Monovalent Iron in a Sulfur-Rich Environment

Michael T. Mock, † **Codrina V. Popescu**,*,‡ **Glenn P. A. Yap**, † **William G. Dougherty**, † **and Charles G. Riordan*** ,†

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, and Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426

A series of low-coordinate, paramagnetic iron complexes in a tris(thioether) ligand environment have been prepared. Reduction of ferrous {[PhTt^{tBu}]FeCl}₂ [1; PhTt^{tBu} = phenyltris((*tert*-butylthio)methyl)borate] with KC_8 in the presence of PR_3 ($R = Me$ or Et) yields the high-spin, monovalent iron phosphine complexes $[PhTt^{IBu}]Fe(PR_3)$ (2). These complexes provide entry into other lowvalent derivatives via ligand substitution. Carbonylation led to smooth formation of the low-spin dicarbonyl [PhTt^{tBu}]Fe(CO)₂ (3). Alternatively, replacement of $PR₃$ with diphenylacetylene produced the high-spin alkyne complex [PhTt^{tBu}]Fe(PhCCPh) (4). Lastly, 2 equiv of adamantyl azide undergoes a $3 + 2$ cycloaddition at **2**, yielding high-spin dialkyltetraazadiene complex **5**.

The monovalent oxidation state of iron is receiving increasing attention because of its implication in biocatalytic hydrogen and ammonia production and its potential in promoting group-transfer reactions. The iron-only hydrogenase enzymes reduce protons to H_2 at an active site of composition Fe₂(CO)₃(CN)₂(μ -S₂(CH₂)₂X).¹ The unusual organometallic diiron subcluster is proposed to redox cycle via a number of states including reduced states that are formally iron(I).² The more structurally complex iron molybdenum cofactor of nitrogenase is a metallocluster featuring low-coordinate iron sites in sulfur-rich environments that facilitate N_2 reduction.³ These developments have stimulated a high level of activity within the coordination chemistry community^{4,5} wherein emphasis can be placed on elucidating fundamental aspects of the geometric and electronic structure and establishing how such structural features dictate chemical reactivity. Our interests in this regard are

* To whom correspondence should be addressed. E-mail: cpopescu@ ursinus.edu (C.V.P.), riordan@udel.edu (C.G.R.).

[†] University of Delaware.

[‡] Ursinus College.

the preparation and examination of high-spin monovalent iron complexes^{5,6} in a sulfur-rich ligand environment. While the spectroscopic characteristics of heme and nonheme iron complexes have been extensively examined, similar data for low-coordinate, i.e., $CN \leq 5$, low-valent, high-spin complexes are limited. Thus, a comparison with the data derived from the examination of metalloproteins is tenuous. Herein, we present the synthesis, structure, electron paramagnetic resonance (EPR), Mössbauer and magnetic properties of a series of monovalent iron complexes supported by the tris(thioether)borate ligand $[PhTt^{Bu}]$.⁷ Ligand substitution allows for the introduction of a range of donors including those that are potentially redox-active and, thus, confounds simple electronic structure descriptions.⁸

Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 1889-¹⁸⁹¹

Inorganic:Chemis

In contrast to the synthesis of [PhTt^{Bu}]MX derivatives of Ni, Co, Zn, and Cd, entry into $[PhTt^{Bu}]$ -ligated iron chemistry is quite sensitive to the nature of the metal salt.^{7,9} After canvassing a number of potential precursors, we established that $FeCl₂(THF)_{1.5}$ leads to the target complex, albeit in a stepwise fashion. The addition of $[PhTt^{Bu}]Tl$ to $FeCl₂(THF)_{1.5}$ in THF generates the colorless "ate" complex ${K^2-PhTt^{Bu}FeCl_2}Tl \cdot THF$ (see the Supporting Information
for details). Removal of the volatiles followed by dissolufor details). Removal of the volatiles followed by dissolution in toluene precipitates TlCl, generating light-yellow $\{[PhTt^{IBu}]FeCl\}_2$ (1). Unlike the Co, Ni, and Zn analogues, **1** is dimeric in the solid state as revealed by X-ray diffraction (Figure S6 in the Supporting Information, SI). The magnetic susceptibility of **1** (SQUID; Figure S1 in the SI) follows the Curie law, with $\mu_{\text{eff}} = 5.1 \mu_{\text{B}}$ per Fe (10–290 K), indicating no detectable exchange coupling between the metals. The 4.5 K Mössbauer parameters of **1**, at δ = 0.96(3) mm/s and $\Delta E_{\rm O} = 3.45(2)$ mm/s, are in the range expected for a highspin ferrous site and similar to those of ferrous rubredoxin.¹⁰

⁽¹⁾ Peters, J. W. *Opin. Struct. Biol.* **1999**, *9*, 670.

