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The iron(II) complex LFeCl2Li(THF)2 (L ) �-diketiminate), 1, has been studied with variable-temperature, variable-
field Mössbauer spectroscopy and parallel mode electron paramagnetic resonance (EPR) spectroscopy in both
solution and the solid state. In zero applied field the 4.2 K Mössbauer spectrum exhibits an isomer shift δ ) 0.90
mm/s and quadrupole splitting ∆EQ ) 2.4 mm/s, values that are typical for the high-spin (S ) 2) state anticipated
for the iron in 1. Spectra recorded in applied magnetic fields yield an anisotropic magnetic hyperfine tensor with
Ax ) +2.3 (+1.0) T, Ay ) Az ) -21.5 T (solution) and a nearly axial zero-field splitting of the spin quintet with
D ) Dx ≈ -14 cm-1 and rhombicity E/D ≈ 0.1. The small, positive value for Ax results from the presence of
residual orbital angular momentum along x. The EPR analysis gives gx ≈ 2.4 (and gy ≈ gz ≈ 2.0) and reveals a
split “MS ) ( 2” ground doublet with a gap distributed around ∆ ) 0.42 cm-1. The Mössbauer spectra of 1 show
unusual features that arise from the presence of orientation-dependent relaxation and a distribution in the magnetic
hyperfine field along x. The origin of the distribution has been analyzed using crystal field theory. The analysis
indicates that the distribution in the magnetic hyperfine field originates from a narrow distribution, σφ ≈ 0.5°, in
torsion angle φ between the FeN2 and FeCl2 planes, arising from minute inhomogeneities in the molecular
environments.

1. Introduction

Chelating �-diketiminate ligands with bulky 2,6-diisopro-
pylphenyl substituents have become known for their ability
to stabilize low-coordinate metal complexes.1 For example,
the reaction of the lithium salt LiL′ with FeCl2(THF)1.5 yields
L′FeCl (Figure 1; tert-butyl substituents at the backbone),
an iron(II) complex where the coordination number is only
three. Interestingly, the coordination number can be tuned
by simple ligand modifications. Thus, the analogous reaction
with the ligand L (Figure 1; methyl substituents at the
backbone) yields the four-coordinate complex LFeCl2-
Li(THF)2, complex 1.2

Andres et al. have investigated the electronic structure of
L′FeCl in detail with 57Fe Mössbauer and parallel-mode
electron paramagnetic resonance (EPR) spectroscopy, and
density functional theory (DFT) calculations.3 The high-spin
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Figure 1. Left: drawing of one of the two molecules in the unit cell from
the X-ray structure of LFe(µ-Cl)2Li(THF)2, complex 1. THF ) tetrahy-
drofuran. Right: drawing of the X-ray structure for L′FeCl.
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(S ) 2) FeII site in the three-coordinate complex was shown
to have an exceptionally large, axial zero-field splitting (ZFS)
and a large, positive internal magnetic field at the iron
nucleus. Theoretical analysis indicated that both properties
result from spin-orbit coupling between a dz2-type ground-
state and a low-lying dyz-type excited state, with the z axis
perpendicular to the diketiminate plane.

In this paper we present the results of spectroscopic and
theoretical investigations of the FeII site in the four-coordinate
complex LFeCl2Li(THF)2. The iron ion in this complex is
unambiguously identified as high-spin (S ) 2) FeII. The
Mössbauer spectra show some remarkable features: the T <
25 K spectra simultaneously exhibit characteristics of (i) both
slow and fast relaxation and (ii) the presence of extensive
nonrelaxational (heterogeneous) line broadening. Our spectral
simulations show that feature (i) can be described by a
slightly modified version of a theory for orientation-depend-
ent relaxation proposed by Zimmermann et al.4 and feature
(ii) can be interpreted in terms of a distribution in one of
the magnetic hyperfine parameters. The distribution is
analyzed using a combination of crystal-field theory (CFT)
and DFT calculations. The analysis reveals that the four-
coordinate geometry of the iron atom in complex 1 creates
conditions under which the Mössbauer spectra are hyper-
sensitive to small distortions of the structure. Quite fre-
quently, spectroscopic studies indicate that some parameters
are distributed about their mean values. In EPR work, for
instance, one often employs distributions to account for odd
line shapes (after checking for relaxation effects), and many
researchers use Gaussian distributions in the rhombicity
parameter, σE/D, of the ZFS and the g-values, σg, for spectral
simulations. In many cases σE/D is comparable to the range
of E/D (one can constrain E/D to the range 0 e E/D e 1/3),
which suggests qualitatively that the compound is structurally
very heterogeneous. Unfortunately, it is generally difficult
to quantitatively correlate the σ values with bond lengths
and bond angles, in particular for high-spin iron(III) com-
plexes. The present study offered the opportunity to identify
the sources of the spectroscopic heterogeneities, and interest-
ingly the heterogeneous broadening was found to be cor-
related with a distribution of the torsion angle between the
FeN2 and FeCl2 planes that is so small (σ ) 0.5°) to be
imperceptible even in a high resolution X-ray structure.

