AEuAsS₃ ($A = Li$, K, Rb, and Cs): New As³⁺ Species from an **Arsenic-Rich Polysulfide Flux**

Tarun K. Bera and Mercouri G. Kanatzidis*

Department of Chemistry, Northwestern University, Evanston, Illinois 60208

Received June 3, 2008

Four europium compounds, LiEuAsS₃ (I), KEuAsS₃ (IIa), RbEuAsS₃ (**IIb**), and $CsEuAsS₃$ (**IIc**), containing $As³⁺$ were synthesized in molten alkali-metal polysulfide salts. An As-rich flux was found to be necessary to stabilize the pyramidal building unit $[{\sf Ass}_3]^{3-}$. All crystallize in the monoclinic space group $P2₁/c$ with two new structure types. Compound **I** features a new coordination mode for the $[{\sf AsS}_3]^{3-}$ unit and three-dimensional $[{\sf Eu}({\sf AsS}_3)]^-$ framework. Compounds **IIa**-**^c** are isostructural and feature a layer of $[Eu(Ass₃)]$ ⁻ with an unusual μ ₅-sulfide anion in a *umbrella-like* geometry. The compounds are paramagnetic semiconductors with an energy gap of ∼2.0 eV.

The reactivity of rare-earth elements with the molten alkali-metal polychalcophosphate salts has been studied extensively, $1,2$ and a wide variety of compounds with interesting structures and physical properties³ have been synthesized. The corresponding polychalcoarsenate system also merits investigation because it could lead to new materials and also teach us a great deal about similarities and differences between P and As chemistry.⁴ Moreover, the different redox behavior of P and As gives compounds with different structural motifs and physical properties. Initial studies on the RE/As/Q and A/RE/As/Q systems $(A = alkali)$ metals, $RE =$ rare earths, and $Q = S$, Se, and Te) reported recently have revealed novel species.⁵ Our investigations of the reactivity of several main-group and transition metals (Sn, Pb, Mn, Cd, etc.) with the alkali-metal polychalcoarsenate flux showed that divalent metals (e.g., Pb^{2+} , Mn^{2+} , Cd^{2+} , etc.) favor As^{5+} species in a wide composition range.⁴ The highly Lewis acidic tetravalent metals (e.g., Sn^{4+}), however, favor As^{3+} species. The stereochemically active 4s lone pair of electrons on As^{3+} could act as an enhancement factor for nonlinear optical properties $⁶$ and also can increase the glass</sup> formation tendency.⁷ It would be useful therefore to understand the flux chemistry and controlling factors for stabilizing $As⁵⁺$ vis-à-vis $As³⁺$ species in the compounds.

Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 7068-⁷⁰⁷⁰

Inorganic:Chemis

Here we describe new chemistry involving the reactivity of Eu metal and four new compounds: LiEuAs S_3 (I), $KEuAsS₃$ (IIa), $RbEuAsS₃$ (IIb), and $CsEuAsS₃$ (IIc). The compounds contain the pyramidal $[AsS_3]^{3-}$ as the building unit, which is unknown in the corresponding P system. The compounds formed under flux conditions designed to inhibit $As⁵⁺$.

The red crystalline compounds **^I** and **IIa**-**^c** were synthesized from the A₂S/Eu/As/S mixtures ($A = Li$, K, Rb, and Cs).⁸ The relatively As-rich flux ratio of 1/2/2/4 led to compound **^I**, while compounds **IIa**-**^c** were prepared from a flux ratio of 1/1/3/4. Here a flux ratio with a lower As content (e.g., 1/1/1/4) was unable to produce the title phases; instead, we observed $As⁵⁺$ -containing compounds A_4Eu-

7068 Inorganic Chemistry, Vol. 47, No. 16, 2008 10.1021/ic801017h CCC: \$40.75 [©] 2008 American Chemical Society Published on Web 07/25/2008

^{*} To whom correspondence should be addressed. E-mail: m-kanatzidis@ northwestern.edu.