⁽²⁾ Darensbourg, M. Y.; Lyon, E. J.; Zhao, X.; Georgakaki, I. P. *Proc. Natl. Acad. Sci. U.S.A.* **2003**, *100*, 3683.

⁽³⁾ Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. *Science* **2002**, *297*, 1696.

^{(4) (}a) For example, see: Georgakaki, I. P.; Thomson, L. M.; Lyon, E. J.; Hall, M. B.; Darensbourg, M. Y. Coord. Chem. Rev. 2003, 238, 255. Hall, M. B.; Darensbourg, M. Y. *Coord. Chem. Re*V*.* **²⁰⁰³**, *²³⁸*, 255. (b) Rauchfuss, T. B. *Inorg. Chem.* **2004**, *43*, 14. (c) Sadique, A. R.; Gregory, E. A.; Brennessel, W. W.; Holland, P. L. *J. Am. Chem. Soc.* **2007**, *129*, 8112..

^{(5) (}a) Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 17107. (b) Stoian, S. A.; Yu, Y.; Smith, J. M.; Holland, P. L.; Bominaar, E. L.; Münck, E. *Inorg. Chem.* **2005**, *44*, 4915. (c) Stoian, S. A.; Vela, J.; Smith, J. M.; Sadique, A. R.; Holland, P. L.; Münck, E.; Bominaar, E. L. *J. Am. Chem. Soc.* **2006**, *128*, 10181.

^{(6) (}a) Brown, S. D.; Betley, T. A.; Peters, J. C. *J. Am. Chem. Soc.* **2003**, *125*, 322. (b) Yu, Y.; Smith, J. M.; Flaschenriem, C. J.; Holland, P. L. *Inorg. Chem.* **2006**, *45*, 5742.

⁽⁷⁾ Schebler, P. J.; Riordan, C. G.; Guzei, I.; Rheingold, A. L. *Inorg. Chem.* **1998**, *37*, 4754.

⁽⁸⁾ Muresan, N.; Chlopek, K.; Weyhermuller, T.; Neese, F.; Wieghardt, K. *Inorg. Chem.* **2007**, *46*, 5327.

Figure 1. Molecular structures of **²**-**⁵** as determined by X-ray diffraction. Thermal ellipsoids are at the 30% level, and H atoms are omitted.

Scheme 1

The addition of 3 equiv of PR_3 ($R = Me$ or Et) to 1 generates a light-yellow solution. Subsequent stirring over KC₈ produces a deep-blue solution from which monovalent $[PhTt^{Bu}]Fe(PR₃)$ (**2R**) is isolated in moderate yields. The molecular structure of **2Et** is depicted in Figure 1. The molecule is pseudo-*C*3 symmetric, with the phosphine residing on the 3-fold axis. The phosphine complexes display $\mu_{\text{eff}} = 3.9(1) \mu_{\text{B}}$ for 2^{Me} and $4.1(1)$ $\mu_{\rm B}$ for $2^{\rm Et}$, consistent with three unpaired electrons, i.e., *S* = $\frac{3}{2}$. Both derivatives exhibit axial EPR signals at 5 K with effective *g* values of 4.26 and 2.05 and $E/D = 0$ (Figure S2 in the SI). There is no discernible superhyperfine coupling to the ³¹P NMR nucleus, suggesting that little unpaired spin density resides on that nucleus. The EPR spectrum of $S = \frac{1}{2}$
(DbTt^{Bu}INi(PMe₂) also does not display such coupling ¹¹ $[PhTt^{Bu}]Ni(PMe₃)$ also does not display such coupling.¹¹ Mössbauer spectra of 2^{Me} exhibit $\delta = 0.76(3)$ mm/s and ΔE_0 $= 1.88(3)$ mm/s at 4.5 K. The isomer shift is higher than those reported for the few iron(I) complexes published.⁵