2. Materials and Methods

Complex 1 was synthesized and purified using standard air-free
techniques, according to the literature.2,5 Mössbauer samples were
transported in specially designed Delrin cells with tight-fitting caps
(shrink fits), which were kept at 77 K during transport inside capped
test tubes. Benzene solutions for EPR spectroscopy were kept in
flame-sealed quartz tubes.

Mössbauer spectra were recorded on two spectrometers, using
Janis Research Super-Varitemp Dewar flasks that allowed studies

in applied magnetic fields up to 8.0 T in the temperature range
from 1.5 to 140 K. Initial simulations of the Mössbauer data were
performed using the WMOSS software package (WEB Research,
Edina, MN). Further refinement of our analysis was performed with
a modified version of the Mössbauer spectra simulation program
SPinHamiltonianMOSSbauer (SPHMOSS) developed by Münck
et al.,6 to allow for the change in relaxation during powder
integration and distribution of hyperfine fields as described in the
text. Isomer shifts are quoted relative to Fe metal at 298 K.

EPR spectra were recorded on a Bruker EPR 300 spectrometer
equipped with an Oxford ESR 910 liquid helium cryostat and an
Oxford temperature controller. EPR spectra were simulated using
the program SpinCount written by Dr. M. P. Hendrich at Carnegie
Mellon University.7

DFT calculations were performed using Gaussian ’03 (revision
D.01) software package,8 using the hybrid functional B3LYP9,10

and the triple-� basis set 6-311G. Self-consistent field (SCF) and
geometry calculations were performed with default convergence
criteria. The ground-state character of the SCF solution was
corroborated by time-dependent density-functional theory (TD-DFT)
calculations, which yielded exclusively positive excitation energies.
The crystal field (CF) analysis was performed using a locally
developed Fortran code (see Supporting Information).

3. Results

We have studied Mössbauer spectra of 1 in polycrystalline
form and frozen benzene solution between 1.5 and 140 K in
magnetic fields up to 7.0 T applied parallel to the γ beam.
Representative spectra are shown in Figures 2-4. The data
were analyzed in the framework of the S ) 2 spin
Hamiltonian
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In eq 1a we have chosen the x-axis rather than the
conventional z-axis as the direction associated with the ZFS
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parameter D. This choice connects the spin Hamiltonian
analysis with our previous DFT and CF calculations of iron
�-diketiminate complexes.3,11 The Hamiltonian in eq 1a is
most conveniently diagonalized when the electronic spin is
quantized along x, that is, Ŝx|S,Ms〉 ) Ms|S,Ms〉. The same
axes were used in the definition of the nuclear quadrupole
coupling operator, eq 1b. Theoretical calculations presented
below show that x is in the plane of the �-diketiminate ligand,
bisecting the N-Fe-N angle.

The solid lines drawn through the spectra of Figures 2-4
are spectral simulations based on eqs 1a,b using the
parameters listed in Table 1. In anticipation of the following
analysis, we notice that orientation-dependent spin-lattice
relaxation, as well as distributions in the values for the x
component of the magnetic hyperfine tensor, Ax, are affecting
the spectra profoundly. While these effects are felt for most
spectra of our data set of 30 Mössbauer spectra, we will
illustrate them briefly for the 1.0 T spectra recorded at 4.2
K (Figure 4).

Complex 1 has a negative ZFS parameter, D ) -14(2)
cm-1, and the ZFS tensor is (roughly) axial, E/D ) 0.10.
Consequently, the electronic ground state is the “MS ) (
2” quasi doublet of the S ) 2 manifold. (N.B. Because E/D

is finite, MS is not strictly a good quantum number and the
doublet is split in two singlet states of the form |�(〉 ≈
2-1/2(|MS ) +2〉 ( |MS ) -2〉) that are separated by energy
∆ ) 3D(E/D)2 ) 0.42 cm-1.) The properties of this doublet
determine the essential features of the 4.2 K spectra. Because
the �( levels are nonmagnetic, the Mössbauer spectra exhibit
a quadrupole doublet in the absence of an applied magnetic
field. At 4.2 K complex 1 has ∆EQ ) 2.40(2) mm/s and
isomer shift δ ) 0.90(2) mm/s, strongly suggesting the
presence of a high-spin (S ) 2) FeII site12 as expected for
the coordination environment. The 7.0 T spectra recorded
for solid 1 at 140 K (Figure 3 bottom, left) and in solution
at 100 K (bottom, right) show that ∆EQ > 0 and the
asymmetry parameter η ) |Vyy - Vzz|/Vxx of the electric field
gradient tensor is about 0.75. The applied field, B, mixes
the two levels of the ground doublet, inducing magnetic
hyperfine interactions as shown in Figures 2 and 3. The
particular values of D and E/D render each of the two lowest
spin levels magnetically uniaxial, with the easy axis of
magnetization along x.

