Inorganic Chemistry

# Core Expansion Reactions of Cyanamido/Carbodiimido-Bridged Polynuclear Iridium Complexes

Makoto Imaji, Yoshiaki Tanabe, Yuichiro Mutoh, and Youichi Ishii\*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Received September 12, 2008

Core expansion reactions of di- and tetrairidium complexes  $[Cp^{*}Ir(\mu_2-NCN-N,N)]_2$  (1;  $Cp^* = \eta^5-C_5Me_5$ ),  $[Cp^*Ir(\mu_3-NCN-N,N,N)]_4$  (2), and phosphine derivatives of 1 have been investigated, and it has been revealed that cyanamido ligands in these complexes can change their coordination modes flexibly on reactions with a second transition metal complex. Treatment of diiridium complex 1 with  $[Cp^*IrCl_2]_2$  gives the tetrairidium complex  $[(Cp^*Ir)_2(\mu_3-NCN-N,N,N')_2(IrCp^*Cl_2)_2]$  (6) with  $\mu_3 - \kappa N, \kappa N$  cyanoimido(2-) ligands. On the other hand, the reaction of 1 with  $[PdCl(\eta^3-C_3H_5)]_2$  affords the NCN-bridged Ir<sub>2</sub>Pd<sub>4</sub> hexanuclear complex  $[(Cp^*IrCl)_2(\mu_4-NCN-N,N,N',N')_2(Pd_2(\mu-Cl)(\eta^3-C_3H_5))_2]$  (7) and Ir<sub>4</sub>Pd<sub>4</sub> octanuclear complex  $[(Cp^*Ir)_4(\mu_4-NCN-N,N,N,N')_4(PdCl(\eta^3-C_3H_5))_4]$  (8). The NCN-bridges in 7 provide the first example of the crystallographically determined  $\mu_4 - \kappa N, \kappa N, \kappa N$  carbodiimido(2-) ligand. Complex 8 with  $\mu_4 - \kappa N, \kappa N, \kappa N, \kappa N, \kappa N$  cyanoimido(2-) ligands can also be synthesized selectively by the reaction of the parent cubane complex 2 with  $[PdCl(\eta^3-C_3H_5)]_2$ . Diphosphine derivative of 1,  $[\{Cp^*Ir(\mu_2-NCN)\}_2(\mu-dppm)]$  (4; dppm = Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>), behaves differently on reactions with  $[PdCl(\eta^3-C_3H_5)]_2$  and  $[MCl(cod)]_2$  (cod = cyclocat-1,5-diene) to form the NCN-bridged  $Ir_2M_2$  (M = Pd, Rh, Ir) tetranuclear complexs  $[(Cp^*Ir)_2(\mu_3-NCN-N,N,N')_2\{PdCl(\eta^3-C_3H_5)\}_2(\mu-dppm)]$  (9) and  $[(Cp^*Ir)_2(\mu_3-NCN-N,N,N')_2\{MCl(cod)\}_2(\mu-dppm)]$  (11a, M = Rh; 11b, M = Ir), respectively. The molecular structures for 6, 7, 8, 11a, and 11b have been determined by single-crystal X-ray analyses.

### Introduction

Much current research interest has been focused on the chemistry of multinuclear complexes constructed with bridging  $N_3^-$  and  $CN^-$  ligands because these small unsaturated anions give rise to a variety of intriguing three-dimensional structures with advanced functions such as molecular magnets, molecular boxes, and gas storage.<sup>1</sup> Although the cyanamide anions (NCN<sup>2-</sup> and NCNH<sup>-</sup>) have structures closely related to  $N_3^-$  and  $CN^-$ , coordination chemistry of

cyanamido-bridged complexes has been developed much less extensively.<sup>2-4</sup> However, owing to the resonance between cyanoimido/amido ( $N \equiv C - N^2 / N \equiv C - NH^-$ ) and carbodi-

<sup>\*</sup> To whom correspondence should be addressed. E-mail: yo-ishii@kc.chuo-u.ac.jp.

 <sup>(1) (</sup>a) Ribas, J.; Escuer, A.; Monfort, M.; Vicente, R.; Cortés, R.; Lezama, L.; Rojo, T. Coord. Chem. Rev. 1999, 193–195, 1027–1068. (b) Escuer, A.; Aromí, G. Eur. J. Inorg. Chem. 2006, 4721–4736. (c) Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283–391.
 (d) Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.; Cartier, C.; Villain, F. Coord. Chem. Rev. 1999, 190–192, 1023–1047. (e) Beltran, L. M. C.; Long, J. R. Acc. Chem. Res. 2005, 38, 325–334. (f) Chapman, K. W.; Southon, P. D.; Weeks, C. L.; Kepert, C. J. Chem. Commun. 2005, 3322–3324. (g) Kaye, S. S.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 6506–6507. (h) Boyer, J. L.; Kuhlman, M. L.; Rauchfuss, T. B. Acc. Chem. Res. 2007, 40, 233–242. (i) Wang, X.-Y.; Wang, Z.-M.; Gao, S. Chem. Commun. 2008, 281–294.

<sup>(2) (</sup>a) Beck, W.; Bock, H.; Schlodder, R. Z. Naturforsch. B 1974, 29, 75–79. (b) Gordetsov, A. S.; Zimina, S. V.; Levakova, E. Yu.; Kulagina, N. V. Zh. Obshch. Khim. 1997, 67, 764–766. (c) Schneider, W.; Angermainer, K.; Schmidbaur, H. Z. Naturforsch. B 1996, 51, 801–805. (d) Mindiola, D. J.; Tsai, Y.-C.; Hara, R.; Chen, Q.; Meyer, K.; Cummins, C. C. Chem. Commun. 2001, 125–126. (e) Cao, R.; Tatsumi, K. Chem. Commun. 2002, 2144–2145.