2 has proven to be a useful synthon via ligand substitution for the preparation of derivatives containing the $[PhTt^{Bu}]Fe$ fragment (Scheme 1). Exposure of a pentane solution of **2** to a CO atmosphere results in conversion to the dicarbonyl, **3**. The IR spectrum contains two intense v_{CO} bands at 1984 and 1911 cm^{-1} , which appear at 1938 and 1867 cm^{-1} in samples prepared from ¹³CO. For comparison, Peters' [PhBP₃]Fe(CO)₂ exhibits

(11) Mandimutsira, B. S.; Riordan, C. G. , unpublished results.

nearly identical values, $v_{\text{CO}} = 1979$ and 1914 cm^{-1} , ^{6a} whereas
Chirik's formally iron(0) complexes have expectedly lower Chirik's formally iron(0) complexes have expectedly lower energy bands.12 The molecular structure of **3** (Figure 1) is that of a square pyramid, with two thioether sulfurs and two carbonyls defining the equatorial plane. The apical thioether bond length is longer, at $Fe-S1 = 2.361(2)$ Å, than the equatorial Fe-S bonds, 2.307(2) and 2.327(2) Å. This observation is surprising given the strong trans influence of CO ligands. In $[PhBP_3]Fe(CO)_2$, the apical Fe-P bond length is shorter than the equatorial ones. The room temperature magnetic moment of **3**, determined in solution by the method of Evans, 13 is μ_{eff} $= 1.7(1) \mu_{\rm B}$, consistent with an $S = {}^{1/2}$ spin state. Moreover, complex 3 displays an isomer shift of 0.21 mm/s (162 K) complex **3** displays an isomer shift of 0.21 mm/s (162 K), consistent with a low-spin complex and a rhombic EPR signal, $g = 2.13, 2.07,$ and 2.00 (Figure S3 in the SI), similar to the signal reported for the oxidized state of the H cluster of hydrogenase II, $g = 2.078$. 2.027, and 1.99.¹⁴ A sample of **3** prepared with 13CO exhibits superhyperfine coupling to the two ¹³C nuclei, with $A_1 = 30$ MHz, $A_2 = 30.5$ MHz, and $A_3 = 36$ MHz.

The addition of diphenylacetylene to **2** generates an olivegreen alkyne complex, **4**. The geometry at the iron is square pyramidal, $\tau = 0.06$, ¹⁵ when considering the alkyne carbons in two of the equatorial positions. The Fe-C bond lengths, 1.971(3) and 1.961(3) Å, reflect symmetric alkyne coordination. The C $-C$ bond length, 1.280(4) Å, of the diphenylacetylene ligand is lengthened compared to the free alkyne, $1.210(3)$ $\rm \AA$.¹⁶ The C-C bond length is indistinguishable from that in (^{iPr}PDI)Fe(PhCCPh)¹⁷ while somewhat longer than that found in several lower coordinate β -diketiminate derivatives.^{6b} The v_{CC} mode at 1804 cm⁻¹ is at much lower energy than for the free ligand, 2217 cm^{-1} .¹⁸ Thus, there is significant electronic back-donation to the diphenylacetylene ligand, with the ferrous state relevant. The paramagnetically shifted ¹H NMR spectral features of **4** are more similar to those of other ferrous

- (14) Popescu, C. V.; Münck, E. *J. Am. Chem. Soc.* **1999**, *121*, 7877. (15) $\tau = (\beta - \alpha)/60$, where α and β are the two largest L-M-L angles with $\beta \ge \alpha$; $\tau = 0$ for square pyramidal, and $\tau = 1$ for trigonal bipyramidal. Addison, A. W.; Rao, T. N.; Reedijk, J.; Vanrijn, J.;
- Verchoor, G. C. *J. Chem. Soc., Dalton Trans.* **1984**, 1349. (16) Zanin, I. E.; Antipin, M. Y.; Struchkov, Y. T. *Kristallografiya* **1991**, *36*, 411.
- (17) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. *J. Am. Chem. Soc.* **2004**, *126*, 13794.
- (18) Hiura, H.; Takahashi, H. *J. Phys. Chem.* **1992**, *96*, 8909.

