cyclohexyl-3-aminopropanesulfonic acid)].

The rate constants were measured with a stopped-flow spectrophotometer under pseudo-first-order conditions of $C_{\rm B} << C_{\rm L}$, where $C_{\rm B}$ and $C_{\rm L}$ denote the total concentrations of boronic acid $(RB(OH)_2)$ and the ligand (H_2L) , respectively (experimental details are given in the Supporting Information). The reaction gave an excellent fit to first-order kinetics with respect to the total concentration of uncomplexed boronic acid and boronate ion [B'] $(d[RB(OH)(L)^{-}]/dt = k_{obs}[B'], \text{ where } [B'] = [RB(OH)_2]$ + $[RB(OH)_3^-]$ in the present conditions). The rate constants obtained (k_{obs}) were dependent on both C_L and [H⁺] for both systems, as shown in Figure 1. Therefore, k_{obs} is expressed by eq 2 at a given [H⁺]. There are two possible parallel reaction pathways under the present conditions, as shown in Scheme 1, because the reactivity of HL⁻ is lower than that of H₂L and [HL⁻] \leq [H₂L].¹⁰

Figure 1. Dependence of k_{obs} on C_{PG} for the reaction of 3-NO₂PhB(OH)₂ (6.0 × 10⁻⁴ M) with PG in an alkaline solution at I = 0.10 M and T = 25 °C. CAPS buffer (0.10 M) was used. [H⁺]/M = 5.01 × 10⁻¹¹ (circle), 3.98 × 10⁻¹¹ (square), 3.16 × 10⁻¹¹ (triangle), 2.51 × 10⁻¹¹ (wedge), 2.00 × 10⁻¹¹ (diamond), 1.58 × 10⁻¹¹ (cross). The straight lines were drawn by applying a linear least-squares fitting of eq 2 to the experimental data.

Scheme 1. Plausible Reaction Pathways

$$RB(OH)_{2} + H_{2}L \xrightarrow{k_{1}} RB(OH)(L)^{-} + H_{3}O^{+}$$

+ H⁺ $\int K_{a}^{B}$
$$RB(OH)_{3}^{-} + H_{2}L \xrightarrow{k_{2}} RB(OH)(L)^{-} + 2H_{2}O$$

For Scheme 1, k_{obs} is given by eq 3, where $K_a^B = [RB(OH)_3^-][H^+][RB(OH)_2]^{-1}$ and $K^* = K_a^B[H^+]^{-1} + 1$. A comparison between eqs 2 and 3 gives eqs 4 and 5.

$$k_{\rm obs} = k_{\rm f} C_{\rm L} + k_{\rm d} \tag{2}$$

$$k_{\text{obs}} = (k_1 + k_2 K_a^{\text{B}} [\text{H}^+]^{-1}) \text{K}^{*^{-1}} C_{\text{L}} + k_{-1} [\text{H}^+] + k_{-2}$$
 (3)

$$k_{\rm f} {\rm K}^* = k_1 + k_2 K_{\rm a}^{\rm B} [{\rm H}^+]^{-1} \tag{4}$$

$$k_{\rm d} = k_{-1} [{\rm H}^+] + k_{-2} \tag{5}$$

The linear plots of $k_{\rm f}K^*$ vs $[{\rm H}^+]^{-1}$ and $k_{\rm d}$ vs $[{\rm H}^+]$ (Figure S1 in the Supporting Information) indicate participation of the k_1 (k_{-1}) and k_2 (k_{-2}) paths. It was confirmed for both the EG and PG systems that the relationship $K_1 = K_2 K_{\rm a}^{\rm B}$ (Scheme 1) held within experimental uncertainties, where K_1 and K_2 were calculated from the relationships $K_1 = k_1/k_{-1}$ and $K_2 = k_2/k_{-2}$. So, the rate constants were refined by applying a nonlinear least-squares fitting of eq 3 to the kinetic data (Figure 1) and are tabulated in Table 1.