<sup>(3) (</sup>a) Chaudhuri, P.; Wieghardt, K.; Nuber, B.; Weiss, J. J. Chem. Soc., Chem. Commun. 1985, 265–266. (b) Meyer, F.; Hyla-Kryspin, I.; Kaifer, E.; Kircher, P. Eur. J. Inorg. Chem. 2000, 771–781. (c) Yuan, M.; Gao, S.; Sun, H.-L.; Su, G. Inorg. Chem. 2004, 43, 8221–8223. (d) Escuer, A.; McKee, V.; Nelson, J.; Ruiz, E.; Sanz, N.; Vicente, R. Chem.-Eur. J. 2005, 11, 398–405. (e) Yuan, M.; Zhao, F.; Zhang, W.; Pan, F.; Wang, Z.-M.; Gao, S. Chem.-Eur. J. 2007, 13, 2937– 2952.

<sup>(4)</sup> For recent reports of mononuclear cyanamido complexes, see: (a) Huynh, M. H. V.; White, P. S.; Carter, C. A.; Meyer, T. J. Angew. Chem., Int. Ed. 2001, 40, 3037–3039. (b) Cunha, S. M. P. R. M.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 2002, 1791–1799. (c) Huynh, M. H. V.; Meyer, T. J.; Baker, R. T. J. Am. Chem. Soc. 2003, 125, 2832–2833. (d) Soo, H. S.; Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2004, 126, 11370–11376. (e) Huynh, M. H. V.; Meyer, T. J.; Jameson, D. L. Inorg. Chem. 2005, 44, 3657–3663.



**Figure 1.** Bridging coordination modes of the NCN<sup>2–</sup> ligand. (i)  $\mu_2$ - $\kappa N, \kappa N'$  (linear),<sup>2d,e</sup> (ii)  $\mu_2$ - $\kappa N, \kappa N'$  (bent),<sup>2e</sup> (iii)  $\mu_2$ - $\kappa N, \kappa N, \kappa^{6b}$  (iv)  $\mu_3$ - $\kappa N, \kappa N, \kappa N'$  (carbodiimido(2-)),<sup>2c,6a,c</sup> (v)  $\mu_3$ - $\kappa N, \kappa N, \kappa N'$  (cyanoimido(2-)), (vi)  $\mu_3$ - $\kappa N, \kappa N, \kappa N, \kappa N, \kappa^{6}$  (vii)  $\mu_4$ - $\kappa N, \kappa N, \kappa N, \kappa N, \kappa N, \kappa N'$ , <sup>6d</sup>

imido ( $^N=C=N^-/^N=C=NH$ ) structures, the cyanamide anions can adopt a variety of coordination modes ranging from terminal to  $\mu_4$  as shown in Figure 1.<sup>5</sup> The cyanamidecarbodiimide resonance also leads to their exceptionally soft nature as an imide/amide anion, which enables the cyanamido ligand to form stable complexes with both early and late transition metals. In addition, the sterically small rod-like structures of the cyanamido anions are considered to be advantageous on incorporation into sterically congested polymetallic systems.

These promising features of the cyanamido ligands prompted us to explore the synthetic chemistry of cyanamidobridged polynuclear complexes. In fact, we have recently revealed that several unique cyanamido-bridged multinuclear structures can be constructed quite effectively.<sup>6</sup> For example, di- and tetrairidium complexes such as  $[Cp*Ir(\mu_2-NCN-N,N)]_2$  (1,  $Cp^* = \eta^5-C_5Me_5$ ))<sup>6b</sup> and  $[Cp*Ir(\mu_3-NCN-N,N,N)]_4$ (2),<sup>6a</sup> as well as triruthenium complexes such as  $[(Cp*Ru)_3(\mu_3-NCN-N,N,N)_2]^{-}$ ,<sup>6b</sup> were synthesized, and their reactivities including the skeletal transformations and heterometallic cluster formations have been disclosed. In particular, the metal-bound nitrogen atoms of the cyanamido ligands in complex 1, which are sp<sup>3</sup>-hybridized, can coordinate to a cationic transition metal fragment ML<sup>+</sup> to form the NCNcapped heterotrinuclear complexes  $[(Cp*Ir)_2(ML)(\mu_3-NCN-$   $N,N,N)_2$ ]<sup>+</sup> (ML = Pd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>) (**3a**); Rh(cod) (**3b**, cod = cycloocta-1,5-diene); RuCp (Cp =  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)). In the present study, we have turned our attention to the donor ability of the sp-hybridized terminal nitrogen atoms in complexes **1**, **2**, and phosphine derivatives of **1** ([{Cp\*Ir( $\mu_2$ -NCN-N,N)}<sub>2</sub>-( $\mu$ -dppm)] (**4**, dppm = Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>) and [{Cp\*Ir( $\mu_2$ -NCN-N,N)}<sub>2</sub>(PMe<sub>3</sub>)] (**5**)) which can be viewed as metallonitriles and revealed some core expansion reactions leading to the formation of heterobimetallic tetra-, hexa-, and octanuclear complexes including the first example of a structurally characterized  $\mu_4$ -NCN- $\kappa N,\kappa N,\kappa N',\kappa N'$  complex.

## **Experimental Section**

General Considerations. All reactions were carried out under a dry nitrogen atmosphere using standard Schlenk techniques unless otherwise specified. Complexes 1,<sup>6b</sup> 2,<sup>6a</sup> 4,<sup>6b</sup> 5,<sup>6b</sup> [Cp\*IrCl<sub>2</sub>]<sub>2</sub>,<sup>7</sup>  $[PdCl(\eta^3-C_3H_5)]_2$ ,<sup>8</sup>  $[IrCl(cod)]_2$ ,<sup>9</sup> and  $[RhCl(cod)]_2$ <sup>9</sup> were prepared according to the literature methods. CH<sub>2</sub>Cl<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> (1,2-dichloroethane), and MeOH were dried and distilled over P<sub>4</sub>O<sub>10</sub> (CH<sub>2</sub>Cl<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) and Mg (MeOH) and degassed before use. Other solvents (dehydrated-grade, Aldrich) and reagents including Na2NCN (MP Biomedicals Inc.) were commercially obtained and used without further purification. <sup>1</sup>H (500 MHz) and <sup>31</sup>P{<sup>1</sup>H} (202 MHz) NMR spectra were recorded on a JEOL ECA-500 spectrometer. IR spectra were recorded on a JASCO FT/IR-410 spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 series II CHN analyzer. Amounts of the solvent molecules in the crystals were determined not only by elemental analyses but also by <sup>1</sup>H NMR spectroscopy.