⁽⁹⁾ Chiou, S.-J.; Innocent, J.; Lam, K.-C.; Riordan, C. G.; Liable-Sands, L.; Rheingold, A. L. *Inorg. Chem.* **2000**, *39*, 4347.

⁽¹⁰⁾ Yoo, S. J.; Meyer, J.; Achim, C.; Peterson, J.; Hendrich, M. P.; Münck, E. *J. Biol. Inorg. Chem.* **2000**, *5*, 475.

⁽¹²⁾ Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. *Inorg. Chem.* **2006**, *45*, 7252.

⁽¹³⁾ Evans, D. F. *J. Chem. Soc.* **1959**, 2003.

Figure 2. Resonance structures of 5 : high-spin iron(I) with $(N_4Ad_2)^0$ (A), high-spin iron(II) with an antiferromagnetically coupled N₄Ad₂ radical anion (B), and intermediate-spin iron(III) with $(N_4Ad_2)^{2-}$ (C).

complexes, i.e., 1 and $[PhTt^{Bu}]Fe(Me),^{19}$ than to those of the monovalent species 2 and 3. 4 is high-spin, $S = \frac{3}{2}$, as indicated
by its magnetic moment $\mu_{\rm s} = 4.1(1) \mu_{\rm s}$ and rhombic EPR by its magnetic moment, $\mu_{\text{eff}} = 4.1(1) \mu_{\text{B}}$, and rhombic EPR signals, $g = 6.42$, 1.64, and 1.29 and $E/D = 0.228$ (Figure S4 in the SI). Preliminary Mössbauer spectra of 4 reveal δ = $0.62(3)$ mm/s and $\Delta E_0 = 1.62(2)$ mm/s, which do not contradict its assignment as an iron(I) $S = \frac{3}{2}$ species. The pseudo-three-
coordinate LEe(PhCCH) prepared by Holland et al. displays coordinate LFe(PhCCH) prepared by Holland et al. displays parameters $\delta = 0.44(2)$ mm/s and $\Delta E_0 = 2.02(2)$ mm/s.^{5b}

Lastly, we are interested in preparing higher valent complexes of [PhTt^{tBu}]Fe, specifically imidoiron(III), using the group-transfer approach.^{6a,20} It was surprising that the addition of 1-adamantyl azide to **2** did not yield imidoiron(III) [PhTt^{Bu}]Fe(NAd). Instead, the dark-orange diadamantyltetraazadiene, **5**, was isolated. **5** has an $S = \frac{3}{2}$ ground
state as indicated by its magnetic moment $\mu_s = 3.8(1) \mu_0$ state as indicated by its magnetic moment, $\mu_{\text{eff}} = 3.8(1) \mu_{\text{B}}$ and its rhombic EPR spectrum with $g = 5.47$, 2.28, and 1.57 and $E/D = 0.305$ (Figure S4 in the SI). The similarities between the EPR and spectral data of **4** and **5** provide empirical evidence for similar degrees of charge transfer onto the ligands PhCCPh and Ad_2N_4 , respectively.

The molecular structure of **5** (Figure 1) features a fourcoordinate iron site of roughly tetrahedral stereochemistry with the [PhTt^{Bu}] ligand coordinated in a κ^2 fashion. The Ad₂N₄ unit binds symmetrically through its 1 and 4 nitrogens, $Fe-N1 =$ 1.943(3) Å and Fe-N4 $=$ 1.947(3) Å. The resulting fivemembered metallacycle is planar with N-N bond lengths of $N1-N2 = 1.324(4)$ Å, $N3-N4 = 1.317(4)$ Å, and $N2-N3 =$ 1.337(5) Å. The similarity of the N-N bond distances suggests a resonance structure with electron delocalization across the ring [Figure 2 (resonance form B)].²¹ These structural parameters are inconsistent with limiting resonance contributors in which the Ad_2N_4 ligand is either neutral (A) or dianionic (C) because each predicts localized $N-N$ and $N=N$ bonds. Interestingly, the electronic spectrum of **5** contains a low-energy absorption band in the near-IR, $\lambda_{\text{max}} = 950 \text{ nm}$ ($\epsilon = 112 \text{ M}^{-1} \text{ cm}^{-1}$). A similar feature was reported for the 19-electron anions Γ Co(Ω 1.4similar feature was reported for the 19-electron anions, [CpCo(1,4-

