P=N Bond Formation via Incomplete N-Atom Transfer from a Ferrous **Amide Precursor**

Debashis Adhikari, Falguni Basuli, Hongjun Fan, John C. Huffman, Maren Pink, and Daniel J. Mindiola*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

Received January 29, 2008

Incomplete N-atom transfer from Fe to P is observed when the ferrous amide complex (PNP)Fe(dbabh) (PNP⁻ = N[2-P(ⁱPr)₂-4-
mothylphonyll dbabh = 2.3:5.6 dibenze Z azabiovelo^{ro} 2.1 lbonte methylphenyl]₂, dbabh $= 2,3:5,6$ -dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene), prepared from salt metathesis of (PNP)FeCl and Li(dbabh), is thermolyzed at 70 °C over 48 h in C_6D_6 . Several plausible reaction pathways resulting from the transformation of (PNP)Fe(dbabh) are discussed, including the possibility of an Fe(IV) nitride as an intermediate.

Terminal iron imides,¹ a functionality considered still rare in the context of inorganic chemistry, have recently attracted considerable interest in the bioinorganic community since this group could be implicated in nitrogenase Fe-based enzymes as well as applied to bond activation processes or group-transfer reactions.^{1,2} In contrast to terminal Fe $=NR$ linkages, the terminal iron nitride group represents an even more exotic motif, and such a functionality has been proposed en route to the much more common bridged nitride species.^{2,3} Nakamoto and Wagner⁴ and Wieghardt et al.⁵ have reported transient iron nitrides generated via extrusion of N_2 at extremely low temperatures, while Peters and Betley reported the only thermally generated iron nitride (terminal) by anthracene elimination.⁶ In the latter case, the nitride functionality was found to reductively couple engendering N=N bond formation to afford a formally Fe^{I,I_2} end-on dinitrogen species. Although the terminal iron nitride functionality has been spectroscopically observed under lowtemperature matrix conditions, these examples readily decompose upon warming.^{4,5} The first documented case of clean N-atom transfer involves Betley and Peters' system [PhB(CH₂P(^{*i*}Pr₎₂)₃]Fe=N intermediate, which subsequently undergoes an $Fe(IV)$ to $Fe(I)$ redox shuffle.⁶ An analogous three-electron reduction process involving an Fe(VI) to Fe(III) has been also documented by Wieghardt et al.,^{5d} but the fate of the nitride atom remains unknown. As a result, understanding the fate and pattern in reactivity of the terminal iron nitride functionality is seldom documented, given the inherent reactivity of such a ligand.⁷ In this manuscript, we wish to report that a four-coordinate ferrous amide precursor can thermally yield a diferrous $Fe₂N₂$ diamond core bridged by two phosphinimide 8 pendant arms via an incomplete N-atom transfer from Fe to P (see Scheme 1). Theoretical analyses of plausible intermediates in this type of reaction hint to a putative Fe(IV) nitride being a suitable candidate along the incomplete N-atom transfer pathway.

Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 4439-⁴⁴⁴¹

Inorganic Chem

Assembling the pincer-type framework onto Fe(II) involved the transmetalation of Li(PNP)^9 (PNP⁻ = N[2-P(^{*i*}Pr₎₂-4-methylphenyll₂) with EeCl₂(THE), ϵ^{10} in toluene over 6 h 4-methylphenyl]₂) with $FeCl₂(THF)_{1.5}¹⁰$ in toluene over 6 h to afford the intense red complex (PNP)FeCl (**1**) ⁹ in an overall 89% isolated yield.⁹ In a C_6D_6 solution, magnetic

^{*} Author to whom correspondence should be addressed. E-mail: mindiola@indiana.edu.

