

Rb2REGaSi4O12 (RE) **Y, Eu, Gd, Tb): Luminescent Mixed-Anion Double Layer Silicates Containing Chains of Edge-Sharing REO7 Pentagonal Bipyramids**

Cheng-Shiuan Lee, † **Yueh-Chun Liao**, § **Jung-Tsung Hsu**, § **Sue-Lein Wang**,*,† **and Kwang-Hwa Lii*** ,‡

Department of Chemistry, National Tsing Hua University, Hsinchu 300, Material and Chemical *Research Laboratories, Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, and Department of Chemistry, National Central University, Jhongli 320, Taiwan, ROC*

Received December 18, 2007

Four new rare earth gallosilicates, $Rb_2REGaSi_4O_{12}$ (RE = Y, Eu, Gd, and Tb, denoted as REGS-1), have been synthesized under high-temperature, high-pressure hydrothermal conditions and characterized by single-crystal X-ray diffraction. They are the first examples of rare earth gallosilicates that contain individually occupied tetrahedral Ga^{3+} and Si^{4+} centers. The unique structure is formed of two 1D and one 2D substructural units: unbranched achter single chains which are seldom observed in silicates, the PaCl₅-type infinite chains formed of edge-sharing REO₇ petagonal bipyramids and the unprecedented mixed-anion double layers with the composition $[GaSi₄O₁₂]$. The photoluminescence properties of EuGS-1 and TbGS-1 have been studied. The Y^{3+} ion in YGS-1 can be partially replaced by Eu^{3+} and Tb^{3+} to yield luminescent materials.

The synthesis of microporous solids with extended inorganic framework topologies and varied chemical compositions has attracted much attention because of the continuing demand for these materials in a wide variety of applications.¹ Such materials include mainly zeolites, aluminophosphateand silicoaluminophosphate-based molecular sieves with frameworks built of silicon, and aluminum and/or phosphorus oxide tetrahedra. The substitution of Al with Ga in known aluminosilicate frameworks has been extensively studied.² A gallosilicate having no counterpart among the aluminosilicates has also been synthesized. 3 In contrast to the substitutional compounds, heterometal gallosilicates with each metal occupying an individual site are rather limited. Only two piezoelectric materials, $Sr₃TaGa₃Si₂O₁₄$ and $La_3Ga_5SiO_{14}$, were previously documented.^{4,5} In the latter, the first member in the lanthanide gallosilicate system, still the tetrahedral Ga^{3+} and Si^{4+} sites are mixed and indistinguishable. Herein, we report four new heterometal gallosilicates, $Rb_2REGaSi_4O_{12}$ (designated as REGS-1 with RE = Y, Eu, Gd, and Tb), obtained from hydrothermal reactions under the conditions of 600 °C and 170 MPa. These materials adopt a prototype framework topology and are the first examples of rare earth gallosilicates that contain individually occupied pentagonal bipyramidal RE^{3+} and tetrahedral Ga^{3+} and $Si⁴⁺$ centers. In addition, they are of great interest as host materials for other lanthanide ions to fine-tune desired photoluminescence properties.

A reaction mixture of 208 μ L of RbOH(aq) (50 wt %), 33 mg of Ga_2O_3 , 62 mg of Eu_2O_3 , and 85 mg of SiO_2 in the molar ratio Rb:Ga:Eu:Si = $5:1:1:4$ was sealed in a 4.2 cm long gold ampule (i.d. $= 4.85$ mm), which was contained in an autoclave and counterpressured with water at a fill level of 55%. The autoclave was heated at 600 °C for 36 h, cooled to 350 at 5 $^{\circ}C \cdot h^{-1}$, and then rapidly cooled to room
temperature (RT) by turning off the power of the tube temperature (RT) by turning off the power of the tube furnace. The pressure at 600 °C was estimated to be 170 MPa according to the pressure-temperature diagram for pure water. The reaction yielded colorless columnar crystals of EuGS-1 as the major product, which was accompanied by a slight amount of unknown powder. The same reaction conditions, with Eu_2O_3 being replaced by Y_2O_3 or Gd_2O_3 , produced colorless lamellar crystals of YGS-1 or GdGS-1 as major products. In an attempt to prepare the Tb analogue by using Tb_4O_7 as the metal source with the molar ratio Rb:

^{*} To whom correspondence should be addressed. E-mail: liikh@cc.ncu.edu.tw (K.H.L.), slwang@mx.nthu.edu.tw (S.L.W.).

