Inorganic Chemistr

In Situ Observation of the Formation of Si Clathrate Ba₈Si₄₆ at High Pressures and High Temperatures

Motoharu Imai*,[†] and Takumi Kikegawa[‡]

National Institute for Materials Science, 1-2-1 Sengen Tsukuba, Ibaraki 305-0047, Japan, and Photon Factory, National Laboratory for High Energy Physics, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Received May 16, 2008

X-ray diffraction measurements at high pressures and high temperatures revealed that Si clathrate Ba_8Si_{46} is formed by a solid-phase reaction of an 8:30 molar mixture of $SrSi_2$ -phase $BaSi_2$ and Si after $BaSi_2$ undergoes the $BaSi_2$ to-EuGe₂ and the EuGe₂-to-SrSi₂ transitions. The volume reduction during the formation of Ba_8Si_{46} is the largest, 7.6%, among the observed transitions. On the other hand, an 8:30 molar mixture of $SrSi_2$ -phase $SrSi_2$ and Si does not result in the formation of Sr_8Si_{46} at high pressures and high temperatures; only $SrSi_2$ transforms from the $SrSi_2$ phase into the α -ThSi₂ phase, and Si remains in the diamond phase.

Introduction

Type-I Si clathrate, whose general chemical formula is A₈X₄₆, has a characteristic crystal structure, that is, the Na₈Si₄₆-type structure (space group $Pm\bar{3}n$, Z = 1, Figure 1a).¹ In A_8X_{46} , atoms X form X_{20} dodecahedra and X_{24} tetrakaidecahedra, and these polyhedra are linked by sharing faces; atoms A are located in the polyhedra. Because the X₂₀ and X₂₄ polyhedra are isostructural with fullerenes C₂₀ and C₂₄, respectively,² and superconductivity with a relatively high superconducting critical temperature (T_C) was observed in alkaline-doped fullerides,³ a search for superconducting Si clathrates has been underway. The first superconducting transition in Si clathrates was observed in (Ba,Na)8Si46, whose $T_{\rm C}$ is approximately 4 K.⁴ This Si clathrate was synthesized by the thermal decomposition of Na₂BaSi₄ in a vacuum at 773 K. In 2000, a superconducting Si clathrate with a higher $T_{\rm C}$ (8.0 K), Ba₈Si₄₆, was synthesized by a different method from the thermal decomposition, a solidphase reaction between an 8:30 molar mixture of BaSi2 and

- * National Laboratory for High Energy Physics.
- Kasper, J. S.; Hagenmuller, P.; Pouchard, M.; Cross, C. Science 1965, 150, 1713.
- (2) Kroto, H. W. Nature (London) 1987, 329, 529.
- (3) Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.; Murphy, D. W.; Glarum, S. H.; Palstra, T. T. M.; Ramirez, A. P.; Kortan, A. R. *Nature* (*London*) **1991**, *1350*, 600.
- (4) Kawaji, H.; Horie, H.; Yamanaka, S.; Ishikawa, M. Phys. Rev. Lett. 1995, 74, 1427.

Si at a pressure of 3 GPa and a temperature of 1073 K.⁵ Further research on the synthesis conditions demonstrated that Ba₈Si₄₆ can be formed from the mixture at pressures above 3 GPa and temperatures above 1073 K.⁶ Although the synthesis conditions of Ba₈Si₄₆ have been clarified, the formation process of Ba₈Si₄₆ at high pressures and high temperatures has not been elucidated yet. BaSi₂, one of the starting materials, has four phases at pressures ranging from 0 to 5 GPa and temperatures ranging from 300 to 1273 K,^{7,8} although another starting material, Si, has only one phase (the diamond phase) in this pressure-temperature range.⁹ The stable phase of BaSi₂ has the BaSi₂-type structure (space group *Pnma*, Z = 8, Figure 1b) under ambient conditions.¹⁰ One of the high-pressure, high-temperature phases has the EuGe₂-type structure (space group $P\bar{3}m1$, Z = 1, Figure 1c),¹¹ and the other has the $SrSi_2$ -type structure (space group $P4_332$, Z = 4, Figure 1d).¹² The crystal structure of the fourth phase, denoted as BaSi2-IV, is unknown. Because Ba8Si46 is