^{(1) (}a) Verma, A. K.; Nazif, T. N.; Achim, C.; Lee, S. C. *J. Am. Chem. Soc.* **2000**, *122*, 11013–11014. (b) Duncan, J. S.; Zdilla, M. J.; Lee, S. C. *Inorg. Chem.* **2007**, *46*, 1071–1080. (c) Brown, S. D.; Betley, T. A.; Peters, J. C. *J. Am. Chem. Soc.* **2003**, *125*, 322–323. (d) Thomas, C. M.; Mankad, N. P.; Peters, J. C. *J. Am. Chem. Soc.* **2006**, *128*, 4956–4957. (e) Eckert, N. A.; Vaddadi, S.; Stoian, S.; Lachicotte, R. J.; Cundari, T. R.; Holland, P. L. *Angew. Chem., Int. Ed.* **2006**, *45*, 6868– 6871. (f) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. *J. Am. Chem. Soc.* **2006**, *128*, 5302–5303. (g) Brown, S. D.; Peters, J. C. *J. Am. Chem. Soc.* **2004**, *126*, 4538–4539. (h) Brown, S. D.; Peters, J. C. *J. Am. Chem. Soc.* **2004**, *126*, 4538–4539. (i) Brown, S. D.; Peters, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 1913–1923. Transient Fe imides have been proposed. (j) Jensen, M. P.; Mehn, M. P.; Que, L. *Angew. Chem., Int. Ed.* **2003**, *42*, 4357–4360. (k) Lucas, R. L.; Powell, D. R.; Borovik, A. S. *J. Am. Chem. Soc.* **2005**, *127*, 11596–11597.

⁽²⁾ Mehn, M. P.; Peters, J. C. *J. Inorg. Biochem.* **2006**, *100*, 634–643.

⁽³⁾ Chirik, P. J. *Angew. Chem., Int. Ed.* **2006**, *45*, 6956–6959.

⁽⁴⁾ Wagner, W. D.; Nakamoto, K. *J. Am. Chem. Soc.* **1989**, *111*, 1590– 1598.

^{(5) (}a) Meyer, K.; Bill, E.; Mienert, B.; Weyhermüller, T.; Wieghardt, K. *J. Am. Chem. Soc.* **1999**, *121*, 4859–4876. (b) Grapperhaus, C. A.; Mienert, B.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Inorg. Chem. **2000**, *39*, 5306–5317. (c) Aliaga-Alcalde, N.; George, S. D.; Mienert, B.; Bill, E.; Wieghardt, K.; Neese, F. *Angew. Chem., Int. Ed.* **2005**, *44*, 2908–2912. (d) Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese, F.; Wieghardt, K. *Science* **2006**, *312*, 1937–1941.

⁽⁶⁾ Betley, T. A.; Peters, J. C. *J. Am. Chem. Soc.* **2004**, *126*, 6252–6254.

⁽⁷⁾ A stable Fe(IV) terminal nitride has been recently reported and structurally characterized: Vogel, C.; Heinemann, F. W.; Sutter, J.; Anthon, C.; Meyer, K. *Angew. Chem., Int. Ed.* **2008**, *47*, 2681–2684.

⁽⁸⁾ Dehnicke, K.; Krieger, M.; Massa, W. *Coord. Chem. Re*V*.* **¹⁹⁹⁹**, *¹⁸²*,

⁽⁹⁾ See the Supporting Information for complete details.

⁽¹⁰⁾ Kern, R. J. *J. Inorg. Nucl. Chem.* **1962**, *24*, 1105–1109.

COMMUNICATION

Scheme 1. Synthesis of **1** and **2** and Subsequent Incomplete N-Atom Transfer to Produce **3**

data for complex **1** are consistent with a high-spin ferrous system by the method of Evans ($\mu_{\text{eff}} = 4.44(10) \mu_{\text{B}}$), while solid-state magnetization data also suggest a fairly constant high-spin and monomeric system over a temperature range of 300 K (4.79 *µ*Β) to 4.7 K (4.07 *µ*Β) (Figure S1, Supporting Information).9 The connectivity of **1** was inferred by solidstate single-crystal X-ray analysis.⁹ As depicted in Figure 1, complex **1** adopts a highly distorted tetrahedral geometry, which appears to be more consistent with a cis-divacant octahedron, given the significant deviation of the chloride $(\sim$ 3.11 Å) from the plane defined by the atoms P₂NFe, and an angle of 69.1° originated from the Fe-Cl vector with the same plane. The geometry in **1** resembles Fryzuk et al.'s proposed geometry for the high-spin iron(II) analogue $([Ph₂PCH₂Si(Me)₂]₂N)FeCl.¹²$

