## AEuAsS<sub>3</sub> (A = Li, K, Rb, and Cs): New As<sup>3+</sup> Species from an Arsenic-Rich Polysulfide Flux

## Tarun K. Bera and Mercouri G. Kanatzidis\*

Department of Chemistry, Northwestern University, Evanston, Illinois 60208

Received June 3, 2008

Four europium compounds, LiEuAsS<sub>3</sub> (I), KEuAsS<sub>3</sub> (IIa), RbEuAsS<sub>3</sub> (IIb), and CsEuAsS<sub>3</sub> (IIc), containing As<sup>3+</sup> were synthesized in molten alkali-metal polysulfide salts. An As-rich flux was found to be necessary to stabilize the pyramidal building unit [AsS<sub>3</sub>]<sup>3-</sup>. All crystallize in the monoclinic space group  $P2_1/c$  with two new structure types. Compound I features a new coordination mode for the [AsS<sub>3</sub>]<sup>3-</sup> unit and three-dimensional [Eu(AsS<sub>3</sub>)]<sup>-</sup> framework. Compounds IIa-c are isostructural and feature a layer of [Eu(AsS<sub>3</sub>)]<sup>-</sup> with an unusual  $\mu_5$ -sulfide anion in a *umbrella-like* geometry. The compounds are paramagnetic semiconductors with an energy gap of ~2.0 eV.

The reactivity of rare-earth elements with the molten alkali-metal polychalcophosphate salts has been studied extensively,<sup>1,2</sup> and a wide variety of compounds with interesting structures and physical properties<sup>3</sup> have been synthesized. The corresponding polychalcoarsenate system also merits investigation because it could lead to new materials and also teach us a great deal about similarities

and differences between P and As chemistry.<sup>4</sup> Moreover, the different redox behavior of P and As gives compounds with different structural motifs and physical properties. Initial studies on the RE/As/Q and A/RE/As/Q systems (A = alkalimetals, RE = rare earths, and Q = S, Se, and Te) reported recently have revealed novel species.<sup>5</sup> Our investigations of the reactivity of several main-group and transition metals (Sn, Pb, Mn, Cd, etc.) with the alkali-metal polychalcoarsenate flux showed that divalent metals (e.g., Pb<sup>2+</sup>, Mn<sup>2+</sup>, Cd<sup>2+</sup>, etc.) favor As<sup>5+</sup> species in a wide composition range.<sup>4</sup> The highly Lewis acidic tetravalent metals (e.g., Sn<sup>4+</sup>), however, favor As<sup>3+</sup> species. The stereochemically active 4s lone pair of electrons on As<sup>3+</sup> could act as an enhancement factor for nonlinear optical properties<sup>6</sup> and also can increase the glass formation tendency.<sup>7</sup> It would be useful therefore to understand the flux chemistry and controlling factors for stabilizing  $As^{5+}$  vis-à-vis  $As^{3+}$  species in the compounds.

Inorg. Chem. 2008, 47, 7068-7070

Inorganic Chen

Here we describe new chemistry involving the reactivity of Eu metal and four new compounds: LiEuAsS<sub>3</sub> (**I**), KEuAsS<sub>3</sub> (**IIa**), RbEuAsS<sub>3</sub> (**IIb**), and CsEuAsS<sub>3</sub> (**IIc**). The compounds contain the pyramidal  $[AsS_3]^{3-}$  as the building unit, which is unknown in the corresponding P system. The compounds formed under flux conditions designed to inhibit As<sup>5+</sup>.

The red crystalline compounds **I** and **IIa**–**c** were synthesized from the A<sub>2</sub>S/Eu/As/S mixtures (A = Li, K, Rb, and Cs).<sup>8</sup> The relatively As-rich flux ratio of 1/2/2/4 led to compound **I**, while compounds **IIa**–**c** were prepared from a flux ratio of 1/1/3/4. Here a flux ratio with a lower As content (e.g., 1/1/1/4) was unable to produce the title phases; instead, we observed As<sup>5+</sup>-containing compounds A<sub>4</sub>Eu-

10.1021/ic801017h CCC: \$40.75 © 2008 American Chemical Society Published on Web 07/25/2008

 $<sup>\</sup>ast$  To whom correspondence should be addressed. E-mail: m-kanatzidis@northwestern.edu.