^{(1) (}a) Kanatzidis, M. G.; Sutorik, A. C. *Prog. Inorg. Chem.* **1995**, *43*, 151. (b) Sunshine, S. A.; Kang, D.; Ibers, J. A. *J. Am. Chem. Soc.* **1987**, *109*, 6202. (c) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. *Inorg. Chem.* **1996**, *35*, 840. (d) Chondroudis, K.; Kanatzidis, M. G. *Inorg. Chem.* **1998**, *37*, 3792. (e) Aitken, J. A.; Chondroudis, K.; Young, V. G., Jr.; Kanatzidis, M. G. *Inorg. Chem.* **2000**, *39*, 1525. (f) Evenson, C. R.; Dorhout, P. K. *Inorg. Chem.* **2001**, *40*, 2875. (g) Evenson, C. R.; Dorhout, P. K. *Inorg. Chem.* **2001**, *40*, 2884. (h) Chen, J. H.; Dorhout, P. K. *J. Solid State Chem.* **1995**, *117*, 318.

^{(2) (}a) Goh, E. Y.; Kim, E. J.; Kim, S. J. *J. Solid State Chem.* **2001**, *160*, 195. (b) Aitken, J. A.; Evain, M.; Iordanidis, L.; Kanatzidis, M. G. *Inorg. Chem.* **2002**, *41*, 180. (c) Gauthier, G.; Evain, M.; Jobic, S.; Brec, R. *Solid State Sci.* **2002**, *4*, 1361. (d) Gauthier, G.; Jobic, S.; Brec, R.; Rouxel, J. *Inorg. Chem.* **1998**, *37*, 2332. (e) Komm, T.; Schleid, T. *J. Alloys Compd.* **2006**, *418*, 106. (f) Aitken, J. A.; Kanatzidis, M. G. *J. Am. Chem. Soc.* **2004**, *126*, 11780. (g) Klawitter, Y.; Bensch, W.; Wickleder, C. *Chem. Mater.* **2006**, *18*, 187. (h) Komm, T.; Schleid, T. *Z. Anorg. Allg. Chem.* **2006**, *632*, 42. (i) McCarthy, T. J.; Kanatzidis, M. G. *Chem. Mater.* **1993**, *5*, 1061–1063.

^{(3) (}a) Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. *J. Am. Chem. Soc.* **2007**, *129*, 14996. (b) Chen, J. H.; Dorhout, P. K.; Ostenson, J. E. *Inorg. Chem.* **1996**, *35*, 627. (c) McGuire, M. A.; Reynolds, T. K.; DiSalvo, F. J. *Chem. Mater.* **2005**, *17*, 2875. (d) Kumta, P. N.; Risbud, S. H. *J. Mater. Sci.* **1994**, *29*, 1135.

^{(4) (}a) Iyer, R. G.; Kanatzidis, M. G. *Inorg. Chem.* **2002**, *41*, 3605. (b) Iyer, R. G.; Do, J.; Kanatzidis, M. G. *Inorg. Chem.* **2003**, *42*, 1475. (c) Iyer, R. G.; Kanatzidis, M. G. *Inorg. Chem.* **2004**, *43*, 3656.

^{(5) (}a) Wu, Y.; Naether, C.; Bensch, W. *Inorg. Chem.* **2006**, *45*, 8835. (b) Bera, T. K.; Iyer, R. G.; Malliakas, C. D.; Kanatzidis, M. G. *Inorg. Chem.* **2007**, *46*, 8466.

^{(6) (}a) Ye, N.; Chen, Q.; Wu, B.; Chen, C. *J. Appl. Phys.* **1998**, *84*, 555. (b) Distanov, V. E.; Nenashev, B. G.; Kirdyashkin, A. G.; Serboulenko, M. G.; Proustite, n/a. *J. Cryst. Growth* **2002**, *235*, 457. (c) Feichtner, J. D.; Roland, G. W. *Appl. Opt.* **1972**, *11*, 993. (d) Hulme, K. F.; Jones, O.; Davies, P. H.; Hobden, M. V. *Appl. Phys. Lett.* **1967**, *10*, 133. (e) Bera, T. K.; Song, J. H.; Freeman, A. J.; Jang, J.-L.; Ketterson, J. B.; Kanatzidis, M. G. Angew. Chemie. accepted for publication. (7) Liang, Z. *J. Non-Cryst. Solids* **1991**, *127*, 298.

 $(AsS₄)₂$ (A = K, Rb, and Cs), which are isostructural with the chalcophosphates.^{1c} Lowering the flux basicity by decreasing the A₂S/S ratio also failed to stabilize the As^{3+} phases. It seems that the less oxidizing As-rich flux is necessary to stabilize the As^{3+} species in the A₂S/Eu/As/S system.