- (5) Yamanaka, S.; Enishi, E.; Fukuoka, H.; Yasukawa, M. Inorg. Chem. 2000, 39, 56.
- (6) Fukuoka, H.; Kiyoto, J.; Yamanaka, S. J. Phys. Chem. Solids 2004, 65, 333.
- (7) Imai, M.; Hirano, T.; Kikegawa, T.; Shimomura, O. *Phys. Rev. B* 1998, 58, 11922.
- (8) Imai, M.; Kikegawa, T. Chem. Mater. 2003, 15, 2543.
- (9) Bundy, F. P. J. Chem. Phys. 1964, 41, 3809.
- (10) Shäfer, H.; Janzon, K. H.; Weiss, A. Angew. Chem., Int. Ed. Engl. 1963, 2, 393.
- (11) Evers, J.; Oehlinger, G.; Weiss, A. Angew. Chem., Int. Ed. Engl. 1978, 17, 538.
- (12) Evers, J.; Oehlinger, G.; Weiss, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 659.

^{*} To whom correspondence should be addressed. E-mail: imai.motoharu@nims.go.jp.

[†] National Institute for Materials Science.

Imai and Kikegawa

Figure 1. Crystal structure of Ba₈Si₄₆ and BaSi₂: (a) Ba₈Si₄₆, (b) BaSi₂phase BaSi₂, (c) EuGe₂-phase BaSi₂, and (d) SrSi₂-phase BaSi₂. The large and small spheres correspond to Ba and Si atoms, respectively.

expected to be formed by a solid-phase reaction of Si with one of four phases of $BaSi_2$, it would be interesting to see which phase of $BaSi_2$ reacts with Si and results in the formation of Ba_8Si_{46} .

In this study, we observed the formation of Ba_8Si_{46} from an 8:30 molar mixture of $BaSi_2$ and Si at high pressures and high temperatures. We also observed the phase behavior of an 8:30 molar mixture of $SrSi_2$ and Si at high pressures and high temperatures for a comparison.

Experimental Section

The starting material was prepared by an Ar-arc melting of an 8:30 molar mixture of BaSi₂ (nominal purity 98%) and Si (nominal purity 99.9999%). X-ray diffraction measurements at high pressures and high temperatures were performed in the beam line of the TRISTAN accumulation ring (AR-NE5) at the National Laboratory for High Energy Physics (KEK). High pressure was applied using the multianvil high-pressure apparatus MAX80. WC anvils with a square flat-surface size of $6 \times 6 \text{ mm}^2$ were used. A powdered starting material was loaded in the h-BN capsule. The temperature was measured by an alumel-chromel thermocouple attached to the sample capsule. The pressure was evaluated from the lattice parameter of a NaCl internal pressure marker.¹³ Details of the sample assembly have been described elsewhere.⁸ The X-ray diffraction patterns were measured by an energy-dispersive method using synchrotron radiation from the bending magnet. The lattice parameters were obtained by the least-squares fitting of the indexed pattern.

Results and Discussion

Figure 2 exhibits the X-ray diffraction patterns of the 8:30 molar mixture of $BaSi_2$ and Si at an approximate pressure of 4.3 GPa and various temperatures. The diffraction patterns were measured for 300 s for the sample and 100 s for the pressure marker, respectively, at approximate intervals of 100 K. At room temperature and 4.3 GPa, the sample remains a mixture of $BaSi_2$ -phase $BaSi_2$ and Si. When the sample is heated up to 870 K, $BaSi_2$ undergoes two phase transitions: the $BaSi_2$ -to-EuGe₂ transition at 770 K and the EuGe₂-to-

(13) Brown, J. M. J. Appl. Phys. 1999, 86, 5801.