 <sup>(</sup>a) Kanatzidis, M. G.; Sutorik, A. C. Prog. Inorg. Chem. 1995, 43, 151. (b) Sunshine, S. A.; Kang, D.; Ibers, J. A. J. Am. Chem. Soc. 1987, 109, 6202. (c) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Inorg. Chem. 1996, 35, 840. (d) Chondroudis, K.; Kanatzidis, M. G. Inorg. Chem. 1998, 37, 3792. (e) Aitken, J. A.; Chondroudis, K.; Young, V. G., Jr.; Kanatzidis, M. G. Inorg. Chem. 2000, 39, 1525. (f) Evenson, C. R.; Dorhout, P. K. Inorg. Chem. 2001, 40, 2875. (g) Evenson, C. R.; Dorhout, P. K. Inorg. Chem. 2001, 40, 2884. (h) Chen, J. H.; Dorhout, P. K. J. Solid State Chem. 1995, 117, 318.

<sup>(2) (</sup>a) Goh, E. Y.; Kim, E. J.; Kim, S. J. J. Solid State Chem. 2001, 160, 195. (b) Aitken, J. A.; Evain, M.; Iordanidis, L.; Kanatzidis, M. G. Inorg. Chem. 2002, 41, 180. (c) Gauthier, G.; Evain, M.; Jobic, S.; Brec, R. Solid State Sci. 2002, 4, 1361. (d) Gauthier, G.; Jobic, S.; Brec, R.; Rouxel, J. Inorg. Chem. 1998, 37, 2332. (e) Komm, T.; Schleid, T. J. Alloys Compd. 2006, 418, 106. (f) Aitken, J. A.; Kanatzidis, M. G. J. Am. Chem. Soc. 2004, 126, 11780. (g) Klawitter, Y.; Bensch, W.; Wickleder, C. Chem. Mater. 2006, 632, 42. (i) McCarthy, T. J.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 1061–1063.

<sup>(3) (</sup>a) Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2007, 129, 14996. (b) Chen, J. H.; Dorhout, P. K.; Ostenson, J. E. Inorg. Chem. 1996, 35, 627. (c) McGuire, M. A.; Reynolds, T. K.; DiSalvo, F. J. Chem. Mater. 2005, 17, 2875. (d) Kumta, P. N.; Risbud, S. H. J. Mater. Sci. 1994, 29, 1135.

<sup>(4) (</sup>a) Iyer, R. G.; Kanatzidis, M. G. *Inorg. Chem.* 2002, *41*, 3605. (b) Iyer, R. G.; Do, J.; Kanatzidis, M. G. *Inorg. Chem.* 2003, *42*, 1475. (c) Iyer, R. G.; Kanatzidis, M. G. *Inorg. Chem.* 2004, *43*, 3656.

<sup>(5) (</sup>a) Wu, Y.; Naether, C.; Bensch, W. Inorg. Chem. 2006, 45, 8835.
(b) Bera, T. K.; Iyer, R. G.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2007, 46, 8466.

<sup>(6) (</sup>a) Ye, N.; Chen, Q.; Wu, B.; Chen, C. J. Appl. Phys. 1998, 84, 555.
(b) Distanov, V. E.; Nenashev, B. G.; Kirdyashkin, A. G.; Serboulenko, M. G.; Proustite, n/a. J. Cryst. Growth 2002, 235, 457. (c) Feichtner, J. D.; Roland, G. W. Appl. Opt. 1972, 11, 993. (d) Hulme, K. F.; Jones, O.; Davies, P. H.; Hobden, M. V. Appl. Phys. Lett. 1967, 10, 133. (e) Bera, T. K.; Song, J. H.; Freeman, A. J.; Jang, J.-L.; Ketterson, J. B.; Kanatzidis, M. G. Angew. Chemie. accepted for publication.
(7) Liang, Z. J. Non-Cryst. Solids 1991, 127, 298.

 $(AsS_4)_2$  (A = K, Rb, and Cs), which are isostructural with the chalcophosphates.<sup>1c</sup> Lowering the flux basicity by decreasing the A<sub>2</sub>S/S ratio also failed to stabilize the As<sup>3+</sup> phases. It seems that the less oxidizing As-rich flux is necessary to stabilize the As<sup>3+</sup> species in the A<sub>2</sub>S/Eu/As/S system.