Synthesis of  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2(IrCp*Cl_2)_2]$  (6). Method 1. Complex 1 (40.1 mg, 0.055 mmol) and [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (44.2 mg, 0.055 mmol) were dissolved in toluene (4 mL) and stirred for 21 h at room temperature. The resulting reddish purple suspension was dried up in vacuo, and the resulting reddish purple powder was extracted with C2H4Cl2. Slow addition of hexane to the concentrated extract afforded  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2(IrCp*Cl_2)_2]$ .  $2C_2H_4Cl_2$  (6 · 2C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) as reddish purple crystals.<sup>10</sup> The crystals gave off a part of C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> molecules when dried up in vacuo to afford a reddish purple powder with the empirical formula 6.0.5C2H4Cl2 (71.6 mg, 0.045 mmol, 83% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 1.93 (s, 30H, Cp\*), 1.65 (s, 30H, Cp\*). IR (KBr, cm<sup>-1</sup>): 2162 (s, v<sub>NCN</sub>). Anal. Calcd for C<sub>43</sub>H<sub>62</sub>Cl<sub>5</sub>Ir<sub>4</sub>N<sub>4</sub> (6 • 0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>): C, 32.66; H, 3.95; N, 3.54. Found: C, 32.33; H, 3.98; N, 3.53. Crystals of 6 suitable for X-ray diffraction study were obtained by further recrystallization from CH<sub>2</sub>Cl<sub>2</sub>-MeOH-hexane.

**Method 2.** [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (42.5 mg, 0.053 mmol) and Na<sub>2</sub>NCN (4.6 mg, 0.053 mmol) were slurried in THF and stirred overnight. The initial orange solution gradually changed to a reddish purple suspension. The resulting mixture was dried up in vacuo and extracted with  $C_2H_4Cl_2$ . Slow addition of hexane to the concentrated extract afforded  $6\cdot 2C_2H_4Cl_2$  as reddish purple crystals, which was collected by filtration and dried up in vacuo to afford  $6\cdot 0.5C_2H_4Cl_2$  (35.0 mg, 0.022 mmol, 83% yield).

**Reaction of 1 with [PdCl(\eta^3-C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub>.** Complex 1 (17.1 mg, 0.023 mmol) and [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> (18.0 mg, 0.049 mmol) were

- (8) Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorg. Synth. 1990, 28, 342– 345.
- (9) Giordani, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218-220.

<sup>(5)</sup> A few other types of metal–NCN interaction modes such as μ<sub>5</sub> and μ<sub>6</sub> have been found in inorganic cyanamide salts: (a) Neukirch, M.; Tragl, S.; Meyer, H.-J. *Inorg. Chem.* **2006**, *45*, 8188–8193. (b) Liu, X.; Krott, M.; Müller, P.; Hu, C.; Leuken, H.; Dronskowski, R. *Inorg. Chem.* **2005**, *44*, 3001–3003.

<sup>(6) (</sup>a) Tanabe, Y.; Kuwata, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124, 6528–6529. (b) Kajitani, H.; Tanabe, Y.; Kuwata, S.; Iwasaki, M.; Ishii, Y. Organometallics 2005, 24, 2251–2254. (c) Takahata, K.; Iwadate, N.; Kajitani, H.; Tanabe, Y.; Ishii, Y. J. Organomet. Chem. 2007, 692, 208–216. (d) Tanabe, Y.; Kajitani, H.; Iwasaki, M.; Ishii, Y. Dalton Trans. 2007, 4701–4707.

<sup>(7)</sup> White, C.; Yates, A.; Maitlis, P. M.; Heinekey, D. M. Inorg. Synth. 1992, 29, 228–234.

<sup>(10)</sup> The composition of this material was confirmed by a preliminary X-ray study.

### Cyanamido/Carbodiimido-Bridged Polynuclear Iridium Complexes

dissolved in THF, and the mixture was stirred for 13 h at room temperature. The resulting red suspension was dried up in vacuo to afford a yellow powder. The <sup>1</sup>H NMR analysis of the crude material indicated that  $[(Cp*IrCl)_2(\mu_4-NCN-N,N,N',N')_2{Pd_2(\mu Cl)(\eta^3-C_3H_5)_2}_2]$  (7) and  $[(Cp*Ir)_4(\mu_4-NCN-N,N,N')_4{PdCl(\eta^3 C_3H_5)}_4]$  (8) were formed in the ratio of 12:1. This powder was extracted with CH<sub>2</sub>Cl<sub>2</sub>, and addition of hexane to the concentrated extract gave a mixture of 7 and 8 as orange crystals (16.6 mg, 56% total yield, 7/8 = 7:4). 7: <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  5.45 (m, 4H, C<sub>3</sub>H<sub>5</sub>), 4.11 (br, 8H, C<sub>3</sub>H<sub>5</sub>), 3.03 (d, J = 12.0 Hz, 8H, C<sub>3</sub>H<sub>5</sub>), 1.90 (s, 30H, Cp\*). IR (KBr, cm<sup>-1</sup>): 2014 (s,  $\nu_{NCN}$ ). Analytically pure samples of 7 could not be obtained even by repeated recrystallization because of contamination of 8.