[†] National Tsing Hua University.

[§] Industrial Technology Research Institute.

[‡] National Central University.

^{(1) (}a) Cheetham, A. K.; Férey, G.; Loiseau, T. *Angew. Chem., Int. Ed.* **1999**, *38*, 3268. (b) Thomas, J. M. *Angew. Chem., Int. Ed.* **1999**, *38*, 3588. (c) Davis, M. E. *Nature* **2002**, *417*, 813. (d) Rocha, J.; Lin, Z.

*Re*V*. Mineral. Geochem.* **²⁰⁰⁵**, *⁵⁷*, 173. (2) Fricke, R.; Kosslick, H.; Lischke, G.; Richter, M. *Chem. Re*V*.* **²⁰⁰⁰**, *100*, 2303.

⁽³⁾ Lee, Y.; Kim, S. J.; Wu, G.; Parise, J. B. *Chem. Mater.* **1999**, *11*, 879.

⁽⁴⁾ Takeda, H.; Sato, J.; Kato, T.; Kawasaki, K.; Morikoshi, H.; Shimamura, K.; Fukuda, T. *Mater. Res. Bull.* **2000**, *35*, 245.

⁽⁵⁾ Kaminskii, A. A.; Sarkisov, S. E.; Mill, B. V.; Khodzhabagian, G. G. *Dokl. Akad. Nauk.* **1982**, *264*, 93.

Ga:Tb:Si = $8:1.5:1:4$, we obtained colorless crystals of TbGS-1 along with some unidentified powder. The yields of these four materials were estimated to be 62, 50, 81, and 36%, respectively, based on Y_2O_3 , Eu_2O_3 , Gd_2O_3 , and Tb_4O_7 . Suitable crystals were selected for structure determination by single-crystal X-ray diffraction from which the chemical formula was determined to be $Rb_2REGaSi_4O_{12}$ (RE = Y, Eu, Gd, and Tb).⁶ The Er compound was synthesized as a minor product according to powder X-ray diffraction. Compounds containing other rare earth metals have not been prepared.

The crystals of EuGS-1 and TbGS-1 were manually separated from the side products to give pure samples as judged by visual microscopic examination and powder X-ray diffraction (Figure S1). The samples were used for photoluminescence measurements. The Y^{3+} ion in YGS-1 can be partially replaced by Eu^{3+} and Tb^{3+} to form crystals of $Rb_2Y_{0.89}Eu_{0.11}GaSi_4O_{12}$ and $Rb_2Y_{0.94}Tb_{0.06}GaSi_4O_{12}$, respectively, as indicated by single-crystal X-ray diffraction. X-ray powder diffraction data were collected on a Shimadzu XRD-6000 powder diffractometer with Cu K α radiation. Several crystals of EuGS-1 were contained in a glass capillary for luminescence study at RT. A laser beam at 473 nm from a diode laser was employed as the light source. The emission was collected by an *f*/l focal lens and imaged onto a monochromator attached with a charge-coupled device detector. This setup was also used for the measurements of emission radiative lifetime except that the detector and the excitation light source were, respectively, replaced by a photomultiplier tube and a tunable pulsed Nd:YAG laser and a pumped dye laser. Solid-state PL studies of TbGS-1 were performed on a powder sample at RT. PL spectra were measured on a Hitachi F-4500 FL spectrophotometer equipped with a Xe lamp as the light source.