Single-crystal X-ray diffraction analysis showed that the compounds LiEuAsS<sub>3</sub> (I), KEuAsS<sub>3</sub> (IIa), RbEuAsS<sub>3</sub> (IIb), and CsEuAsS<sub>3</sub> (IIc) crystallize in the monoclinic space group  $P2_1/c$ .<sup>9</sup> The structure of I is built of slabs of [Eu(AsS<sub>3</sub>)]<sup>-</sup> (shaded region in Figure 1a) interconnected in the third dimension via Eu–S bonds to give a dense 3-D framework, leaving a 1-D channel for the tiny Li<sup>+</sup> ions. Two notable features in this structure are (i) the unusual coordination mode of the [AsS<sub>3</sub>]<sup>3-</sup> anion to Eu and (ii) the coordination environment of S3. Each [AsS<sub>3</sub>]<sup>3-</sup> anion bridges to five Eu atoms, four within the slab and one from a neighboring slab (Figure 2a). Among the three S atoms in the asymmetric unit, the coordination environment of S1 and S2 is normal, whereas S3 has an unusual "flattened umbrella-like" geom-



**Figure 1.** Extended unit cell view of (a) the 3-D framework structure of LiEuAsS<sub>3</sub> (the shaded part represents the  $[Eu(AsS_3)]^-$  slab) and (b) the layered structure of KEuAsS<sub>3</sub> (Ia).



**Figure 2.** (a) View of the  $[Eu(AsS_3)]^-$  slab in **I**. Each  $[AsS_3]^{3-}$  anion is coordinated to four Eu atoms within the slab and one from the neighboring slab (gray atom connected to S2). (b) View of the single layer in the 2-D structures (**IIa**-c).

etry similar to that in  $\alpha$ -Na<sub>6</sub>Pb(PS<sub>4</sub>)<sub>4</sub><sup>10</sup> (Figure 3a).

The coordination environment of Eu is distorted monocapped trigonal prismatic with all seven Eu–S distances in the range of 2.929(2)-3.139(2) Å (Figure 3a).<sup>11</sup> The EuS<sub>7</sub> monocapped trigonal prisms share only edges within the [Eu(AsS<sub>3</sub>)]<sup>-</sup> slab (in the *ac* plane) and extend their coordination into the third dimension (along the *b* axis) through corner sharing (Figure 1a).

The Li atoms are in a distorted tetrahedral environment of S atoms (see Figure 3b). Those Li–S distances are in the range of 2.462(13)-2.624(13) Å.

The isostructural compounds IIa-c have  ${}_{\infty}{}^{2}[Eu(AsS_{3})]^{-}$  layers, which sandwich the large alkali-metal ions: K, Rb,

(10) Aitken, J. A.; Kanatzidis, M. G. Inorg. Chem. 2001, 40, 2938.

<sup>(8)</sup> LiEuAsS<sub>3</sub> (I). A mixture of Li<sub>2</sub>S (0.029 g, 0.63 mmol), Eu (0.190 g, 1.25 mmol), As (0.094 g, 1.25 mmol), and S (0.080 g, 2.50 mmol) was loaded into a fused-silica tube in a nitrogen-filled glovebox. It was flame-sealed under vacuum ( $\sim 10^{-4}$  mbar) and then heated to 650 °C in 10 h. After 60 h at 650 °C, it was cooled down to 250 °C in 80 h followed by rapid cooling to room temperature. A mixture of red and black crystals (1:9) was obtained after dissolution of the excess flux in degassed DMF. The red crystalline phase (<10% yield) was identified as I, and the black material was mostly As. Several attempts to make pure LiEuAsS3 have failed so far. KEuAsS3 (IIa). A red crystalline product was isolated as a single phase in >70% yield from the mixture of K<sub>2</sub>S (0.072 g, 0.66 mmol), Eu (0.100 g, 0.66 mmol), As (0.150 g, 2.00 mmol), and S (0.084 g, 2.61 mmol) using a procedure similar to that above. Semiquantitative energy-dispersive (EDS) analysis gave an average composition of K1.1Eu1.0As1.0S3.2. RbEuAsS3 (Ib). It was isolated from the mixture of Rb<sub>2</sub>S (0.100 g, 0.49 mmol), Eu (0.075 g, 0.49 mmol), As (0.111 g, 1.48 mmol), and S (0.063 g, 1.97 mmol) using a procedure similar to that above. Red crystals, single phase with >75% yield, and EDS analysis gave the composition Rb1.0Eu1.0As1.1S3.2. CsEuAsS3 (IIc). A single-phase red crystalline compound with >70% yield was achieved from the mixture of  $Cs_2S$ (0.120 g, 0.40 mmol), Eu (0.061 g, 0.40 mmol), As (0.090 g, 1.22 mmol), and S (0.052 g, 1.62 mmol) as described above. EDS analysis gave an average composition of Cs1.0Eu1.0As1.1S3.3.