Synthesis of 8 from 2. Complex 2 (32.9 mg, 0.022 mmol) and [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> (17.9 mg, 0.049 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> and stirred for 14 h at room temperature. The resulting orange solution was dried up in vacuo and extracted with CH<sub>2</sub>Cl<sub>2</sub>. Slow addition of hexane to the concentrated extract afforded **8** • 6CH<sub>2</sub>Cl<sub>2</sub> as orange crystals. The crystals gave off CH<sub>2</sub>Cl<sub>2</sub> molecules when dried in vacuo to afford an orange powder of **8** (48.2 mg, 0.022 mmol, 98% yield). The single crystal of **8** • 6CH<sub>2</sub>Cl<sub>2</sub> used in the X-ray study was obtained by further recrystallization from CH<sub>2</sub>Cl<sub>2</sub>-hexane at -20 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  5.46 (m, 4H, C<sub>3</sub>H<sub>5</sub>), 4.11 (br, 8H, C<sub>3</sub>H<sub>5</sub>), 3.04 (br d, J = 12.0 Hz, 8H, C<sub>3</sub>H<sub>5</sub>), 1.55 (s, 60H, Cp\*). IR (KBr, cm<sup>-1</sup>): 2152 (s,  $\nu_{NCN}$ ). Anal. Calcd for C<sub>56</sub>H<sub>80</sub>Cl<sub>4</sub>Ir<sub>4</sub>N<sub>8</sub>Pd<sub>4</sub>: C, 30.55; H, 3.66; N, 5.09. Found: C, 30.16; H, 3.82; N, 4.78.

**Reaction of 2 with [Pd(\eta^3-C<sub>3</sub>H<sub>5</sub>)(acetone)<sub>n</sub>](OTf). To a CH<sub>2</sub>Cl<sub>2</sub> solution (2 mL) of complex <b>2** (31.6 mg, 0.021 mmol) was added an acetone solution of [Pd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)(acetone)<sub>n</sub>](OTf) (OTf = OSO<sub>2</sub>CF<sub>3</sub>) prepared in situ from [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> (15.8 mg, 0.043 mmol) and silver triflate (22.1 mg, 0.086 mmol) in acetone (4 mL), and the mixture was stirred for 13 h at room temperature. The resulting dark red solution was dried up in vacuo, and the residual dark red solid was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The extract was evaporated and recrystallized from MeOH-ether to yield red crystals of [(Cp\*Ir)<sub>2</sub>{Pd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)}( $\mu_3$ -NCN-*N*,*N*,*N*)<sub>2</sub>](OTf) (**3a**OTf) (31.4 mg, 0.030 mmol, 71% yield), whose spectral data are identical with those reported previously.<sup>6b</sup>

Synthesis of  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2\{PdCl(\eta^3-C_3H_5)\}_2(\mu$ dppm)] (9). Complex 4 (18.2 mg, 0.016 mmol) and [PdCl- $(\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> (7.1 mg, 0.019 mmol) were dissolved in benzene, and the mixture was stirred at room temperature until the yellow solution turned orange (overnight). The resulting solution was evaporated to dryness, and the residual orange powder was extracted with CH<sub>2</sub>Cl<sub>2</sub>. Slow addition of hexane to the concentrated extract afforded orange crystals, which were collected by filtration and dried in vacuo to give  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2\{PdCl(\eta^3-C_3H_5)\}_2(\mu-1)$ dppm)]•CH<sub>2</sub>Cl<sub>2</sub> (9•CH<sub>2</sub>Cl<sub>2</sub>) as an orange solid. The crystals gave off CH<sub>2</sub>Cl<sub>2</sub> molecules when dried in vacuo to afford 9 (19.6 mg, 0.013 mmol, 81% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.46-7.31 (m, 20H, Ph), 5.46–5.32 (m, 2H,  $C_3H_5$ ), 3.96 (d, J = 12.0 Hz, 2H,  $C_3H_5$ ), 3.75 (d, J = 11.5 Hz, 2H, C<sub>3</sub>H<sub>5</sub>), 3.73 (br, 2H, CH<sub>2</sub> of dppm), 2.93 $(d, J = 12.0 \text{ Hz}, 2H, C_3H_5), 2.75 (d, J = 11.5 \text{ Hz}, 2H, C_3H_5), 1.45$ (s, 30H, Cp\*). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): δ 8.40 (s, dppm). IR (KBr, cm<sup>-1</sup>): 2095 (s,  $\nu_{NCN}$ ). Anal. Calcd for C<sub>53</sub>H<sub>62</sub>Cl<sub>2</sub>Ir<sub>2</sub>N<sub>4</sub>P<sub>2</sub>Pd<sub>2</sub>: C, 42.86; H, 4.21; N, 3.77. Found: C, 42.82; H, 4.21; N, 3.65.

Synthesis of  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2\{PdCl(\eta^3-C_3H_5)\}_2$ (PMe<sub>3</sub>)] (10). To a CH<sub>2</sub>Cl<sub>2</sub> solution of 1 (32.3 mg, 0.044 mmol) was added PMe<sub>3</sub> (1.0 M solution in THF, 45  $\mu$ L, 0.045 mmol). The reaction mixture was evaporated, and complex 5 thus formed was extracted with benzene (6 mL).  $[PdCl(\eta^3-C_3H_5)]_2$  (24.1 mg, 0.066 mmol) was added to the benzene solution, and the mixture was stirred overnight at room temperature. The resulting purple solution was evaporated to dryness, and the residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>. Slow addition of toluene (0.5 mL) and hexane (15 mL) to the extract afforded [(Cp\*Ir)<sub>2</sub>( $\mu_3$ -NCN-N,N,N')<sub>2</sub>{PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)}<sub>2</sub>(PMe<sub>3</sub>)] (**10**) as purple crystals (9.7 mg, 8.2  $\mu$ mol, 19% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  5.31 (br, 2H, C<sub>3</sub>H<sub>5</sub>), 3.89 (br, 2H, C<sub>3</sub>H<sub>5</sub>), 3.76 (br, 2H, C<sub>3</sub>H<sub>5</sub>), 2.85 (d, J = 11.5 Hz, 2H, C<sub>3</sub>H<sub>5</sub>), 2.73 (d, J = 11.5 Hz, 2H, C<sub>3</sub>H<sub>5</sub>), 1.79 (s, 15H, Cp\*), 1.68 (s, 15H, Cp\*), 1.64 (d, J = 11.0 Hz, 9H, PMe<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  -22.3 (s, PMe<sub>3</sub>). IR (KBr, cm<sup>-1</sup>): 2113 (s,  $\nu_{NCN}$ ). Anal. Calcd for C<sub>31</sub>H<sub>49</sub>Cl<sub>2</sub>Ir<sub>2</sub>N<sub>4</sub>PPd<sub>2</sub>: C, 31.64; H, 4.20; N, 4.76. Found: C, 31.40; H, 4.15; N, 4.59.