Complex **1** displays a highly cathodic and irreversible wave at -2.44 V versus FeCp₂^{0/+} in 0.3 M [Bu₄N][PF₆] in
THE suggesting this system to be an electron-rich Fe(II) THF, suggesting this system to be an electron-rich $Fe(II)$ framework amenable to serving as a reducing agent (Figure S2, Supporting Information). Surprisingly, however, treatment of 1 with the azide analogue, $Li(dbabh)(Et₂O)₁₃$ yields a stable Fe(II) amide (PNP)Fe(dbabh) (**2**) in 65% yield as a red-colored material (dbabh $= 2,3:5,6$ -dibenzo-7-azabicyclo^[2.2.1]hepta-2,5-diene). In contrast, using NaN_3 or N3Si(CH3)3 with **1** results in the formation of intractable solids having very limited solubility in nonprotic media.⁹ Complex **2** is a remarkably stable system containing a highspin ferrous ion (Evans method: $\mu_{\text{eff}} = 4.91(6) \mu_{\text{B}}$). The solidstate structure of a single crystal of **2** confirms a pseudotetrahedral ferrous complex having a bound dbabh amide group (Fe-N, 1.8956(16) Å; Figure 1) and a gross geometry nearly identical to that of **1** and slightly shorter than a diphenylamide anologue (Fe-N distance is 1.9527(15) Å) reported by Betley and Peters.^{6,9} The dbabh N atom is virtually planar, given that the angle around it is 357°, which we believe results from the weak π interaction between the

Figure 1. Molecular structures of **1** (left) and **2** depicting thermal ellipsoids at the 50% probability level. H atoms, isopropyl methyl groups on P, and the solvent have been omitted for clarity. Selected bond distances (Å) and angles (deg) follow. For **¹**: Fe1-Cl2, 2.2392(4); Fe1-N10, 1.9799(12); Fe1-P17, 2.4399(5); Fe1-P3, 2.3926(5); P17-Fe1-P3, 120.926(16); N10-Fe1-Cl2, 140.26(4); P17-Fe1-Cl2, 116.260(17); P3-Fe1-Cl2, 111.705(16); N10-Fe1-P17, 80.58(4); N10-Fe1-P3, 84.02(4). For **²**: Fe1-N31, 1.8956(16); Fe1-N10, 1.9984(16); Fe1-P18, 2.4079(6); Fe1-P2, 2.4483(6);P18-Fe1-P2,129.86(2);N10-Fe1-N31,139.52(7);P18-Fe1-N31, 111.36(5);P2-Fe1-N31,111.73(5);N10-Fe1-P18,82.84(5);N10-Fe1-P2, 80.81(5).

Figure 2. Molecular structures of complex **3** depicting thermal ellipsoids at the 50% probability level. H atoms, isopropyl methyl groups on P, and the solvent have been omitted for clarity. Selected bond distances (Å) and angles (deg) follow: Fe1-N3, 2.007; Fe1-N4, 1.937; Fe2-N3, 1.934; Fe2-N4, 2.009; Fe1-Fe2, 2.570; N3-Fe2-N4, 96.74; N3-Fe1-N4, 96.72.

nitrogen lone pair and the half-filled iron(II) d(*yz*) as suggested by DFT calculations.⁹