The four compounds are isostructural, and therefore, only the structure of EuGS-1 is discussed. The structure is constructed by the following structural elements: 2 Rb sites, 1 EuO₇ pentagonal bipyramid, 1 GaO₄ tetrahedron, and 4 SiO4 tetrahedra. All atoms are in general positions. The structure consists of unbranched single chains of cornersharing SiO4 tetrahedra in a period of eight along the *c* axis. The observed Si-O bond lengths and O-Si-O and $Si-O_{br}-Si bond angles are typical values within the normal$ range.⁷ The stretching factor, f_s , which is defined by f_s = $I_{\text{chain}}/I_T \times P$, where I_{chain} is the length of identity period, I_T is the length of tetrahedron edge (2.70 Å) , and *P* is the periodicity of the chain, is equal to 0.69 .⁷ The shrinkage of the chain is most pronounced for chains with an even number

Figure 1. (a) Section of a mixed-anion double layer in EuGS-1. The green and blue tetrahedra represent SiO_4 and GaO_4 units, respectively. For clarity, one layer is shown in simplified representation in which a tetrahedral atom is located at the intersection of the lines, as oxygen bridges are made by corner-sharing from the vertices of the tetrahedra. (b) Section of an infinite chain formed of edge-sharing $EuO₇$ pentagonal bipyramids.

of tetrahedra in the repeat unit. For example, the indium silicate $K_5In_3Si_7O_{21}$ consists of single siebener chains with $f_s = 0.89$.⁸ The 24er single chain in Na₂₄Y₈Si₂₄O₇₂ is extremely folded with $f_s = 0.23$.⁹ As shown in Figure 1a, adjacent silicate chains are linked via corner-sharing by GaO4 tetrahedra to form a mixed-anion layer. Each GaO₄ tetrahedron shares its corners with three SiO4 tetrahedra within a layer and one $SiO₄$ tetrahedron in a neighboring layer such that hybrid double layers of tetrahedra with the composition $[GaSi₄O₁₂]$ in the *bc* plane are formed.

The rare earth ions are 7-fold coordinated in the 3+ oxidation state as indicated by bond valence calculations,¹⁰ and each REO_7 unit approximates to a pentagonal bipyramid. Eu(1) is axially bonded to two oxygen atoms at 2.261 and 2.282 Å with an O -Eu-O bond angle of 178.7°. Each axial O atom is also bonded to a Si atom. Equatorially, Eu(1) is bonded to five oxygen atoms, four of which bond to Si atoms, with Eu-O bond lengths ranging from 2.303 to 2.542 Å, whereas the fifth oxygen bonds to one Si and one Ga atom $(Eu-O = 2.720 \text{ Å})$. The five equatorial atoms are nearly coplanar. As shown in Figure 1b, the $EuO₇$ polyhedra share two equatorial edges to form linear chains with the composition $EuO_{2/1}O_{4/2}O_{1/1}$ (i.e., EuO₅). The chain is similar to that in PaCl5, except that the dihedral angle between the equatorial planes of adjacent $EuO₇$ polyhedra in EuGS-1 is 27.6°, and all of the equatorial Cl atoms in a chain in PaCl₅ are coplanar.¹¹ Each EuO₇ polyhedron shares an edge with one $SiO₄$ tetrahedron and corners with one $GaO₄$ and five $SiO₄$ to form a 3D framework containing two types of six-ring channels along the *b* axis (Figure 2). The 8-fold coordinated Rb+ cations are located at sites between adjacent sixmemebered rings on the periphery of the channels.

A good number of lanthanide silicates, which were prepared under mild hydrothermal conditions at 200–230 °C,

⁽⁶⁾ Crystallographic data for EuGS-1: crystal of dimensions 0.05×0.06 \times 0.25 mm, monoclinic, space group *I*2/*a*, $M_r = 696.98$, and $a =$ 22.555(2) Å, $b = 7.3428(7)$ Å, $c = 14.929(1)$ Å, $\beta = 90.137(2)$ °, *V* $= 2472.4(4)$ Å³, $Z = 8$, $d_{\text{calcd}} = 3.745$ g cm⁻³, μ (Mo K α) = 15.476 cm-1. A total of 8587 reflections were measured at 294 K, which gave 3067 independent reflections with $R_{\text{int}} = 0.0249$. $R1 = 0.0293$ and $wR2 = 0.0786$ for 2802 reflections with $I > 2\sigma(I)$ and 181 parameters. Crystallographic data for the REGS-1 materials are summarized in Table S1, selected bond lengths and bond angles are given in Table S2. The unit cell dimensions for GdGS-1 and TbGS-1 are smaller because of lanthanide contraction.