Synthesis of  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2[RhCl(cod)]_2(\mu-dppm)]$ (11a). Complex 4 (17.3 mg, 0.015 mmol) and  $[RhCl(cod)]_2$  (8.0 mg, 0.016 mmol) were dissolved in benzene, and the mixture was stirred for 13 h at room temperature. The resulting solution was evaporated to dryness, and the residual orange powder was extracted with C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>. Slow addition of hexane to the concentrated extract afforded  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2 \{RhCl(cod)\}_2(\mu-dppm)] \cdot C_2H_4Cl_2$  (11a · C\_2H\_4Cl\_2) as orange crystals (21.3 mg, 0.012 mmol, 81% yield). <sup>1</sup>H NMR (CDCl\_3):  $\delta$  7.47–7.27 (m, 20H, Ph), 4.37 (br, 4H, cod), 4.01 (br, 4H, cod), 3.71 (br, 2H, CH<sub>2</sub> of dppm), 2.49, 2.42 (m, 4H each, cod), 1.75 (m, 8H, cod), 1.43 (s, 30H, Cp\*). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl\_3):  $\delta$  7.36 (s, dppm). IR (KBr, cm<sup>-1</sup>): 2077 (s,  $\nu_{NCN}$ ). Anal. Calcd for C<sub>65</sub>H<sub>80</sub>Cl<sub>4</sub>Ir<sub>2</sub>N<sub>4</sub>P<sub>2</sub>Rh<sub>2</sub> (11a·C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>): C, 45.62; H, 4.71; N, 3.27. Found: C, 45.68; H, 4.75; N, 3.29.

**Synthesis of** [(**Cp\*Ir**)<sub>2</sub>( $\mu_3$ -**NCN**-*N*,*N*,*N*)'<sub>2</sub>{**IrCl**(**cod**)}<sub>2</sub>( $\mu$ -**dppm**)] (**11b**). This compound was prepared from complex **4** (20.4 mg, 0.018 mmol) and [IrCl(cod)]<sub>2</sub> (12.8 mg, 0.019 mmol) in a manner analogous to that described for **11a**. Recrystallization from C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>-hexane gave orange crystals of [(Cp\*Ir)<sub>2</sub>( $\mu_3$ -**NCN**-*N*,*N*,*N*)'<sub>2</sub>{IrCl(cod)}<sub>2</sub>( $\mu$ -dppm)] •C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> (**11b** •C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) (27.9 mg, 0.015 mmol, 81% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.42–7.28 (m, 20H, Ph), 4.06 (m, 4H, cod), 3.73 (m, 4H, cod), 3.68 (br, 2H, CH<sub>2</sub> of dppm), 2.32, 2.23 (m, 4H each, cod), 1.56 (br, 8H, cod), 1.43 (s, 30H, Cp\*). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  6.62 (s, dppm). IR (KBr, cm<sup>-1</sup>): 2084 (s,  $\nu_{NCN}$ ). Anal. Calcd for C<sub>65</sub>H<sub>80</sub>Cl<sub>4</sub>Ir<sub>4</sub>N<sub>4</sub>P<sub>2</sub> (**11b** •C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>): C, 41.31; H, 4.27; N, 2.96. Found: C, 41.07; H, 4.30; N, 2.61.

**X-ray Diffraction Studies.** Diffraction data for **6**, **7**, **8**•6CH<sub>2</sub>Cl<sub>2</sub>, **11a**•C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>, and **11b**•C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> were collected on a Rigaku Mercury CCD area detector with graphite-monochromated Mo Kα radiation ( $\lambda = 0.71070$  Å) at -150 °C for the  $2\theta$  range of  $5-55^{\circ}$ (Table 1). Intensity data were corrected for Lorenz-polarization effects and for empirical (REQAB<sup>11</sup> for **6**, **7**, **11a**•C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) and numerical (NUMABS<sup>12</sup> for **8**•6CH<sub>2</sub>Cl<sub>2</sub>, **11b**•C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) absorptions. All calculations were performed using the CrystalStructure<sup>13</sup> crystallographic software package except for refinements, which were performed using SHELXL-97.<sup>14</sup> The positions of nonhydrogen atoms were determined by direct methods (SHELXS-97<sup>14</sup> for **6** and **8**•6CH<sub>2</sub>Cl<sub>2</sub>; SIR-97<sup>15</sup> for **11a**•C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) or heavy atom Patterson methods (SHELXS-97<sup>14</sup> for **7**; PATTY<sup>16</sup> for

- (14) Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112-122.
- (15) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. **1999**, *32*, 115–119.
- (16) Beurskens, P. T.; Admiraal, G.; Behm, H.; Beurskens, G.; Bosman, W. P.; García-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. Z. Kristallogr., Suppl. 1991, 4, 99.

<sup>(11)</sup> Jacobsen, R. A. *Private Communication to Rigaku Corp.*; Rigaku Corp.: Tokyo, Japan, 1998.

<sup>(12)</sup> Higashi, T. *Program for Absorption Correction*; Rigaku Corp.: Tokyo, Japan, 1999.

<sup>(13)</sup> Crystal Structure 3.8: Single Crystal Structure Analysis Software; Rigaku Americas and Rigaku Corp.: The Woodlands, TX, 2007.