The stability of **2** contrasts Betley and Peters' tetrahedral Fe(II) system [PhB(CH₂P^{*i*}Pr₂)₃]Fe(dbabh) in that it is thermally robust at room temperature over several weeks. However, anthracene elimination concurrent with the formation of a new iron product can be promoted moderately cleanly (69% yield) when **2** is thermolyzed at 70 °C over 48 h in C_6D_6 , as implied by ¹H NMR spectroscopy. Although the color of the reaction does not change significantly, the ¹H NMR spectrum reveals the appearance of new paramagnetically shifted resonances ranging from -3.47 to 21.4 ppm at the expense of decay for the set of resonances for **2**. 9 Moreover, the number of resonances increasing from 9 to 17 suggests that a new system of low symmetry has been generated. A single-crystal structural analysis of this new complex confirmed it to be a dimeric species, $[(PNPN)Fe]_2$ (3) $(PNPN^2 = N[2-P(Pr)_2-4-methylphenyl][2-N=P(Pr)_2-4-methylphenyl]$ 4-methylphenyl]), which is generated as a result of two bridging phosphinimide motifs (Figure 2). Consequently, the monoanionic PNP framework in **2** has been transformed to a dianionic PNP=N ligand, where one of the pendant phosphine groups has been oxidized by a nitrogen atom. Interestingly, both "NP" groups are on the same side of the

⁽¹¹⁾ Reference deleted at galley stage.

⁽¹²⁾ Fryzuk, M. D.; Leznoff, D. B.; Ma, E. S. F.; Rettig, S. J.; Young, V. G. *Organometallics* **1998**, *17*, 2313–2323.

⁽¹³⁾ Mindiola, D. J.; Cummins, C. C. *Angew. Chem., Int. Ed.* **1998**, *37*,

⁽¹⁴⁾ Reference deleted at galley stage.

COMMUNICATION

Scheme 2. Some Plausible Pathways to Formation of **3**

 $Fe₂N₂$ mean plane.¹⁵ A similar ligand transformation has been recently documented by Fryzuk and co-workers, whereby a transient titanium nitride, generated from N_2 activation and reduction, underwent insertion in the metal-P bond.¹⁵ In our case, however, the formation of **3** could be transpiring via a transient Fe(IV) nitride (PNP)Fe \equiv N (A)-thermally generated from anthracene expulsion. The electrophilic nature of the nitride ligand plausibly promotes the oxidation of one of the phosphine groups to engender formation of the ferrous intermediate, "(PNP=N)Fe (B)", in an overall Fe(IV) \rightarrow Fe(II) couple (Scheme 2). The latter intermediate would subsequently undergo dimerization to produce the $Fe₂(PN)₂$ diamond core in **3**. Alternatively, the formation of **3** can also proceed from a dinitrogen (PNP)Fe(N2)Fe(PNP) (**C**) intermediate via reductive coupling of **A**. The dinitrogen moiety can then undergo rearrangement to a bridging nitride dimer, $[(PNP)Fe(\mu_2-N)]_2$ (**D**), then incomplete N-atom transfer to produce **3** (Scheme 2). Such a transformation has been similarly proposed in a titanium system recently reported by Fryzuk and co-workers.¹⁶ In our case, we discard the possibility of activation and consequent cleavage of N_2 to result in the final product, as there is no precedence of N_2 splitting in iron complexes. The possibility of **A** dimerizing via **D** prior to oxidation of the phosphine group is highly unlikely given the steric constraints imposed by the encumbering PNP unit (Scheme 2). In fact, a DFT simulation fails to locate a dimer minimum, and geometry optimization using

Figure 3. Computed structure for **A** at the PBE/6-31G** level of theory. The three orbitals forming the Fe \equiv N ligand are also depicted with an isodensity of 0.05 au.

the latter species converges to the asymmetric nitride (PNP)Fe(*µ*2-N)Fe(N)(PNP) thus implying that different pathways to the formation of **3** should not be overlooked.⁹ Sterics also disfavor the possibility of amide bridging in **2** to form putative $[(PNP)Fe(\mu_2-dbabh)]_2$ (**E**), which would then extrude anthracene to form **D** or **C**, an intermediate along the channel to **3** (Scheme 2).