Single-crystal X-ray diffraction analysis showed that the compounds LiEuAsS3 (**I**), KEuAsS3 (**IIa**), RbEuAsS3 (**IIb**), and $CsEuAsS₃$ (**) crystallize in the monoclinic space group** $P2_1/c$.⁹ The structure of **I** is built of slabs of $[Eu(Ass3)]^{-1}$ (shaded region in Figure 1a) interconnected in the third dimension via Eu-S bonds to give a dense 3-D framework, leaving a 1-D channel for the tiny $Li⁺$ ions. Two notable features in this structure are (i) the unusual coordination mode of the $[AsS₃]^{3-}$ anion to Eu and (ii) the coordination environment of S3. Each $[AsS_3]^{3-}$ anion bridges to five Eu atoms, four within the slab and one from a neighboring slab (Figure 2a). Among the three S atoms in the asymmetric unit, the coordination environment of S1 and S2 is normal, whereas S3 has an unusual "flattened umbrella-like" geom-

COMMUNICATION

Figure 1. Extended unit cell view of (a) the 3-D framework structure of LiEuAsS₃ (the shaded part represents the $[Eu(AsS₃)]$ ⁻ slab) and (b) the layered structure of $KEuAsS₃$ (**Ia**).

Figure 2. (a) View of the $[Eu(AsS₃)]$ ⁻ slab in **I**. Each $[AsS₃]$ ³⁻ anion is coordinated to four Eu atoms within the slab and one from the neighboring slab (gray atom connected to S2). (b) View of the single layer in the 2-D structures (**IIa**-**c**).

etry similar to that in α -Na₆Pb(PS₄₎₄¹⁰ (Figure 3a).
The coordination environment of Eu is distorted

The coordination environment of Eu is distorted monocapped trigonal prismatic with all seven Eu-S distances in the range of 2.929(2)-3.139(2) Å (Figure 3a).¹¹ The EuS₇ monocapped trigonal prisms share only edges within the $[Eu(AsS₃)]$ ⁻ slab (in the *ac* plane) and extend their coordination into the third dimension (along the *b* axis) through corner sharing (Figure 1a).

The Li atoms are in a distorted tetrahedral environment of S atoms (see Figure 3b). Those $Li-S$ distances are in the range of 2.462(13)-2.624(13) Å.

The isostructural compounds $\textbf{I} \textbf{a} - \textbf{c}$ have $\omega^2 [\text{Eu(Ass3)}]^{-1}$ layers, which sandwich the large alkali-metal ions: K, Rb,

⁽⁸⁾ **LiEuAsS3 (I).** A mixture of Li2S (0.029 g, 0.63 mmol), Eu (0.190 g, 1.25 mmol), As (0.094 g, 1.25 mmol), and S (0.080 g, 2.50 mmol) was loaded into a fused-silica tube in a nitrogen-filled glovebox. It was flame-sealed under vacuum (∼10-⁴ mbar) and then heated to 650 °C in 10 h. After 60 h at 650 °C, it was cooled down to 250 °C in 80 h followed by rapid cooling to room temperature. A mixture of red and black crystals (1:9) was obtained after dissolution of the excess flux in degassed DMF. The red crystalline phase (<10% yield) was identified as **I**, and the black material was mostly As. Several attempts to make pure LiEuAsS3 have failed so far. **KEuAsS3 (IIa).** A red crystalline product was isolated as a single phase in >70% yield from the mixture of K_2S (0.072 g, 0.66 mmol), Eu (0.100 g, 0.66 mmol), As (0.150 g, 2.00 mmol), and S (0.084 g, 2.61 mmol) using a procedure similar to that above. Semiquantitative energy-dispersive (EDS) analysis gave an average composition of $K_{1.1}Eu_{1.0}As_{1.0}S_{3.2}$. **RbEuAsS₃ (Ib).** It was isolated from the mixture of Rb_2S (0.100 g, 0.49 mmol), Eu (0.075 g, 0.49 mmol), As (0.111 g, 1.48 mmol), and S (0.063 g, 1.97 mmol) using a procedure similar to that above. Red crystals, single phase with >75% yield, and EDS analysis gave the composition Rb1.0Eu1.0As1.1S3.2. **CsEuAsS3 (IIc).** A single-phase red crystalline compound with $>70\%$ yield was achieved from the mixture of Cs₂S (0.120 g, 0.40 mmol), Eu (0.061 g, 0.40 mmol), As (0.090 g, 1.22 mmol), and S (0.052 g, 1.62 mmol) as described above. EDS analysis gave an average composition of $Cs_{1.0}Eu_{1.0}As_{1.1}S_{3.3}$.