COMMUNICATION

R2N4)]– , in which the unpaired electron was determined to reside in a delocalized π^* orbital of the metallacycle based on X α calculations.22 While we consider resonance form B as a description consistent with the experimental data, it can be problematic to overemphasize such assignments. As noted by Trogler, ". . . tetrazabutadiene complexes defy a simple description."²¹ Recent reports of the complex redox behavior and electronic structures of iron α -diimine complexes highlight this cautionary note.8 Experiments aimed at the characterization of the electronic structures of **4** and **5**, augmented by density functional theory calculations, are in progress.

A plausible reaction pathway leading to tetraazadiene complexes was proposed first by Stone et al.23 The formation of **5** would initiate with group transfer to iron(I) generating a putative imidoiron(III) intermediate, [PhTt^{Bu}]Fe(NAd). Clear precedents of similar adducts are available in the systematic studies of Peters and co-workers that demonstrate that four-coordinate imidoiron complexes may be accessed in the ferrous, ferric, and iron(IV) oxidation states. 24 In the present case, the imidoiron(III) intermediate reacts further with a second 1 equiv of AdN₃ via a $3 + 2$ cyclization, leading to 5. This last step may be favored because of the ability of $[PhT^{tBu}]$ to deligate one thioether substituent, thus providing sufficient space for the 3 + 2 cycloaddition to proceed. Additional studies are warranted to further investigate the mechanism of this reaction.

In summary, we have established entry into monovalent iron coordination complexes in a sulfur-rich ligand environment. High-spin iron(I) complex **2** is a synthon for a number of new complexes via ligand substitution. While **2** and **3** appear to be bona fide monovalent iron species, high-spin **4** and **5** exhibit distinct spectral and structural characteristics indicative of backdonation to the alkyne and tetraazadiene ligands, respectively. The interesting and more complex electronic structures of **4** and **5** are the subject of ongoing studies.

Acknowledgment. We thank the NSF (CHE-0518508 to C.G.R. and CHE-0421116 to C.V.P.) for financial support. S. Bobev, S. Xia, and P. Tobash are thanked for assistance in acquiring the SQUID data for **1**, M. Hendrich is thanked for the use of the program *SpinCount* and for the simulations of the EPR spectra of **4** and **5**, and J. Dykins and H. B. Linden are thanked for collection of the LIFDI-MS data.

Supporting Information Available: Synthetic procedures and characterization data including EPR and Mössbauer spectra (PDF) and X-ray diffraction refinement data for $1-5$ (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC7023378

⁽¹⁹⁾ Mock, M. T. Synthesis and Reactivity of Thioether-Supported Organoiron and Low-Valent Iron Complexes and Cyanide Bridged Binuclear Complexes. Thesis, University of Delaware, Newark, DE, 2008.

^{(20) (}a) For selected recent examples in late metal chemistry, see: Eckert, N. A.; Vaddadi, S.; Stoian, S.; Lachicotte, R. J.; Cundari, T. R.; Holland, P. L. *Angew. Chem.* **2006**, *45*, 6868. (b) Kogut, E.; Wiencko, H. L.; Zhang, L. B.; Cordeau, D. E.; Warren, T. H. *J. Am. Chem. Soc.* **2005**, *127*, 11248. (c) Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.; Theopold, K. H. *Angew. Chem.* **2005**, *44*, 1508.

⁽²¹⁾ Trogler, W. C. *Acc. Chem. Res.* **1990**, *23*, 426.

⁽²²⁾ Maroney, M. J.; Trogler, W. C. *J. Am. Chem. Soc.* **1984**, *106*, 4144. (23) Ashley-Smith, J.; Green, M.; Stone, F. G. A. *J. Chem. Soc., Dalton*

Trans. **1972**, 1805.

^{(24) (}a) Mehn, M. P.; Peters, J. C. *J. Inorg. Biochem.* **2006**, *100*, 634. (b) Thomas, C. M.; Mankad, N. P.; Peters, J. C. *J. Am. Chem. Soc.* **2006**, *128*, 4956.