Figure 2. X-ray diffraction patterns of the 8:30 molar mixture of $BaSi_2$ and Si at an approximate pressure of 4.3 GPa and various temperatures $(2\theta = 4^\circ)$. The symbols "Si", "B", "E", "S", and "CL" represent reflections from Si, $BaSi_2$ -phase $BaSi_2$, $EuGe_2$ -phase $BaSi_2$, $SrSi_2$ -phase $BaSi_2$, and Si clathrate Ba_8Si_{46} , respectively. The symbol "BN" shows reflections from the h-BN capsule.

Figure 3. Volume of the 8:30 molar mixture of BaSi₂ and Si and that of Ba₈Si₄₆ as a function of temperature. The abbreviations "B-," "E-," and "S-" stand for the BaSi₂-phase, the EuGe₂-phase, and the SrSi₂-phase, respectively. The broken lines are guides for the eyes.

SrSi₂ transition at 870 K; Si remains in the diamond phase. With further heating up to 970 K, the diffraction peaks that can be assigned to the Si clathrate Ba_8Si_{46} appear, which suggests that the formation of Ba_8Si_{46} starts at 970 K. The formation of Ba_8Si_{46} was completed at 1070 K. These results demonstrate that Ba_8Si_{46} is formed by the solid-phase reaction of $SrSi_2$ -phase $BaSi_2$ and Si at high pressure and high temperature. The pressure-temperature conditions under which the Ba_8Si_{46} formation starts are consistent with those reported previously.⁶

Figure 3 shows the volume of the sample as a function of temperature. In this figure, the volume corresponds to the volume of the 8:30 molar mixture of BaSi₂ and Si, that is, a sum of the 8-fold volume per formula unit of BaSi₂ and the thirty-fold atomic volume of Si, or the volume per formula unit of Ba₈Si₄₆. The volume change at the transition $\Delta V/V$ is shown in the figure. The number in the parentheses is $\Delta V/V$ of BaSi₂. The volume change at the formation of Ba₈Si₄₆

Figure 4. X-ray diffraction patterns of the 8:30 molar mixture of $SrSi_2$ and Si at an approximate pressure of 4.5 GPa and various temperatures $(2\theta = 4^\circ)$. The symbols "Si," "S," and "T" represent reflections from Si, $SrSi_2$ -phase $SrSi_2$, and α -ThSi_2-phase $SrSi_2$, respectively.

from the mixture of the SrSi₂-phase BaSi₂ and Si is the largest (7.6%) among the observed phase transitions. The volume difference between the starting material, the 8:30 molar mixture of the BaSi₂-phase BaSi₂ and Si, and Ba₈Si₄₆ is large (14.6%) under ambient conditions, which is consistent with a previous report (15%).⁵

The above results demonstrate that Ba₈Si₄₆ is formed from the 8:30 molar mixture of SrSi₂-phase BaSi₂ and Si. Because SrSi₂ has the SrSi₂-type structure under ambient conditions,¹⁴ we examined what happens in an 8:30 molar mixture of SrSi₂-phase SrSi₂ and Si at high pressure and high temperature. At an approximate pressure of 4.5 GPa and room temperature, the sample consisted of SrSi₂-phase SrSi₂ and Si, as it did under ambient conditions. Figure 4 exhibits the X-ray diffraction patterns of the 8:30 molar mixture of SrSi₂ and Si at an approximate pressure of 4.5 GPa and various temperatures. The diffraction patterns were measured for 200 s for the sample and 100 s for the pressure marker, respectively, at approximate intervals of 100 K. When the sample was heated at this pressure, only SrSi2 starts to transform into the α -ThSi₂-phase¹⁵ at 1080 K and complete the transformation at 1170 K. During this structural transition, the diamond phase Si remains the same. SrSi2 does not react with Si up to 1280 K, the highest temperature in this experiment. Thus, the mixture of SrSi₂-phase SrSi₂ and Si does not result in the formation of Si clathrate. This result is in contrast to the case of the mixture of BaSi₂ and Si in spite of the fact that the crystal structure of the SrSi₂-phase SrSi₂ is the same as that of the SrSi₂-phase BaSi₂. The failure to form Sr₈Si₄₆ from the mixture of SrSi₂ and Si at high pressures and high temperatures is consistent with the report by Toulemonde et al.¹⁶