It is obvious from Table 1 that the reactivities of trigonal 3-NO₂PhB(OH)₂ toward both EG and PG are at least several thousand times higher than that of tetrahedral 3-NO₂PhB(OH)₃⁻, which is consistent with the previous findings for the reactions of some boronic acids with aromatic diols.²² This is the reason why 3-NO₂PhB(OH)₂ is still reactive even in a strongly alkaline solution in which a trace of trigonal boronic acid exists. It is calculated from Table 1 that the reaction of 3-NO₂PhB(OH)₂ with PG proceeds through both the k_1 path $(k_1C_1/K^* + k_{-1}[H^+])$ and the k_2 path $(k_2K_a{}^BC_L[H^+]{}^{-1}/K^* + k_{-2})$ with a ratio of 21:79 at 25 °C, $C_B = 2.0 \times 10^{-4}$ M, $C_L = 0.20$ M, and pH = 11.2, which is the thermodynamically optimum pH $[(pK_a{}^B + pK_a{}^L)/2 = 11.2]$ for the system. In conclusion, trigonal boronic acid is always a reactive species irrespective of pH

⁽²³⁾ Jordan, R. B. Reaction Mechanisms of Inorganic and Organometallic Systems, 2nd ed.; Oxford University Press: Oxford, U.K., 1998; p 88.

⁽²⁴⁾ Velinov, G.; Zikolov, P.; Tchakarova, P.; Budevsky, O. *Talanta* 1974, 21, 163–168.

⁽²⁵⁾ The pK_a value of PG has not been reported but is expected to be comparable with or higher than that of EG.

Table 1. Rate Constants for the Reactions of 3-NO₂PhB(OH)₂ with EG and PG in an Alkaline Solution^a

		3-NO ₂ PhB(OH) ₂		$3-NO_2PhB(OH)_3^-$		
H_2L	$k_1/M^{-1} s^{-1}$	$k_{-1}/10^{10} \mathrm{M}^{-1} \mathrm{s}^{-1}$	$K_1^{b}/10^{-7}$	$k_2/M^{-1} s^{-1}$	k_{-2}/s^{-1}	K_2^{b}/M^{-1}
EG PG	$10100 \pm 200 \\ 5770 \pm 100$	$\begin{array}{c} 4.30 \pm 0.16 \\ 1.04 \pm 0.05 \end{array}$	2.3 5.5	$\begin{array}{c} 1.18 \pm 0.04 \\ 1.47 \pm 0.03 \end{array}$	$\begin{array}{c} 0.460 \pm 0.052 \\ 0.242 \pm 0.021 \end{array}$	2.6 6.1

^{*a*} I = 0.10 M (0.10 M CAPS buffer) and T = 25 °C. ^{*b*} Calculated from the relationships $K_1 = k_1/k_{-1}$ and $K_2 = k_2/k_{-2}$.

of the solution, whereas its conjugate tetrahedral boronate ion is reactive in solutions having a pH substantially higher than pK_a^B of its conjugate acid, in which a boronate ion exists overwhelmingly. It is of note that the k_{-1} values for both systems are close to those for the diffusion-controlled protonation of acids, which means that the activated complex for the k_{-1} path would be similar to the protonated reaction product, RB(OH)(L)(H).

As described in the previous reports,^{22,26} the present system is expressed by eq 6, where $[B'] = [RB(OH)_2] + [RB(OH)_3^{-1}] = [RB(OH)_2](1 + K_a^{B}/[H^+]).$

$$B'+H_2L \stackrel{K}{\rightleftharpoons} RB(OH)(L)^-$$
(6)

Then, the conditional formation constant K' depending on $[H^+]$ is given by eq 7.

$$K' = \frac{[\text{RB(OH)}(\text{L})^{-}]}{[\text{B}'][\text{H}_2\text{L}]} = \frac{K_1}{\text{K}^*[\text{H}^+]} = \frac{K_1}{[\text{H}^+] + K_a^{\text{B}}}$$
(7)

(26) Nakano, E.; Iwatsuki, S.; Inamo, M.; Takagi, H. D.; Ishihara, K. *Talanta* **2008**, *74*, 533–538.

Equation 7 indicates that K' decreases to zero at pH values lower than 5 because K_1 is very small (Table 1); that is, no reaction substantially proceeds.

In the present kinetic study, we obtained for the first time the reaction rate constants of a boronate ion with aliphatic diols and showed explicitly that they are much smaller than those of boronic acid, which breaks down the fixed idea that a boronate ion reacts much faster than its conjugate boronic acid.

Acknowledgment. We express our thanks for financial support from a Waseda University Grant for Special Research Projects (Grant 2007B-119).

Supporting Information Available: Experimental details, kinetic data, etc., for the reactions of $3-NO_2PhB(OH)_2$ with ethylene glycol and propylene glycol (Tables S1 and S2 and Figures S1–S6). This material is available free of charge via the Internet at http://pubs.acs.org.

IC702317N