Single-crystal X-ray diffraction data were collected at 100 K using a STOE imaging-plate diffraction system (IPDS-2) with graphitemonochromatized Mo $K\alpha$ radiation. A numerical absorption correction was applied. Direct methods and full-matrix least-squares refinements against *F*² were performed with the *SHELXTL* package. Crystal data for LiEuAsS₃ (**I**): monoclinic *P*2₁/*c*, *Z* = 4, *a* = 5.6862(5) Å, *b* = 13.1187(11) Å, $c = 7.1735(6)$ Å, $\beta = 104.858(7)$ °, $V = 517.22(8)$
Å³, $\theta_{\text{max}}(\text{Mo K}\alpha) = 29.18$ °, total reflections = 4715, unique reflections Å³, $\theta_{\text{max}}(\text{Mo Kα}) = 29.18^{\circ}$, total reflections = 4715, unique reflections $[F_0^2 > 2\sigma(F_0^2)] = 1387$, number of variables = 56, $\mu = 19.503$ mm⁻¹, $> 2\sigma(F_o^2)$] = 1387, number of variables = 56, μ = 19.503 mm⁻¹,
= 4.238 σ cm⁻³, R_{int} = 3.37%. GOF = 1.427, R_1 = 2.45%, R_{in} $D_c = 4.238$ g cm⁻³, $R_{int} = 3.37\%$, GOF = 1.427, $R_1 = 2.45\%$, $R_w = 5.23$ for $I \ge 2\sigma(I)$. KEuAsS₂ (**Ha**): $P2\sqrt{C}$, $Z = 4$, $a = 8.8306(8)$, $\stackrel{\circ}{A}$, $\stackrel{\circ}{B}$ 5.23 for $I > 2\sigma(I)$. KEuAsS₃ (**IIa**): $P2_1/c$, $Z = 4$, $a = 8.8306(8)$ Å, $b = 8.3455(9)$ Å, $c = 8.6224(9)$ Å, $\beta = 106.591(8)$ °, $V = 608.98(11)$ = 8.3455(9) Å, $c = 8.6224(9)$ Å, $\beta = 106.591(8)^\circ$, $V = 608.98(11)$
 \AA^3 $\theta_{\text{max}}(M_0 K\alpha) = 29.24^\circ$ total reflections = 5750, unique reflections Å³, θ_{max} (Mo K α) = 29.24°, total reflections = 5750, unique reflections $[F_{\gamma}^2 > 2\sigma(F_{\gamma}^2)] = 1581$, number of variables = 56, μ = 17.252 mm⁻¹ $[F_0^2 > 2\sigma(F_0^2)] = 1581$, number of variables = 56, $\mu = 17.252$ mm⁻¹,
 $D_2 = 3.950$ g cm⁻³ $R_{\text{tot}} = 9.06\%$ GOF = 1.017, $R_1 = 2.32\%$ $R_{\text{tot}} =$ $D_c = 3.950$ g cm⁻³, $R_{int} = 9.06\%$, GOF = 1.017, $R_1 = 2.32\%$, $R_w = 4.53$ for $I > 2\sigma(I)$. RbEuAsS₃ (**IIb**): P_2I/c , $Z = 4$, $a = 9.0795(8)$ Å, 4.53 for $I > 2\sigma(I)$. RbEuAsS₃ (**IIb**): $P2_1/c$, $Z = 4$, $a = 9.0795(8)$ Å, $b = 8.3669(8)$ Å, $c = 8.6752(8)$ Å, $\beta = 105.844(7)$ ° $V = 633.99(10)$ *b* = 8.3669(8) Å, *c* = 8.6752(8) Å, β = 105.844(7)°, *V* = 633.99(10) \hat{A}^3 θ_{max} (Mo K α) = 29.03° total reflections = 7053, unique reflections Å³, $\theta_{\text{max}}(\text{Mo K}\alpha) = 29.03^{\circ}$, total reflections = 7053, unique reflections $[F_0^2$ $> 2\sigma(F_0^2) = 2047$, number of variables = 56, $\mu = 23.543$ mm⁻¹,
 ≈ 4.280 s cm⁻³ $R_{\text{int}} = 4.07\%$ GOF = 1.168 $R_1 = 2.10\%$ $R_{\text{min}} =$ $D_c = 4.280 \text{ g cm}^{-3}$, $R_{\text{int}} = 4.07\%$, GOF = 1.168, $R_1 = 2.10\%$, $R_w = 4.12$ for $I \ge 2\sigma(I)$, CsEuAsS₂ (He): P_2 , $C_z = 4$, $a = 9.3953(19)$ Å 4.12 for $I > 2\sigma(I)$. CsEuAsS₃ (**IIc**): $P2_1/c$, $Z = 4$, $a = 9.3953(19)$ Å, $b = 8.4407(17)$ Å, $c = 8.7702(18)$ Å, $\beta = 105.12(3)^{\circ}$, $V = 671.4(2)$ $b = 8.4407(17)$ Å, $c = 8.7702(18)$ Å, $\beta = 105.12(3)$ °, $V = 671.4(2)$ Å³, $\theta_{\text{max}}(\text{Mo K}\alpha) = 29.14^{\circ}$, total reflections = 6184, unique reflections $[F_o^2]$ $> 2\sigma(F_o^2)$] = 1800, number of variables = 55, μ = 20.372 mm⁻¹,
= 4.511 σ cm⁻³, R_{int} = 3.32%. GOF = 1.213, R_1 = 2.38%, R_{min} $D_c = 4.511$ g cm⁻³, $R_{int} = 3.32\%$, GOF = 1.213, $R_1 = 2.38\%$, $R_w = 5.92$ for $I \ge 2\sigma$ (*I*) 5.92 for *^I* > ²*^σ* (*I*). (10) Aitken, J. A.; Kanatzidis, M. G. *Inorg. Chem.* **²⁰⁰¹**, *⁴⁰*, 2938.