⁽⁷⁾ Liebau, F. *Structural Chemistry of Silicates: Structure, Bonding and Classification*; Springer-Verlag: Berlin, 1985.

⁽⁸⁾ Hung, L.-I.; Kao, H.-M.; Lii, K.-H. *Inorg. Chem.* **2007**, *46*, 3301.

⁽⁹⁾ Maksimov, B. A.; Kalinin, V. P.; Merinov, B. V.; Ilyukhin, V. V.; Belov, N. V. *Dokl. Akad. Nauk* **1980**, *252*, 875.

⁽¹⁰⁾ Brown, I. D.; Altermatt, D. *Acta Crystallogr.* **1985**, *B41*, 244.

⁽¹¹⁾ Dodge, R. P.; Smith, G. S.; Johnson, Q.; Elson, R. E. *Acta Crystallogr.* **1967**, *22*, 85.

Figure 2. Structure of EuGS-1 viewed along the *b* axis. The yellow, blue, and green polyhedra represent EuO₇ pentagonal bipyramids, GaO₄ tetrahedra, and SiO₄ tetrahedra, respectively. Red circles are Rb⁺ cations.

have been reported.¹² Most of them contain discrete Lncentered polyhedra ($LnO₆$ or $LnO₇$). To our knowledge, $Na_{1.08}K_{0.5}Ln_{1.14}Si₃O_{8.5}$ • 1.78H₂O (designated as AV-20, Ln $=$ Eu, Tb, Sm, Ce) are the only known lanthanide silicates which also contain PaCl₅-type $[LnO₅]$ chains.¹³ A small number of metal silicates contain silicate anions which can be regarded as a product of the condensation of two single layers. These double layer silicates are called diphyllosilicates. For example, monteregianite is a lanthanide diphyllosilicate.14 Mixed-anion diphyllosilicates are extremely rare.15,16 The double layer found in REGS-1 has not been observed in any diphyllosilicates. The structure is novel in terms of the PaCl₅-type $[REO₅]$ chains and mixed-anion double layers. An organically templated open framework uranyl silicate, which has some structural similarities with REGS-1, was reported.¹⁷ The structure of the uranium compound contains silicate double layers which are connected by PaCl₅-type uranate chains formed of $UO₃F₄$ pentagonal bipyramids.

Compounds EuGS-1 and TbGS-1 and the mixed-metal materials $Rb_2Y_{1-x}Eu_xGaSi_4O_{12}$ and $Rb_2Y_{1-x}Tb_xGaSi_4O_{12}$ showed red and green photoluminescence, respectively, when irradiated with UV radiation. The RT emission spectrum recorded at 473 nm (${}^{5}D_{2}$ + ${}^{7}F_{0}$) excitation exhibits a number of lines between 570 to 700 nm (Figure S2). These lines are ascribed to emission from the first excited ${}^{5}D_{0}$ state to the ${}^{7}F_{0-4}$ Stark levels of the fundamental Eu^{3+} septet. The presence of one ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ line indicates the existence of one