Table 1. X-ray Crystallographic Data for, 6, 7, 8.6CH<sub>2</sub>Cl<sub>2</sub>, 11a.C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>, and 11b.C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>

|                                            | 6                          | 7                             | $8 \cdot 6 CH_2 Cl_2$          | $11a \cdot C_2 H_4 Cl_2$         | $11b \cdot C_2 H_4 C l_2$      |
|--------------------------------------------|----------------------------|-------------------------------|--------------------------------|----------------------------------|--------------------------------|
| chemical formula                           | C42H60Cl4Ir4N4             | $C_{34}H_{50}Cl_4Ir_2N_4Pd_4$ | C62H92Cl16Ir4N8Pd4             | $C_{65}H_{80}Cl_4Ir_2N_4P_2Rh_2$ | $C_{65}H_{80}Cl_4Ir_4N_4P_2$   |
| fw                                         | 1531.65                    | 1466.65                       | 2711.19                        | 1711.38                          | 1890.01                        |
| crystal dimension                          | $0.40\times0.15\times0.05$ | $0.25\times0.12\times0.10$    | $0.40 \times 0.30 \times 0.30$ | $0.40 \times 0.20 \times 0.10$   | $0.60 \times 0.20 \times 0.10$ |
| crystal system                             | monoclinic                 | triclinic                     | monoclinic                     | triclinic                        | triclinic                      |
| space group                                | C2/c                       | $P\overline{1}$               | C2/c                           | $P\overline{1}$                  | $P\overline{1}$                |
| a, Å                                       | 35.337(6)                  | 10.596(2)                     | 15.590(4)                      | 10.165(2)                        | 10.145(3)                      |
| b, Å                                       | 7.3127(11)                 | 10.775(2)                     | 31.156(8)                      | 17.775(4)                        | 17.805(5)                      |
| <i>c</i> , Å                               | 23.656(4)                  | 11.100(2)                     | 17.291(5)                      | 17.886(3)                        | 17.870(5)                      |
| α, deg                                     | 90                         | 70.804(10)                    | 90                             | 95.766(3)                        | 95.918(2)                      |
| $\beta$ , deg                              | 130.4845(13)               | 60.313(7)                     | 104.481(2)                     | 98.457(3)                        | 98.423(4)                      |
| γ, deg                                     | 90                         | 78.821(11)                    | 90                             | 102.319(3)                       | 102.416(4)                     |
| $V, Å^3$                                   | 4649.3(13)                 | 1039.0(3)                     | 8132(4)                        | 3093.5(12)                       | 3087.9(14)                     |
| Ζ                                          | 4                          | 1                             | 4                              | 2                                | 2                              |
| $\rho_{\rm calced}, {\rm g} {\rm cm}^{-3}$ | 2.188                      | 2.344                         | 2.214                          | 1.837                            | 2.033                          |
| <i>F</i> (000)                             | 2864                       | 680                           | 5136                           | 1680                             | 1808                           |
| $\mu$ , cm <sup>-1</sup>                   | 117.075                    | 83.781                        | 79.681                         | 50.913                           | 88.847                         |
| no. reflections measured                   | 17238                      | 7803                          | 26411                          | 23762                            | 23368                          |
| no. unique reflections                     | 5300                       | 4574                          | 8349                           | 11054                            | 11053                          |
| $R_{\rm int}$                              | 0.046                      | 0.027                         | 0.052                          | 0.045                            | 0.054                          |
| no. parameters refined                     | 245                        | 227                           | 434                            | 713                              | 713                            |
| $R1 \ (I \ge 2\sigma(I))^a$                | 0.0410                     | 0.0313                        | 0.0534                         | 0.0417                           | 0.0502                         |
| wR2 (all data) <sup>b</sup>                | 0.0991                     | 0.0775                        | 0.1267                         | 0.1015                           | 0.1283                         |
| GOF <sup>c</sup>                           | 1.111                      | 1.062                         | 1.095                          | 1.063                            | 1.062                          |

 ${}^{a}Rl = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. {}^{b}wR2 = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum w(F_{o}^{2})^{2}|^{1/2}, w = 1/[\sigma^{2}F_{o}^{2} + (aP)^{2} + bP] (a = 0.0457 (6), 0.0354 (7), 0.0561 (8), 0.0556 (11a), 0.0754 (11b); b = 55.6694 (6), 1.8314 (7), 237.7419 (8), 8.2683 (11a), 9.2589 (11b); P = (max(F_{o}^{2}, 0) + 2F_{c}^{2})/3. {}^{c}GOF = [\sum w(F_{o}^{2} - F_{c}^{2})^{2}/(N_{obs} - N_{params})]^{1/2}.$ 

**11b**·C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) and subsequent Fourier syntheses (DIRDIF-99).<sup>17</sup> All the non-hydrogen atoms were refined by full-matrix leastsquares techniques on  $F^2$  with anisotropic thermal parameters, while all the hydrogen atoms except for those attached to disordered fragments were placed at the calculated positions with fixed isotropic parameters. The  $\eta^3$ -C<sub>3</sub>H<sub>5</sub> ligand bound to the Pd(2) atom in **7** and one of the CH<sub>2</sub>Cl<sub>2</sub> molecules in **8**·6CH<sub>2</sub>Cl<sub>2</sub> were found to be disordered with the occupancies of 0.50:0.50 and 0.60:0.40, respectively, and the hydrogen atoms of these fragments were not placed.