Figure 3. (a) Local coordination environment of Eu and As and the μ_4 -S3 center in LiEuAsS3. (b) Distorted tetrahedral Li center in **I**. (c) Coordination environment of μ ₅-sulfide anion S1, trigonal-pyramidal As, and distorted bicapped trigonal-prismatic Eu in **IIa**-**c**. (d) Local environment of the alkali metal in the layered structures (**IIa**-**c**).

or Cs (Figure 1b). The layers are parallel to the *bc* plane. Unlike **I**, here each $[AsS_3]^{3-}$ anion bridges to four Eu atoms (Figure 2b) and the coordination environment of S1 is very unusual. The μ ₅-S1 is bonded to four Eu atoms and one As atom to form an unusual *umbrella-like* geometry ("tetra umbrella"), with all four Eu atoms nearly on the square plane and S1 located 0.26 Å above it (Figure 3c). The As-S1 bond defines the umbrella handle. To the best of our knowledge, this μ_5 -sufide anion geometry is new.

The Eu atoms in **IIa**-**^c** have a distorted bicapped trigonalprismatic environment with six short Eu-S distances in the range of $2.941(2)-3.083(2)$ Å (solid line) and two other longer Eu-S distances at 3.256(2) and 3.480(2) Å (dotted line) (Figure 3c).¹² The EuS₈ polyhedra share-edges and rectangular faces to form a chain along the *b* axis, and the chains are linked into layers through edge sharing (Figure 2b). The rectangular face-sharing creates Eu-Eu distances of [∼]3.804(4) Å. All three As-S bond distances are normal and in the range of $2.221(1)-2.283(1)$ Å.^{4,11}

The K, Rb, and Cs ions have eight-coordinated distorted bicapped trigonal-prismatic geometry. The A···S interactions are mostly ionic in nature. The layered structure with the relatively larger alkali metals (K, Rb, and Cs) and a 3-D framework with the smaller alkali-metal Li is in accordance with the predictions derived from the counterion effect on the dimensionality of the structure.¹²

The Raman spectra obtained on polycrystalline samples of **IIa**-**^c** were similar and exhibit a very strong peak at 382 cm^{-1} together with some weak bands (Figure 4a). These are assigned to the stretching and deformation modes of the

Figure 4. (a) Fourier transform Raman spectra for pyramidal As^{III}S₃ [KEuAsS₃] and tetrahedral $As^{IV}S₄$ [K₄Eu(AsS₄)₂] building units. (b) UV-vis absorption spectra for **IIa**-**c**.