The 1.0 T spectrum of 1 (Figure 4) has a low-energy peak
with distinct shoulders on each side, indicated by arrows in
the solid state spectrum where these features are most
prominent. The presence of shoulders suggests orientation-
dependent spin-lattice relaxation as shown more than 30
years ago by Zimmermann in a Mössbauer study of
[FeL4](ClO4)2, where L ) 1,8-naphthydrine.4 The spectral

(11) (a) Stoian, S. A.; Yu, Y.; Smith, J. M.; Holland, P. L.; Bominaar,
E. L.; Münck, E. Inorg. Chem. 2005, 44, 4915–4922. (b) Stoian, S. A.;
Vela, J.; Smith, J. M.; Sadique, A. R.; Holland, P. L.; Münck, E.;
Bominaar, E. L. J. Am. Chem. Soc. 2006, 128, 10181–10192. (c)
Eckert, N. A.; Stoian, S.; Smith, J. M.; Bominaar, E. L.; Münck, E.;
Holland, P. L. J. Am. Chem. Soc. 2005, 127, 9344–9345.

(12) Gütlich, P.; Link, R.; Trautwein, A. Mössbauer Spectroscopy and
Transition Metal Chemistry; Springer-Verlag: Berlin, Germany, 1978.

Table 1. Hyperfine Parameters of 1 in Solid and Frozen Solution Samplesa

EFG A-tensor ZFS g-tensor

sample δ [mm/s] ∆EQ [mm/s] η Ax
0 [T] σA [T] Ay [T] Az [T] D [cm-1] E/D gx gy gz

solid 0.90(2) 2.40(2) 0.75(2) 2.3(1) 1.0(2) -21.5(4) -21.5(4) -14(2) 0.10(4) 2.4(2) 2.0 2.0
solution 0.90(2) 2.40(2) 0.75(2) 1.0(1) 2.0(2) -21.5(4) -21.5(4) -14(2) 0.10(4) 2.4(2) 2.0 2.0

a Numbers in parentheses are estimated uncertainties for the last digits.

Figure 2. Mössbauer spectra at 4.2 K recorded in applied magnetic fields
as indicated for complex 1 as a solid (left) and in frozen benzene solution
(right). The solid lines are simulations that account for both the change in
relaxation regime using ∆relax ) 1.4(2) cm-1 (see text) as well as for the
distribution in the magnetic hyperfine field along x, using the parameters
presented in Table 1.

Figure 3. Variable temperature Mössbauer spectra recorded in an applied
field of 7.0 T for solid 1 (left) and in frozen benzene solution (right). The
solid lines represent simulations obtained in the fast relaxation regime, taking
in account the distribution in hyperfine field along x, using the parameters
of Table 1.
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simulations of Figure 4 (bottom; solid line) were generated
by assuming that the samples contain two molecular popula-
tions, one relaxing fast in comparison with the Mössbauer
time scale (ca. 10-7 s) and the other slow. Because the
relaxational phenomena persist in the dilute solution sample
(Figure 4, right), the underlying interaction is spin-
lattice rather than spin-spin in nature. Our observations can
be understood by considering the magnetic properties of the
ground quasi doublet. Owing to the particular values of D
and E/D, the doublet has a large Zeeman splitting for B
applied along x (effective g-value geff ≈ 9.9), whereas the
Zeeman splitting is small when the field is directed along
the molecular yz plane. Our simulations assume fast relax-
ation for orientations of the molecule relative to the applied
magnetic field for which the ground doublet has a combined
zero-field and Zeeman splitting of less than ∆relax ) 1.4(2)
cm-1,13 and slow relaxation for orientations that generate
larger splittings. For a given field strength, the surface of
the field orientation sphere is partitioned in two areas, one
pertaining to slow relaxation and the other to fast relaxation.
The slow relaxation area consists of two patches that are
centered at the poles of the orientational sphere where the
largest magnetic field component is along the easy magne-
tization axis, x. The area with fast relaxation is located in
the equatorial zone, where the largest field component is
along the yz plane. The polar caps grow upon increasing the
magnetic field at the expense of the equatorial zone, which
leads to a reduction of the fast relaxation peak at the center
of the right line (Figure 2, right). There must be, of course,
a transition region between the fast and slow relaxation
regimes, but our data are not sensitive enough to reveal
intermediate relaxation. At temperatures above 20 K fast
relaxation is observed for all molecular orientations.

Let us now take a closer look at the spectra of Figure 4.
The solid and dashed lines (top) are simulations assuming

fast and slow relaxation, respectively, and both provide poor
fits of the data. The simulations using the orientation-
dependent relaxation model (dashed line, bottom) reproduce,
as anticipated, the shoulders of the low-energy peak but fail
to account for the width of the high-energy feature. The
splitting of this feature depends critically on the x-component
of the magnetic hyperfine tensor, and in order to properly
simulate this feature we assumed that Ax has a Gaussian
distribution of width σA around its mean value, Ax

0. Although
Ax is by far the smallest component of the magnetic hyperfine
tensor (Table 1), it is sensitively felt in the low-field spectra
because it acts along the easy magnetization axis of the
electronic system. The distribution broadens the peaks of the
slow relaxation spectrum that underlies the shoulders of both
the low-energy feature and the two exterior peaks of the high-
energy feature of the spectra in Figures 2 and 4 but hardly
affects the quadrupole doublet-like spectral component that
pertains to the fast relaxing species (solid line, Figure 4, top)
since the hyperfine field therein practically vanishes. Ad-
ditional contributions to the intensity of the doublet com-
ponent arise from slow relaxing species for which the
distribution gives Ax ≈ 0.14 Altogether, these transformations
give the high-energy feature of the solution spectrum the
characteristic shape of a spiked Prussian helmet (Figure 4,
bottom, right). Note that Ax is the only parameter that differs
noticeably between the solid and frozen solution; see Table
1. For the solid (solution) sample we found different values
for Ax/gn�n ) +2.3 (+1.1) T with σA ≈ +1 (+2) T. We
show below that the distribution of Ax reflects a distribution,
σφ ) 0.56° (1.06°), of the dihedral angle φ between the
ClFeCl plane and the diketiminate plane.