## **Results and Discussion**

NCN-Bridged Tetrairidium Complex 6. When complex 1 was allowed to react with 1 equiv of  $[Cp*IrCl_2]_2$  in toluene at room temperature, the tetrairidium complex  $[(Cp*Ir)_2(\mu_3-$ NCN-N,N,N'<sub>2</sub>(IrCp\*Cl<sub>2</sub>)<sub>2</sub>] •0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> (**6**•0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>) was obtained in 83% yield (Scheme 1). The <sup>1</sup>H NMR spectrum of complex 6 exhibits two singlets assignable to the Cp\* protons in the intensity ratio of 1:1, while the IR spectrum of **6** shows one strong  $v_{\rm NCN}$  band at 2162 cm<sup>-1</sup>, which is about 70 cm<sup>-1</sup> higher in wavenumber than that of **1** (2093)  $cm^{-1}$ ). The molecular structure of **6** was unambiguously established by X-ray crystallography (Figure 2, Table 2). The molecule has a crystallographic  $C_2$  axis passing through the center of the Ir<sub>2</sub>N<sub>2</sub> core. The Cp\*IrCl<sub>2</sub> fragments introduced are connected to the terminal nitrogen atoms of the respective NCN ligands with a  $\mu_3 - \kappa N, \kappa N, \kappa N'$  coordination mode. The N(1)-C(1) and N(2)-C(1) bond distances at 1.310(15) and 1.165(15) Å, respectively, as well as the essentially linear Ir(2)-N(2)-C(1) bond angle  $(160.3(6)^{\circ})$  indicate that the NCN-bridges in 6 can be described as cyanoimido(2-) ligands. In agreement with this, the sum of the bond angles around the N(1) atom (332°) confirms its sp<sup>3</sup> nature. It should be mentioned that all the known  $\mu_3 - \kappa N, \kappa N, \kappa N'$  type NCNbridges have been regarded to possess a carbodiimido(2-) structure,<sup>2c,6a,c</sup> and therefore complex **6** provides the first example of the  $\mu_3 - \kappa N, \kappa N, \kappa N'$  cyanoimido(2-) bridge.<sup>18</sup> On the other hand, the structure of the Ir<sub>2</sub>N<sub>2</sub> core is little affected by the peripheral coordination of Cp\*IrCl<sub>2</sub> moieties and shows metric features similar to those of related imido complexes such as [Cp\*Ir( $\mu_2$ -NR)<sub>2</sub>] (R = Ph, cyclopentyl).<sup>19</sup> The Ir(1)–Ir(1)\* distance at 2.8670(3) Å is slightly longer than that of **1** (2.8179(9) Å)<sup>6b</sup> but still suggests the presence of a metal–metal bonding interaction, and the Ir<sub>2</sub>N<sub>2</sub> core is puckered with a N(1)–Ir(1)–Ir(1)\*–N(1)\* torsion angle of 120.0(4)°.

It is also interesting to note that the reaction site of **1** toward a Lewis acidic metal species is controlled by the nature of the reactant. As mentioned briefly in the introduction, **1** reacts with a cationic palladium species  $[Pd(\eta^3-C_3H_5)(acetone)_n](OTf)$ , which essentially acts as a formal 12e fragment  $[Pd(\eta^3-C_3H_5)]^+$ , to form the heterotrinuclear cluster **3a**. In this reaction the metal-bound nitrogen atoms behave as the donor sites.<sup>6b</sup> In contrast, in the case of **6**, the less coordinatively unsaturated (16e) Cp\*IrCl<sub>2</sub> fragment is selectively bound to the terminal nitrogen atom in **1**.

Since **1** is prepared from the 1:2 reaction of  $[Cp*IrCl_2]_2$  with Na<sub>2</sub>NCN,<sup>6b</sup> it is expected that **6** is obtained directly from a 1:1 reaction of these starting materials. Indeed,  $[Cp*IrCl_2]_2$  smoothly reacted with an equimolar amount of Na<sub>2</sub>NCN to give **6** in 83% yield. This result indicates that **6** may be viewed as an intermediate for the conversion of

<sup>(17)</sup> Beurskens, P. T.; Beurskens, G.; de Gelder, R.; García-Granda, S.; Gould, R. O.; Israël, R.; Smits, J. M. M. *The DIRDIF-99 program system; Crystallography Laboratory*; University of Nijmegen: Nijmegen, The Netherlands, 1999.

<sup>(18)</sup> With regard to inorganic metal cyanamide salts, a related metal-NCN structure has been found in Hg<sub>3</sub>(NCN)<sub>2</sub>Cl<sub>2</sub>: Liu, X.; Dronskowski, R. Z. Naturforsch. B 2002, 57, 1108–1114.

 <sup>(19) (</sup>a) Dobbs, D. A.; Bergman, R. G. Organometallics 1994, 13, 4594–4605.
 (b) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1996, 3771–3778.

#### Scheme 1<sup>a</sup>



<sup>*a*</sup> Reagents or conditions: i)  $[Cp^*IrCI_2]_2$ , ii) Na<sub>2</sub>NCN, iii)  $[Pd(\eta^3-C_3H_5(acetone)_n]^+$ , iv)  $2[PdCI(\eta^3-C_3H_5)]_2$ , v) 80 °C, 1-PrOH.



**Figure 2.** Oak Ridge Thermal Ellipsoid Plot (ORTEP) drawing of 6 with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

| Table 2. Selected Bond Distances (Å) | ) and Angles ( | (deg) for $6^a$ |
|--------------------------------------|----------------|-----------------|
|--------------------------------------|----------------|-----------------|

|                                                       | 、<br>、    | , ,                   |           |  |
|-------------------------------------------------------|-----------|-----------------------|-----------|--|
| $Ir(1) - Ir(1)^*$                                     | 2.8670(3) | Ir(1) - N(1)          | 2.030(9)  |  |
| $Ir(1) - N(1)^*$                                      | 2.021(5)  | Ir(2) - N(2)          | 2.060(10) |  |
| N(1) - C(1)                                           | 1.310(15) | N(2) - C(1)           | 1.165(15) |  |
|                                                       |           |                       |           |  |
| $N(1) - Ir(1) - N(1)^*$                               | 75.4(3)   | Ir(1) - N(1) - Ir(1)* | 90.1(3)   |  |
| Ir(1) - N(1) - C(1)                                   | 121.2(4)  | Ir(1)*-N(1)-C(1)      | 121.1(5)  |  |
| Ir(2) - N(2) - C(1)                                   | 160.3(6)  | N(1)-C(1)-N(2)        | 178.8(7)  |  |
| <sup>a</sup> Symmetry code: $-x$ , $y$ , $-z + 1/2$ . |           |                       |           |  |

 $[Cp*IrCl_2]_2$  into **1**. It has also been confirmed that **6** is quantitatively converted into **1** on reaction with Na<sub>2</sub>NCN in CH<sub>2</sub>Cl<sub>2</sub>.