 $[As^{III}S₃]$ ³⁻ anion. These values are shifted to lower frequencies compared with those of the $[As^VS₄]³⁻$ anion because of the stronger As^V $-$ S interactions relative to As^{III} $-$ S as follows from the longer As–S bonds in $[As^{III}S_3]^{3-}$ compared to those
in $[As^{VI}S_3]^{3-}$ in $[As^VS₄]^{3–5a}$

Temperature-dependent (2-400 K) magnetic susceptibility measurements of **IIa** (see the Supporting Information) show Curie law behavior, with an effective magnetic moment of 7.64 μ _B mol⁻¹. This is close to the calculated 7.9 μ _B mol⁻¹ for Eu^{2+} ions. Therefore, the compounds are charge balanced based on the formalism $A^+Eu^{2+}(AsS_3)^{3-}$.

The solid-state UV-vis optical absorption spectra of **IIa**-**^c** show a very strong absorption onset at [∼]2.0 eV (Figure 4b). 13 This is attributed to excitations within the 2_{∞} [Eu(AsS₃)⁻] layer and believed to originate from transitions involving filled S-based p orbitals in the valence band and empty Eu d orbitals in the conduction band. The alkali metal does not seem to play a significant role in defining the electronic structure of the framework, consistent with the predominantly ionic character of the $A \cdot \cdot \cdot S$ interactions. The thermal behavior of **IIa**-**^c** investigated by means of differential thermal analysis suggests that the compounds melt congruently (see the Supporting Information).

The use of the As-rich flux suppresses the formation of $As⁵⁺$ and leads to stabilization of the $As³⁺$ species. This is because the As-rich compositions have lower sulfur content and are less oxidizing. This reaction condition favors the new thioarsenates, LiEuAsS₃, KEuAsS₃, RbEuAsS₃, and CsEuAsS3, which have no phosphorus analogues, and bypasses the formation of $A_4Eu(AsS_4)_2$, which do. Thus, controlling the As fraction could be a useful synthetic approach to discovering new varieties of chalcoarsenate building blocks with low-valent arsenic.

Acknowledgment. Financial support from the National Science Foundation (Grant DMR-0801855) is gratefully acknowledged.

Supporting Information Available: X-ray crystallographic files (CIF) and experimental details for LiEuAsS₃, KEuAsS₃, RbEuAsS₃, and CsEuAsS₃. This material is available free of charge via the Internet at http://pubs.acs.org.

IC801017H

⁽¹¹⁾ Selected bond lengths (in \AA) for LiEuAsS₃: Eu-S1 2.987(2), 3.139(2); Eu-S2 2.949(2), 2.998(2); Eu-S3 2.929(2), 2.960(2), 3.092(2); As-S1 2.262(2); As-S2 2.225(2); As-S3 2.263(2). KEuAsS₃: Eu-S1 As-S1 2.262(2); As-S2 2.225(2); As-S3 2.263(2). KEuAsS₃: Eu-S1
3 256(1) - 3 083(1) - 3 056(1) - 3 034(1): Eu-S2 - 3 025(1) - 3 027(1): 3.256(1), 3.083(1), 3.056(1), 3.034(1); Eu-S2 3.025(1), 3.027(1); Eu-S3 2.941(1), 3.479(2); As-S1 2.221(1); As-S2 2.225(1); As-S3 2.284(1). RbEuAsS₃: Eu-S1 3.046(1), 3.059(1), 3.086(1), 3.275(1); Eu-S2 3.013(1), 3.025(1); Eu-S3 2.943(1), 3.543(2); As-S1 2.278(1); Eu-S2 3.013(1), 3.025(1); Eu-S3 2.943(1), 3.543(2); As-S1 2.278(1); As-S2 2.221(1); As-S3 2.219(1). CsEuAsS₃: Eu-S1 3.068(1), 3.099(1). 3.342(1): Eu-S2 3.018(1). 3.003(1): Eu-S3 3.069(1), 3.099(1), 3.342(1); Eu-S2 3.018(1), 3.003(1); Eu-S3 2.949(1); As-S1 2.268(1); As-S2 2.226(1); As-S3 2.223(1).

^{(12) (}a) Kanatzidis, M. G. *Phosphorus, Sulfur Silicon Relat. Elem.* **1994**, *93*, 159. (b) Kim, K. W.; Kanatzidis, M. G. *J. Am. Chem. Soc.* **1998**,

⁽¹³⁾ See the Supporting Information.