The spectral simulations displayed in Figures 2 and 3 are
compromises that best fit a representative set of 12 spectra
each, using the same set of parameter values. Not surpris-
ingly, one can find better fits to individual spectra, except
for the 2 T spectra of the solid. The 2 T spectrum of the
solid exhibits fine structure around 1 and 3 mm/s Doppler
velocity that we cannot attribute to relaxation and distribution
effects. We attribute this phenomenon to multiple crystal
forms of 1. As reported in ref 2 there are two different ways
that 1 can pack (space groups Pna21 and P212121). In the
first crystal form, there are two crystallographically distinct
iron environments, and in the latter, there are three crystal-
lographically distinct iron environments. In the various
structures, the Fe-N distances vary from 1.998(3) to 2.021(4)
Å, the Fe-Cl distances vary from 2.319(1) to 2.338(1) Å,
and the N-Fe-Cl angles vary from 111.8(1) to 124.6(1)
degrees. Variations in the molecular micro environments in
the frozen solution presumably lead to a broader range of
metrical parameters, increasing the heterogeneity.

In zero magnetic field the “MS ) ( 2” ground doublet is
split by ∆ ) 0.42 cm-1, which is larger than the microwave
quantum at X-band. However, it is well-known from integer

(13) This value was used for simulations of spectra with B > 1.5 T; the
spectra recorded in 0.5 and 1.0 T required a somewhat smaller value,
∆relax ≈ 0.75(5) cm-1.

(14) Since Ax
0 has a small value, the distribution has significant amplitude

at Ax ≈ 0.

Figure 4. Spectra at 1.0 T recorded at 4.2 K for complex 1 in solid (left)
and in frozen benzene solution (right). Top: the solid lines represent
simulations obtained for fast relaxation while dashed lines are obtained for
slow relaxation (see text). Bottom: dashed lines represent simulations taking
in account orientation-dependent relaxation, using ∆relax ) 0.75(5) cm-1;
the solid lines represent the simulations obtained in the presence of both
orientation-dependent relaxation and a distribution in Ax (see text).
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spin EPR work15 that D and E/D are often distributed such
that a substantial fraction of molecules in the sample has
∆-values smaller than hν ≈ 0.3 cm-1, allowing integer-spin
EPR signals to be observed at X-band. Figure 5 shows an
EPR spectrum of 1 recorded in benzene solution in parallel
mode at 6.5 K. For a magnetic field along x, the resonance
condition for 1 is given by

hν) √∆2 + (4gx�Bx)
2 (2)

The unknowns in eq 2 are the splitting of the quasi doublet
in zero field, ∆, and gx. Determination of ∆ and gx from
EPR alone would require measurements at multiple frequen-
cies. We used instead the Mössbauer result for ∆, deduced
from the values of D and E/D, and varied gx (σgx has a minor
influence on the simulations and was set equal to zero) and
σE/D to obtain, for gx ) 2.4, the theoretical curve of Figure
5.

4. Discussion

4.1. Crystal-Field Model. In order to rationalize the
spectroscopic data for 1, we have analyzed the energies and
compositions of the iron 3d orbitals of this complex with a
CF model in which point charges carrying charge q were
placed at the positions of the iron-bound atoms (Figure 6).
For comparison, a similar analysis was performed for the
complex LFeIICl (L ) �-diketiminate) that was characterized
in an earlier study.3 The Fe-Cl and Fe-N(diketiminate)
distances were fixed to those obtained from the DFT
geometry optimized structure for the model shown in Figure
6 with imposed C2V point group symmetry. As the diketimi-
nate ligand is a rigid system, the N-Fe-N angle was kept
constant in the CF analysis. Potential energy surfaces
obtained with DFT calculations show that torsion angle φ

and bond angle θ defined in Figure 6 are the “softest”
structural parameters in the coordination sphere of iron. Soft

coordinates have small elastic force constants and are
therefore susceptible to distortion by external forces, which
suggests that distributions in the values for φ and θ are the
structural source for the distribution in the hyperfine coupling
constant Ax.