Given both the electronic and structural interest of terminal iron nitrides,^{2,4–6} we resorted to high-level DFT analyses to address some of the salient features in putative **A**. As we were interested to investigate the ground spin state of the putative nitride intermediate **A**, we chose the PBE functional instead of B3LYP since the latter tends to overestimate the exchange energy, thence resulting in artificial inclination toward the high spin state. Accordingly, complex **A** is found to possess a singlet ground state with a small singlet-triplet gap of 4.77 kcal/mol at the PBE/cc-pVTZ(-f)//PBE/6-31G** level of theory.9 As indicated in Figure 3, complex **A** adopts a highly distorted tetrahedral geometry analogous to **1**, **2**, and a $Ru(IV)$ nitride reported by Caulton and co-workers.¹⁷ The Fe \equiv N linkage is computed to be 1.501 Å, and natural bond order calculations suggest this system to have a bond order of 2.64 by utilizing the Fe $d(z^2)$, $d(xz)$, and $d(yz)$ orbitals to generate the σ and 2π bonds, respectively.^{2,5-7,9,18} As anticipated, the $Fe-N_{nitride}$ functionality is shorter than the Fe $-N_{\text{amide}}$ group composing the PNP unit (1.935 Å).

Acknowledgment. We thank the Dreyfus and Sloan Foundations, and the NSF (CHE-0348941) for financial support of this research. Professor Karsten Meyer and Professor Ingrid Castro-Rodriguez are also acknowledged.

Supporting Information Available: Complete X-ray data and characterization of **¹**-**3**, and DFT calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

IC800182M

⁽¹⁵⁾ Crystal data for **3** · 0.5C₆H₁₄: Orthorhombic, space group *Pccn*, *a* = 39.4630(7) Å, *b* = 15.8829(3) Å, *c* = 19.1251(4) Å, *V* = 1987.4(4) 39.4630(7) Å, *b* = 15.8829(3) Å, *c* = 19.1251(4) Å, *V* = 1987.4(4)
Å³, *Z* = 8, *μ*(Mo Kα) = 0.626 mm⁻¹, *D_c* = 1.152 mg/mm³, GOF on
 F^2 = 1.179, *R₁* = 10.42%, and *wR*₂ = 26.94% (*F*², all data). Data $F^2 = 1.179$, $R_1 = 10.42\%$, and $wR_2 = 26.94\%$ (F^2 , all data). Data/ restraints/parameters: 10 627/267/728. Out of a total of 66 852 reflections collected, 10 627 were unique $(R_{int} = 9.71%)$ and 9244 were observed with $I > 2 \sigma I$ (brown block, $0.22 \times 0.17 \times 0.15$ mm, $25.07^{\circ} \ge \theta \ge 1.38^{\circ}$). The structure showed extensive disorder of the ligands and solvent, which was refined with a strong set of restraints and constraints to achieve convergence. The solvent carbon atoms remained isotropic. The structure was of marginal quality and should be understood as proof of connectivity only. A number of systematically weak reflections and considerable TDS were observed in the diffraction pattern. A larger cell that includes the weak reflections can be indexed, which might be in super-subcell relation with the chosen cell.

⁽¹⁶⁾ Morello, L.; Yu, P.; Carmichael, C. D.; Patrick, B. O.; Fryzuk, M. D. *J. Am. Chem. Soc.* **2005**, *127*, 12796–12797.

⁽¹⁷⁾ Walstrom, A.; Pink, M.; Yang, X.; Tomaszewski, J.; Baik, M.-H.; Caulton, K. G. *J. Am. Chem. Soc.* **2005**, *127*, 5330–5331.

⁽a) Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 17107–17112. (b) Rohde, J.-U.; Betley, T. A.; Jackson, T. A.; Saouma, C. T.; Peters, J. C.; Que, L. *Inorg. Chem.* **2007**, *46*, 5720–5726.