Single-crystal X-ray diffraction data were collected at 100 K using a STOE imaging-plate diffraction system (IPDS-2) with graphitemonochromatized Mo Ka radiation. A numerical absorption correction was applied. Direct methods and full-matrix least-squares refinements against  $F^2$  were performed with the SHELXTL package. Crystal data for LiEuAsS<sub>3</sub> (I): monoclinic  $P2_1/c$ , Z = 4, a = 5.6862(5) Å, b =13.1187(11) Å, c = 7.1735(6) Å,  $\beta = 104.858(7)^{\circ}$ , V = 517.22(8)Å<sup>3</sup>,  $\theta_{\text{max}}$  (Mo K $\alpha$ ) = 29.18°, total reflections = 4715, unique reflections  $[F_o^2 > 2\sigma(F_o^2)] = 1387$ , number of variables = 56,  $\mu = \hat{1}9.503 \text{ mm}^{-1}$ ,  $D_{\rm c} = 4.238 \text{ g cm}^{-3}, R_{\rm int} = 3.37\%, \text{ GOF} = 1.427, R_1 = 2.45\%, R_{\rm W} = 1.427$ 5.23 for  $I \ge 2\sigma(I)$ . KEuAsS<sub>3</sub> (IIa):  $P2_1/c$ , Z = 4, a = 8.8306(8) Å, b = 8.3455(9) Å, c = 8.6224(9) Å,  $\beta = 106.591(8)^{\circ}$ , V = 608.98(11)Å<sup>3</sup>,  $\theta_{\text{max}}(Mo \text{ K}\alpha) = 29.24^{\circ}$ , total reflections = 5750, unique reflections  $[F_0^2 > 2\sigma(F_0^2)] = 1581$ , number of variables = 56,  $\mu = 17.252$  mm<sup>-1</sup>,  $D_{\rm c} = 3.950 \text{ g cm}^{-3}, R_{\rm int} = 9.06\%, \text{ GOF} = 1.017, R_1 = 2.32\%, R_{\rm w} =$ 4.53 for  $I > 2\sigma(I)$ . RbEuAsS<sub>3</sub> (IIb):  $P2_1/c$ , Z = 4, a = 9.0795(8) Å, b = 8.3669(8) Å, c = 8.6752(8) Å,  $\beta = 105.844(7)^\circ$ , V = 633.99(10)Å<sup>3</sup>,  $\theta_{\text{max}}$ (Mo K $\alpha$ ) = 29.03°, total reflections = 7053, unique reflections  $[F_0^2 > 2\sigma(F_0^2) = 2047$ , number of variables = 56,  $\mu = 23.543$  mm<sup>-1</sup>  $D_{\rm c} = 4.280 \text{ g cm}^{-3}, R_{\rm int} = 4.07\%, \text{ GOF} = 1.168, R_1 = 2.10\%, R_{\rm w} = 1.168$ 4.12 for  $I > 2\sigma(I)$ . CsEuAsS<sub>3</sub> (IIc):  $P2_1/c$ , Z = 4, a = 9.3953(19) Å, b = 8.4407(17) Å, c = 8.7702(18) Å,  $\beta = 105.12(3)^{\circ}$ , V = 671.4(2)Å<sup>3</sup>,  $\theta_{\text{max}}$ (Mo K $\alpha$ ) = 29.14°, total reflections = 6184, unique reflections  $[F_0^2 > 2\sigma(F_0^2)] = 1800$ , number of variables = 55,  $\mu = 20.372$  mm<sup>-1</sup>,  $D_{\rm c} = 4.511 \text{ g cm}^{-3}, R_{\rm int} = 3.32\%, \text{ GOF} = 1.213, R_1 = 2.38\%, R_{\rm w} = 1.213, R_1 = 2.38\%$ 5.92 for  $I > 2\sigma(I)$ .



**Figure 3.** (a) Local coordination environment of Eu and As and the  $\mu_4$ -S3 center in LiEuAsS<sub>3</sub>. (b) Distorted tetrahedral Li center in I. (c) Coordination environment of  $\mu_5$ -sulfide anion S1, trigonal-pyramidal As, and distorted bicapped trigonal-prismatic Eu in **Ha**-c. (d) Local environment of the alkali metal in the layered structures (**Ha**-c).

or Cs (Figure 1b). The layers are parallel to the *bc* plane. Unlike I, here each  $[AsS_3]^{3-}$  anion bridges to four Eu atoms (Figure 2b) and the coordination environment of S1 is very unusual. The  $\mu_5$ -S1 is bonded to four Eu atoms and one As atom to form an unusual *umbrella-like* geometry ("tetra umbrella"), with all four Eu atoms nearly on the square plane and S1 located 0.26 Å above it (Figure 3c). The As-S1 bond defines the umbrella handle. To the best of our knowledge, this  $\mu_5$ -sufide anion geometry is new.