The CF calculations of the three-coordinate complex
LFeIICl yield a dz2 ground state and dyz as the first excited
state at a few hundred wavenumbers above the ground state,
where the z axis is defined perpendicular to the diketiminate
plane (Figure 6). In the CF calculation for the four-coordinate
complex 1, the dz2 and dyz levels are interchanged, ∆1 ) ε(dz2)
- ε(dyz) > 0. The other 3d levels occur at ε(dxz) < ε(dx2–y2)
< ε(dxy) and are at least 4000 cm-1 above the dz2 and dyz

levels. The symmetry of the CF for torsion angle φ ) 0°
(Figure 6) is C2V and forbids dyz (b1) and dz2 (a1) to mix. For
φ * 0° the symmetry is lowered to C2 such that the dyz (a)
and dz2 (a) interact under the influence of the CF. The
resulting 3d orbitals,

ψg ) cos(ω)dyz + sin(ω)dz2 (3a)

ψe )-sin(ω)dyz + cos(ω)dz2 (3b)

are characterized by the mixing parameter ω ) ω(φ), which
is a function of torsion angle φ. The admixture of the lowest
two orbitals with the much higher lying dx2-y2 (a) is small
and has been ignored. The magnetic sublevels of the high-
spin d6 configurations, |ψgMS〉 and |ψeMS〉, in which the sixth
d electron is respectively occupying the orbitals ψg and ψe,
are labeled with the magnetic spin quantum number MS )
( 2, ( 1, and 0, where the 2-fold symmetry axis, x, has
been taken as the spin quantization axis, that is, Ŝx|MS〉 )
MS|MS〉, for reasons presented in the next section.

4.2. Spin-Orbit Coupling. The lowest two d6 configura-
tions interact via spin-orbit coupling, λL̂ · Ŝ. The one-
electron orbital momentum operator l̂ has only one non-zero

(15) (a) Hendrich, M. P.; Debrunner, P. G. Biophys. J. 1989, 56, 489–506.
(b) Surerus, K. K.; Hendrich, M. P.; Christie, P. D.; Rottgardt, D.;
Orme-Johnson, W. J.; Münck, E. J. Am. Chem. Soc. 1992, 114, 8579–
8590. (c) Münck, E.; Surerus, K. K.; Hendrich, M. P. Methods
Enzymol. 1993, 227, 463–479.

Figure 5. X-band EPR derivative spectrum recorded in parallel mode at
6.5 K for a frozen benzene solution of complex 1. The solid line represents
a simulation using D ) -14.0 cm-1; E/D ) 0.072; σE/D ) 0.014; gx ) 2.4;
gz ) gy ) 2.0; (σgx ) σgy ) σgz ) 0) with a packet Lorentzian line width
of 1.8 mT. The minimum of the derivative spectrum is at geff ≈ 9.9.

Figure 6. Two angles considered in the analysis of the distribution function
for Ax. θ is the Cl-Fe-Cl bite angle and φ rotates the ClFeCl plane around
the bisector of the N-Fe-N angle (x axis) relative to the �-diketiminate
plane. φ ) 0° corresponds to the orthogonal conformation. The easy axis
of magnetization is along x.
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matrix element in the basis {ψg, ψe}, 〈ψe|l̂x|ψg〉 ) i�3, which
is independent of ω. As a consequence, the spin-orbit
coupling operator is equivalent to the operator λ L̂xŜx in the
space spanned by the states |ψg,eMS〉. A perturbation treatment
of the spin-orbit coupling results in the states

|ψMS
MS〉 ≈ |(ψg -

i√3λMS

∆1
ψe)MS〉 (4)

∆1 denotes the CF splitting between ψe and ψg and is a
function of the angle φ. The orbital angular moment of these
states is partially unquenched along x,

〈ψMS
MS|L̂x| ψMS

MS〉 ≈-
6MSλ

∆1
(5)

and vanishes along y and z. The relative energies of the MS

states are described by the spin operator DxŜx
2 with a negative

ZFS parameter, Dx < 0. The ZFS is axial, D ) Dx, when
spin-orbit mixing with states other than those of eqs 3a,b
is ignored. The lowest two magnetic sublevels form a
degenerate doublet, MS ) ( 2, that is split in a magnetic
field, yielding an MS ) -2 ground-state with orbital angular
moment

〈Lx〉) 〈ψ-2,-2|L̂x| ψ-2,-2〉 ≈ 12( λ
∆1

) (6)

This quantity determines the g-value along x (gx), the ZFS
parameter (D), and the orbital term of the magnetic hyperfine
tensor (AL,x):

∆gx ) gx - 2 ≈-1⁄2〈Lx〉 ≈-6( λ
∆1

) (7a)

D)Dx ≈-1⁄4λ〈Lx〉 ≈-3λ( λ
∆1

) (7b)

AL,x ≈-1⁄2P〈Lx〉 ≈-6P( λ
∆1

) (7c)

We note that it is the mixing of the same orbitals, dyz and
dz2, that determines the magnetic properties of the four-
coordinate LFeCl2Li(THF)2, 1, and the three-coordinate
L′FeCl of ref 3. However, in the latter case the two CF levels
are nearly degenerate, and spin-orbit coupling acts in first-
order, leading to a large unquenched orbital angular mo-
mentum.