Ba₈Si₄₆ is formed at pressures above 3 GPa and temperatures above 1070 K. In this pressure-temperature region, BaSi₂ has the BaSi₂-IV phase.^{7,8} The formation of Ba₈Si₄₆, therefore, suggests that Ba₈Si₄₆ is more energetically stable than the 8:30 molar mixture of BaSi₂-IV phase BaSi₂ and Si in this pressure-temperature region. On the other hand, the failure to form Sr₈Si₄₆ suggests that Sr₈Si₄₆ is less energetically stable than the 8:30 molar mixture of α -ThSi₂phase SrSi₂ and Si. The difference in the stability of phases between the Ba-Si and Sr-Si systems can be discussed considering the difference in atomic radii between Ba and Sr atoms and the difference in the crystal structure between BaSi₂-IV-phase BaSi₂ and α -ThSi₂-phase SrSi₂. To discuss this, it is necessary to determine the crystal structure of BaSi₂-IV-phase BaSi₂, which has not been clarified yet. The determination of the crystal structure of BaSI2-IVphase BaSi₂ will, therefore, deepen the understanding of the phase relationship in the Ba-Si and Sr-Si systems. Firstprinciple calculations of the total energy of SrSi₂-phase SrSi₂, α -ThSi₂-phase SrSi₂, and Sr₈Si₄₆ would also be interesting to identify the pressure-temperature region where Sr₈Si₄₆ is stable and thus clarify why Sr₈Si₄₆ has not be synthesized yet. Furthermore, an in situ observation of formation of another Ba contained Si clathrate Ba₂₄Si₁₀₀¹⁷ also would be interesting for understanding of Ba-Si phase relationship at high pressures.

Conclusions

We found by in situ X-ray diffraction measurements at high pressures and high temperatures that Ba_8Si_{46} is formed by a solid-phase reaction between an 8:30 molar mixture of SrSi₂-phase BaSi₂ and Si after BaSi₂ undergoes the BaSi₂to-EuGe₂ and EuGe₂-to-SrSi₂ transitions. We also observed that Sr₈Si₄₆ is not formed from the 8:30 molar mixture of SrSi₂ and Si at high pressures and high temperatures in spite of the fact that the SrSi₂-phase SrSi₂ is isostructural with SrSi₂-phase BaSi₂.

Acknowledgment. The authors thank K. Tsuji of Keio University, K. Kusaba of Tohoku University, and S. Urakawa of Okayama University for their useful advice with the experiments. This research was conducted under Grant 2005G006 of the Photon Factory, KEK. This work was supported in part by a Grant-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

IC800895G

⁽¹⁴⁾ Janzon, K. H.; Schäfer, H.; Weiss, A. Z. Angew. Chem., Int. Ed. Engl. 1965, 4, 245.

⁽¹⁵⁾ Evers, J.; Oehlinger, G.; Weiss, A. J. Solid State Chem. 1977, 20, 173.

⁽¹⁶⁾ Toulemonde, P.; Adessi, C.; Blasé, X.; San Miguel, A.; Tholence, J. L. Phys. Rev. B 2005, 71, 094504.

⁽¹⁷⁾ Fukuoka, H.; Ueno, K.; Yamanaka, S. J. Organomet. Chem. 2000, 611, 543.