The Eu atoms in **Ha**–**c** have a distorted bicapped trigonalprismatic environment with six short Eu–S distances in the range of 2.941(2)–3.083(2) Å (solid line) and two other longer Eu–S distances at 3.256(2) and 3.480(2) Å (dotted line) (Figure 3c).<sup>12</sup> The EuS<sub>8</sub> polyhedra share-edges and rectangular faces to form a chain along the *b* axis, and the chains are linked into layers through edge sharing (Figure 2b). The rectangular face-sharing creates Eu–Eu distances of ~3.804(4) Å. All three As–S bond distances are normal and in the range of 2.221(1)–2.283(1) Å.<sup>4,11</sup>

The K, Rb, and Cs ions have eight-coordinated distorted bicapped trigonal-prismatic geometry. The A····S interactions are mostly ionic in nature. The layered structure with the relatively larger alkali metals (K, Rb, and Cs) and a 3-D framework with the smaller alkali-metal Li is in accordance with the predictions derived from the counterion effect on the dimensionality of the structure.<sup>12</sup>

The Raman spectra obtained on polycrystalline samples of **Ha**-**c** were similar and exhibit a very strong peak at 382 cm<sup>-1</sup> together with some weak bands (Figure 4a). These are assigned to the stretching and deformation modes of the



**Figure 4.** (a) Fourier transform Raman spectra for pyramidal  $As^{III}S_3$  [KEuAsS<sub>3</sub>] and tetrahedral  $As^{IV}S_4$  [K<sub>4</sub>Eu(AsS<sub>4</sub>)<sub>2</sub>] building units. (b) UV-vis absorption spectra for **IIa**-c.

 $[As^{III}S_3]^{3-}$  anion. These values are shifted to lower frequencies compared with those of the  $[As^VS_4]^{3-}$  anion because of the stronger  $As^V-S$  interactions relative to  $As^{III}-S$  as follows from the longer As-S bonds in  $[As^{III}S_3]^{3-}$  compared to those in  $[As^VS_4]^{3-}.^{5a}$ 

Temperature-dependent (2–400 K) magnetic susceptibility measurements of **Ha** (see the Supporting Information) show Curie law behavior, with an effective magnetic moment of 7.64  $\mu_{\rm B}$  mol<sup>-1</sup>. This is close to the calculated 7.9  $\mu_{\rm B}$  mol<sup>-1</sup> for Eu<sup>2+</sup> ions. Therefore, the compounds are charge balanced based on the formalism A<sup>+</sup>Eu<sup>2+</sup>(AsS<sub>3</sub>)<sup>3-</sup>.

The solid-state UV-vis optical absorption spectra of IIa-c show a very strong absorption onset at ~2.0 eV (Figure 4b).<sup>13</sup> This is attributed to excitations within the  ${}^{2}_{\infty}[Eu(AsS_{3})^{-}]$  layer and believed to originate from transitions involving filled S-based p orbitals in the valence band and empty Eu d orbitals in the conduction band. The alkali metal does not seem to play a significant role in defining the electronic structure of the framework, consistent with the predominantly ionic character of the A····S interactions. The thermal behavior of IIa-c investigated by means of differential thermal analysis suggests that the compounds melt congruently (see the Supporting Information).

The use of the As-rich flux suppresses the formation of  $As^{5+}$  and leads to stabilization of the  $As^{3+}$  species. This is because the As-rich compositions have lower sulfur content and are less oxidizing. This reaction condition favors the new thioarsenates, LiEuAsS<sub>3</sub>, KEuAsS<sub>3</sub>, RbEuAsS<sub>3</sub>, and CsEuAsS<sub>3</sub>, which have no phosphorus analogues, and bypasses the formation of A<sub>4</sub>Eu(AsS<sub>4</sub>)<sub>2</sub>, which do. Thus, controlling the As fraction could be a useful synthetic approach to discovering new varieties of chalcoarsenate building blocks with low-valent arsenic.

Acknowledgment. Financial support from the National Science Foundation (Grant DMR-0801855) is gratefully acknowledged.

**Supporting Information Available:** X-ray crystallographic files (CIF) and experimental details for LiEuAsS<sub>3</sub>, KEuAsS<sub>3</sub>, RbEuAsS<sub>3</sub>, and CsEuAsS<sub>3</sub>. This material is available free of charge via the Internet at http://pubs.acs.org.

IC801017H

 <sup>(12) (</sup>a) Kanatzidis, M. G. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 93, 159. (b) Kim, K. W.; Kanatzidis, M. G. J. Am. Chem. Soc. 1998, 120, 8124.

<sup>(13)</sup> See the Supporting Information.