4.3. Calibration of CF Model. In the following analysis
we have adopted a frequently used value for the spin-orbit
coupling constant λ of -80 cm-1, which is 20% smaller in
magnitude than the free-ion value λo ≈ -100 cm-1 to
account for covalency. The fundamental scaling factor of
the magnetic hyperfine interaction, P ) gegn��n〈r-3〉3d, is
conventionally expressed in magnetic field units by taking
the ratio P/gn�n. Its value is found to be 64 T for free FeII,
based on numerical Hartree-Fock solutions for the radial
3d functions.16 Adopting a similar covalent reduction as for
λ we obtain P/gn�n ≈ 50 T for FeII in the present coordination
environment. The magnetic hyperfine constant is composed

of three contributions, namely, the Fermi contact term, the
orbital term, and the spin-dipolar term: Ax ) AFC,x + AL,x +
ASD,x. The Fermi contact term for free FeII is AFC

0 ≈ -27.5
T and yields, after a ∼20% covalent reduction, AFC ≈ -22.5
T. ASD,x ≈ P/7 for the d6 configuration in which the dyz orbital
is doubly occupied. Its value is slightly reduced (by ∼10%)
due to dz2 admixture (eqs 3a,b) and has the value ASD ≈ +6.4
T. Given that, apart from ∆1, all parameters have now been
assigned values, the expressions in eqs 7a-7c, in order to
be applicable, must reproduce the experimental values ∆gx

) 0.4(0.2), Dx ) -14(2) cm-1, and Ax ) +2.3 T/+1.1 T
(solid/solution) for a single value for ∆1. It appears that this
is indeed the case. Thus, for ∆1 ) 1370 cm-1 we obtain the
values ∆gx ) 0.35 and Dx ) -14 cm-1, which are both
within the experimental error margins, and AL,x ) +17.5 T,
which combined with the values for AFC and ASD gives a
total of Ax ) +1.4 T that is in the range for this quantity
defined by the solid state and solution samples. The ratio
λ/∆1 ≈ -0.058 for λ ) -80 cm-1 and ∆1 ) 1370 cm-1

yields 〈Lx〉 ≈ -0.7. This value is reached at the experimental
value φ ≈ 10° (Figure 7), which is achieved by properly
adjusting the effective charge of the CF model that acts as
an overall scaling factor of the 3d level scheme. After the
CF model has thus been calibrated to match the data for 1,

(16) Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of
Transition Ions; Clarendon Press: Oxford, 1970; Chapter 17.

Figure 7. Orbital angular moment along x vs φ in a magnetic field of 0.1
T applied along x obtained by a full CF calculation.

Figure 8. Energies of the lowest two CF excited states vs φ for θ ) θ0

fixed (solid lines, bottom abscissa, see arrows) and vs (θ - θ0) for φ ) 0°
fixed (dashed lines, top abscissa, see arrows); θ0 ) 110.2°. The ground-
state energy has been taken as the origin of the energy scale for all values
of φ and θ. The structure has C2V point group symmetry for φ ) 0° and C2

symmetry otherwise.
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we can address the structural origin of the distribution in
the magnetic hyperfine field.

4.4. Origin of Distribution in Ax. The Mössbauer analysis
of complex 1 revealed that the magnetic hyperfine field along
the molecular magnetization axis (x) can be modeled as a
Gaussian type distribution,

PA(Ax))NA exp[-(Ax -Ax
0)2 ⁄ 2σA

2 ] (8)

The distribution has a maximum at Ax
0 and a standard

deviation σA. As a consequence, all quantities that are linearly
related to small variations in Ax, notably 〈Lx〉, φ, and ∆1,
should also exhibit Gaussian distributions. The maxima and
standard deviations of these distributions are denoted 〈Lx〉0

and σL for 〈Lx〉, φ0 and σφ for φ, and ∆0 and σ∆ for ∆1. The
standard deviations are related by the expressions

σL ) 2σA ⁄ P (9a)

σφ) σL(d〈Lx〉
dφ )

φ0

-1

(9b)

σ∆ ) σφ(d∆1

dφ )
φ0

(9c)

σf ) 2Kσφ (9d)

Equation 9a follows from eq 7c, the factor in eq 9b is the
reciprocal tangent of the slope of 〈Lx〉 versus φ at φ0 ≈ 10°
in Figure 7, the derivative in eq 9c is the tangent of the first
excitation energy ∆1 versus φ plot at φ0 in Figure 8, and eq
9d will be discussed below. Using the experimental standard
deviations σA) 1.0/1.9 T, P ) 50 T, and the numerical values
for the derivatives, we obtain for the standard deviations the
values σL ) 0.040/0.076, σφ ) 0.36°/0.68°, and σ∆ ) 63
cm-1/119 cm-1 (solid/solution).

The distributions can be explained by assuming that the
molecules are exposed to a small, “random” potential, F(φ)
, ∆1, arising from slight differences in the surroundings of
the complexes. The potential for a given molecule can be
expanded as F(φ) ≈ f′ + f(φ - φ0). Since F ∼ f′ , ∆1, the
constant term has only a minor influence on the excitation
energy and is therefore neglected.17 The φ dependence near
the equilibrium angle φ0 of the ground-state energy of the
complex in vacuum can be approximated as K(φ - φ0)2,
where K is a force constant. By adding the two potentials

we obtain the expression for the φ dependence of the ground-
state energy of the molecule in the medium,

Eg ≈ K(φ- φ
0)2 + f(φ- φ

0) (10)

The two potentials and their sum are illustrated in Figure 9.
The linear term of the random potential displaces the
potential minimum by

∆φ)- f
2K

(11)