 $Eu³⁺$ local environment, and this is consistent with the crystallographic results. The integrated intensity of the 5D_0 \rightarrow ⁷F₁ lines is a little higher than that of the 5D_0 \rightarrow ⁷F₂ lines, indicating that the deviation from inversion symmetry for the Eu³⁺ ion is small. The decay curves of the 5D_0 ⁻⁻⁷F₁ and 5D_0 \rightarrow 7F_2 transitions at 473 nm excitation are well fitted by a single exponential function, yielding lifetime values of about 2.9 ms, which confirms the presence of one local Eu^{3+} environment. The lifetime is shorter than the value (5.45 ms) in $Cs₃EuSi₆O₁₅$.¹⁸ The shorter emission lifetime implies a larger electronic transition dipole moment in EuGS-1 than in $Cs₃EuSi₆O₁₅$. However, it should be noted that the concentration quenching of Eu^{3+} could also contribute to the shorter lifetime for EuGS-1 because the structure contains chains formed of edge-sharing $EuO₇$ pentagonal bipyramids. The emission lines in the RT emission spectrum of TbGS-1 are assigned to the ${}^5D_4 \rightarrow {}^7F_{6-3}$ transitions. The green ${}^5D_4 \rightarrow {}^7F_5$ transitions at 541 and 549 nm are intense, whereas the ${}^5D_4\rightarrow {}^7F_6$, ${}^5D_4\rightarrow {}^7F_4$, and ${}^5D_4\rightarrow {}^7F_3$ transitions are made up of several unresolved weak peaks (Figure S3).

In summary, four new rare earth gallosilicates $Rb_2REGaSi_4O_{12}$ (RE = Y, Eu, Gd, and Tb) have been synthesized under high-temperature, high-pressure hydrothermal conditions. They are the first examples of rare earth gallosilicates that contain an individually occupied $RE³⁺$ ion site and tetrahedral Ga^{3+} and Si^{4+} centers in the 3D framework. The unique structure contains two 1D and one 2D substructural units: unbranched achter single chains which are seldom observed in silicates, the PaCl₅-type infinite chains formed of edge-sharing $REO₇$ pentagonal bipyramids, and the unprecedented mixed-anion double layers $[GaSi₄O₁₂]$ wherein the $Rb⁺$ cations are encapsulated. The $Y³⁺$ ion in YGS-1 can be partially replaced to yield luminescent $Rb_2Y_{1-x}RE_xGaSi_4O_{12}$ (RE = Eu, Tb) materials. The structure may allow the simultaneous incorporation of a second (or even a third) type of lanthanide ion in the framework and, therefore, the fine-tuning of their photoluminescence properties. Further work on this theme is in progress.

Acknowledgment. We thank the National Science Council for financial support, and Prof. B.-C. Chang at National Central University for PL measurements.

Supporting Information Available: X-ray crystallographic information files (CIF), tables of crystallographic data and selected bond lengths for REGS-1; calculated and observed power XRD patterns for REGS-1, room-temperature emission spectrum and decay curves of EuGS-1; room-temperature emission spectrum and excitation spectrum of TbGS-1. This material is available free of charge via the Internet at http://pubs.acs.org.

IC7024445

^{(12) (}a) Ananias, D.; Almeida Paz, F. A.; Carlos, L. D.; Geraldes, C. F. G. C.; Rocha, J. *Angew. Chem., Int. Ed.* **2006**, *45*, 7938. (b) Wang, G.; Li, J.; Yu, J.; Chen, P.; Pan, Q.; Song, H.; Xu, R. *Chem. Mater.* **2006**, *18*, 5637 and references cited therein.

⁽¹³⁾ Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. *J. Am. Chem. Soc.* **2003**, *125*, 14573.

⁽¹⁴⁾ Ghose, S.; Sen Gupta, P. K.; Campana, C. F. *Am. Mineral.* **1987**, *72*, 365.

⁽¹⁵⁾ Cannillo, E.; dal Negro, A.; Rossi, G. *Am. Mineral.* **1973**, *58*, 466.

⁽¹⁶⁾ Mellini, M.; Merlino, S. *Am. Mineral.* **1977**, *62*, 1114.

⁽¹⁷⁾ Wang, X.; Huang, J.; Jacobson, A. J. *J. Am. Chem. Soc.* **2002**, *124*,

^{15190.} (18) Huang, M.-Y.; Chen, Y.-H.; Chang, B.-C.; Lii, K.-H. *Chem. Mater.* **2005**, *17*, 5743.