The linear relationship between ∆φ and f implies that if
parameter f is distributed around f0 ) 0 according to a
Gaussian distribution, then φ, 〈Lx〉, and ∆1 must be Gaussian
distributed as well.18 Equation 11 implies that the standard
deviations of f and φ are related as σf ) 2Kσφ (eq 9d). We
have estimated K from DFT calculations to be 0.78 cm-1/
(deg)2 (see below). Using this estimate we obtain σf ) 0.56
cm-1/deg/1.06 cm-1/deg (solid/solution). The random po-
tential lowers the ground-state energy by

∆Eg )
f2

4K
)K(∆φ)2 (12)

The quadratic dependence of ∆Eg on f translates into a non-
Gaussian distribution for the ground-state energy,

PE(∆Eg))Nφ(K∆Eg)
-1⁄2 exp[-(∆Eg)

2 ⁄ 2Kσφ
2] (13)

The distribution function in eq 13 is defined for positive
values of ∆Eg and approaches infinity in the zero-energy limit
but can nonetheless be normalized.

The change in the ground-state energy for distortion ∆φ

) σφ is ∆Eg ) 0.10 cm-1/0.36 cm-1 (solid/solution) and is
a measure of the energy required for inducing the distribution
in ∆1 (δ∆1 ∼ 100 cm-1) and related quantities. To understand
how a change in the ground-state energy as small as ∼0.2

(17) The quadratic term of the random potential is much smaller than the
harmonic potential of the molecule and has therefore been neglected
as well.

(18) The conservation of distribution function type is generally valid and
not specific for Gaussian distributions.

Figure 9. Influence of random potential on equilibrium conformation and
energy. A Gaussian distribution in f gives a Gaussian distribution in the
displacement -f/(2K) and non-Gaussian distribution in the energy difference
∆Eg (cf. eq 13).

Figure 10. Relation between variations ∆Eg (bottom arrows), ∆φ (middle
arrow), and δ∆1 (top arrow).
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cm-1 can induce a 3 orders of magnitude larger change in
excitation energy ∆1 (δ∆1 ∼ 100 cm-1) we consider the
derivative d∆1/d∆Eg. Using the expression

(d∆Eg

dφ )
φ0
) √4K∆Eg (14a)

we obtain

d∆1

d∆Eg
) (d∆1

dφ )
φ0

(d∆Eg

dφ )
φ0

-1

) 1

√4K∆Eg

(d∆1

dφ )
φ0

(14b)

The derivative in eq 14b approaches infinity for ∆Eg f 0,
given that (d∆1/dφ)φ0 is a nonzero quantity.19 The relation
between the variations δ∆1 and δ∆Eg is illustrated in Figure
10. The linear term of the random potential f (∼ 1 cm-1/
deg) is much smaller than (d∆1/dφ)φ0 ≈ 175 cm-1/deg and
has therefore a negligible influence on the rate of change of
the excitation energy.

The analysis presented here is generally applicable and
shows that distortions associated with minute changes in the
ground-state energy may cause excitation energy changes
(δ∆1) that are larger by several orders of magnitude.
However, for them to have a sizable effect on the orbital
angular moment 〈Lx〉 and related parameters it is essential
that φ0 is near the inflection point of the 〈Lx〉 versus φ curve
(Figure 7). Away from the inflection point, the relative
change δ∆1/∆1 is normally too small to give detectable
changes in 〈Lx〉-dependent parameters because either ∆1 is
large (right of the inflection point) or δ∆1 is small because
both the ∆1 versus φ and 〈Lx〉 versus φ plots approach minima
(left of the inflection point).

4.5. Origin of Distortion O. Distortion φ turns on the off-
diagonal CF interaction between dyz and dz2, resulting in
energy levels for the ground and excited state that are
decreasing and increasing functions of φ, respectively.20

Since CF theory is incomplete, in the sense that it does not
include distortion-limiting interactions such as the steric
repulsions between the ligands, it is an inadequate tool for
making quantitative structure predictions. For this reason,
we have resorted to DFT for the study of molecular
conformation and potential energy surfaces. The optimized
geometry for the truncated model (see Supporting Informa-
tion) gives φ * 0°, consistent with the notion that the
distortion is an intrinsic property of the structure and not
the result of external forces. However, the value calculated
for φ (∼20°) is larger than observed in the crystal structure
because torsion φ in the truncated model is not hindered by
bulky phenyl groups as in the case of the unabridged
complex. The presence of a steric effect on φ is corroborated
by the geometry optimization for the complete structure,
which yields a considerably smaller torsion angle, φ ≈ 0°.
Although we have not yet fully understood the origin of the
failure to predict the observed value for φ, a preliminary
analysis suggests that the distortion in the DFT calculation

of the unabridged model is quenched by computationally
overestimating the energy gap between dyz and dz2.

4.6. Distribution in θ In the previous sections the torsion
angle φ was singled out as the internal coordinate responsible
for the distribution in Ax. In principle, any structural variable
� may contribute to the width of the distribution. Using the
� analogues of eqs 9a–d, the standard deviation of PA

generated by � can be written as

σA,� ) [1
4

P(d〈Lx〉
d∆1

)
∆1

0](d∆1

d� )
�0

1
K�

σf (15)

where �0 and K� are, respectively, the equilibrium value and
force constant for �. The expression for σA,� depends on four
factors. The first factor (in square brackets) is independent
of �, the second and third ones measure the intrinsic
propensity of coordinate � to disperse the value of Ax, and
the fourth factor (σf) is the standard deviation of the random
force acting on �. Equation 15 shows that a large tangent
d∆1/d� and a small force constant K� amplify σf to yield a
large value for σA,�.

The relative magnitude of σA,φ and σA,θ has been estimated
as follows. Using the CF level diagrams for ∆1 versus φ

and θ (Figure 8) we obtained the derivatives (d∆1/dφ)10° )
175 cm-1/degree and (d∆1/dθ)96° ) 18 cm-1/degree. The
force constants were obtained from DFT energy scans along
φ and θ. The resulting potential energy surfaces are shown
in Figure 11 and give,21 upon parabolic fitting, the force
constants Kφ ) 0.78 cm-1/(deg)2 and Kθ ) 3.02 cm-1/(deg)2.
The value of σf in eq 15 depends on the nature of coordinate
�, but since we have no knowledge about the specifics of
the random forces, we assume that this quantity is equal for
φ and θ. By substituting these values in eq 15 we obtain for
σA,φ a value that is about forty times larger than the value
for σA,θ, supporting the idea that the distribution in Ax results
predominantly from a distribution in φ.

Figure 12 summarizes the discussion. The figures show a
contour plot of the potential energy surface for the ground
state (right) together with a contour plot of 〈Lx〉 (left) as a(19) The equilibrium geometry for an excited state is generally different

from the ground state geometry.
(20) In Figure 8, where the ground-state energy is defined as the origin of

the energy scale, the increasing “repulsion” between the two levels
gives rise to a steady increase of ∆1.

(21) The two-dimensional potential energy surface is presented in Figure
12.

Figure 11. Relative SCF energies of truncated model vs φ for θ ) θ0

fixed (solid line) and vs θ for φ ) 0° fixed (dashed line); θ0 ) 110.2°. The
energy of the dashed curve at the minimum is equal to the energy of the
solid curve at the origin. The structure has C2V point group symmetry for
φ ) 0° and C2 symmetry otherwise.
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function of the changes in the bite angle and dihedral angle.
The rate at which the equi-〈Lx〉 lines are crossed as a function
of φ (θ fixed) is greater than as a function of θ (φ fixed).
This fact in combination with the relative shallowness of
the potential for φ show that of the two angles 〈Lx〉 is most
susceptible to changes in φ.

5. Conclusions

The change in the coordination of the high-spin FeII site from
three-coordinate planar in L′FeCl2 to quasi tetrahedral in
LFeCl2Li(THF)2 increases the CF splitting between the lowest
two 3d orbital states and reduces the spin-orbit mixing between
them. This change leads to reductions in both the ZFS of the S
) 2 ground manifold and the orbital term, AL,x > 0. The orbital
term, which gives by far the largest contribution to the magnetic
hyperfine field in the three-coordinate species, cancels almost
completely against the Fermi contact term, AFC,x < 0, in the
case of the four-coordinate complex. The resulting decrease in
Ax ≈ AL,x + AFC,x entails that minor changes in AL,x have a large
relative effect on this quantity. The impact of Ax on the
Mössbauer spectra is particularly large because the molecular
magnetization axis in 1 is directed along x (Ax is multiplied by
a large spin expectation value). Thus, complex 1 presents ideal
conditions for detecting distributions in Ax by means of
Mössbauer spectroscopy. The experimental results section
shows that it is indeed possible to observe the spectral
manifestations of a distribution in Ax. In our search for the
structural origin of this distribution we have identified the torsion
angle φ (Figure 6) as the most likely candidate, based on the
following considerations: (i) φ is “soft”, that is, distortions along
this coordinate can be made at low energy cost, (ii) φ couples

effectively to excitation energy ∆1 (Figure 8) which occurs in
the denominator of the expression for AL,x (eq 7c), and (iii) at
φ ≈ 10° the system is in the intermediate spin-orbit coupling
regime where 〈Lx〉 (Figure 7) and consequently AL,x are steep
functions of φ. The observed spread in Ax (σA ≈ 1-2 T) can
be generated by subdegree distortions (σφ ≈ 0.4-0.7°) of the
structure that represent sub-wavenumber perturbations of the
ground-state energy.

One of the lessons learned in the course of the present
study is that the appearance of substantial distributions in
the spin Hamiltonian parameters does not necessarily signal
substantial disorder. In some instances, as described here,
some spin Hamiltonian parameters are delicately sensitive
to minute structural changes.
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Figure 12. Left: contour plot of 〈Lx〉 as a function of (θ - θ0) (change in bond angle) and of φ (dihedral angle) as determined from the CF calculations for
point charge model used. The 〈Lx〉 plot is color coded such that bright red corresponds to 〈Lx〉 ) -1.92 (lower left corner) and deep blue to 〈Lx〉 ) -0.02
(upper right region). Right: contour plot of the DFT ground-state energy for 1 as a function of (θ - θ0) and φ. The energy plot is color coded with bright
red corresponding to 2700 cm-1 (upper right corner) and deep blue to 27 cm-1 (central region).
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