NCN-bridged Ir<sub>2</sub>Pd<sub>4</sub> and Ir<sub>4</sub>Pd<sub>4</sub> Complexes 7 and 8. Considering the difference between the reactivities of Cp\*IrCl<sub>2</sub> and [Pd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sup>+</sup> fragments toward 1, we next investigated the reaction with [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> (Scheme 1). Treatment of 1 with 2 equiv of [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> in THF at room temperature resulted in the formation of a mixture of the Ir<sub>2</sub>Pd<sub>4</sub> hexanuclear complex [(Cp\*IrCl)<sub>2</sub>( $\mu_4$ -NCN-N,N,N',N')<sub>2</sub>{Pd<sub>2</sub>( $\mu$ -Cl)( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)<sub>2</sub>]<sub>2</sub>] (7) and the Ir<sub>4</sub>Pd<sub>4</sub> octanuclear complex [(Cp\*Ir)<sub>4</sub>( $\mu_4$ -NCN-N,N,N',N')<sub>4</sub>{PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)}<sub>4</sub>] (8) in the ratio of 12:1 (Scheme 1). Although separation of 7 and 8 was unsuccessful because of slow



Figure 3. ORTEP drawing of 7 with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

conversion of **7** to **8** during recrystallization, both products could be fully characterized by spectroscopy as well as X-ray crystallography.

The <sup>1</sup>H NMR spectrum of **7** indicates that it consists of Cp\*Ir and Pd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>) units in the ratio of 1:2, while the IR spectrum shows a strong  $v_{\rm NCN}$  band at 2014 cm<sup>-1</sup>, which is about 80 cm<sup>-1</sup> lower in wavenumber than that of **1** (2093) cm<sup>-1</sup>). The latter observation is diagnostic of the structural change of the NCN-bridge from cyanoimido(2-) to carbodiimido(2-). The molecular structure of 7 has been determined by an X-ray study (Figure 3, Table 3). The molecule has a crystallographic inversion center. In accordance with the spectroscopic analysis, complex 7 is an Ir<sub>2</sub>Pd<sub>4</sub> hexanuclear complex where two monocationic  $Pd_2(\mu-Cl)(\eta^3-C_3H_5)_2$  units are attached to the terminal nitrogen atoms of the respective cyanamido ligands in 1, and the diiridium core is coordinated by two chloro ligands with trans geometry to compensate the change of the charge distribution caused by the deformation of the cyanamido ligands. The coordinative saturation of the iridium centers results in the elongation of the Ir...Ir

**Table 3.** Selected Bond Distances (Å) and Angles (deg) for  $7^a$ 

| Ir(1)-N(1)                                                | 2.116(4)   | Ir(1)-N(1)*          | 2.122(4)  |  |
|-----------------------------------------------------------|------------|----------------------|-----------|--|
| Pd(1)-Cl(2)                                               | 2.422(2)   | Pd(1) - N(2)         | 2.088(7)  |  |
| Pd(2)-Cl(2)                                               | 2.415(2)   | Pd(2) - N(2)         | 2.087(7)  |  |
| N(1) - C(1)                                               | 1.216(6)   | N(2) - C(1)          | 1.222(7)  |  |
|                                                           |            |                      |           |  |
| $N(1) - Ir(1) - N(1)^*$                                   | 74.20(16)  | Cl(2) - Pd(1) - N(2) | 84.27(18) |  |
| Cl(2) - Pd(2) - N(2)                                      | 84.4(2)    | Pd(1)-Cl(2)-Pd(2)    | 86.29(5)  |  |
| $Ir(1) - N(1) - Ir(1)^*$                                  | 105.80(18) | Ir(1) - N(1) - C(1)  | 126.4(3)  |  |
| Ir(1) - N(1) - C(1)                                       | 127.8(3)   | Pd(1) - N(2) - Pd(2) | 104.8(2)  |  |
| Pd(1) - N(2) - C(1)                                       | 126.3(6)   | Pd(2) - N(2) - C(1)  | 128.3(7)  |  |
| N(1)-C(1)-N(2)                                            | 179.2(7)   |                      |           |  |
| <sup><i>a</i></sup> Symmetry code: $-x, -y + 1, -z + 1$ . |            |                      |           |  |

separation up to 3.3802(2)Å. The  $Ir_2N_2$  and  $Pd_2CIN$  squares are nearly planar (N(1)-Ir(1)-Ir(1)\*-N(1)\* torsion angle, 180.0(3)°; Cl(2)-Pd(1)-Pd(2)-N(2) torsion angle, 175.3(2)°) and arranged twisted to each other with the dihedral angle of 65.1°. The N-C bond distances are almost the same (N(1)-C(1), 1.216(6); N(2)-C(1), 1.222(7) Å), and the Pd-N-C and Ir-N-C bond angles fall in the range of  $126.3-128.3^{\circ}$ . The sum of the bond angles around the N(1) and N(3) atoms are  $359-360^{\circ}$ ; the planar geometry of these nitrogen atoms indicates their sp<sup>2</sup> character. All these metric features support the description of the NCN-bridges as carbodiimido(2-) ligands. It is worth mentioning that  $\mu_4$ - $\kappa N, \kappa N, \kappa N', \kappa N'$  coordination mode of the cyanamido ligand is very rare; to the best of our knowledge, complex 7 provides the first example of structurally characterized cyanamido complexes of this type.<sup>20</sup> A related structure has been proposed only for one of the tautomeric structures of the tetranuclear gold complex  $[{Au(PPh_3)}_4(\mu_4-NCN)]^{2+.2c}$ 

On the other hand, complex 8 shows a stretching vibration assignable to the NCN moiety at 2152 cm<sup>-1</sup> in the IR spectra, which is about 60 and 40  $\text{cm}^{-1}$  higher in wavenumber than that of 1 and 2 ( $2110 \text{ cm}^{-1}$ ), respectively, and suggests the presence of cyanoimido(2-) type NCN-bridges. The <sup>1</sup>H NMR spectrum of 8 indicates that complex 8 consists of Cp\*Ir and Pd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>) units in the ratio of 1:1. The molecular structure of 8.6CH<sub>2</sub>Cl<sub>2</sub> has been established by an X-ray analysis (Figure 4, Table 4). As depicted in Figure 4, 8 is an Ir<sub>4</sub>Pd<sub>4</sub> octanuclear complex in which four PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>) fragments are ligated to the terminal nitrogen atoms of the NCN ligands in cubane cluster 2. The molecule has a crystallographic  $C_2$  axis passing through the cubane core. The long Ir...Ir interatomic distances (3.377-3.442 Å)exclude any metal-metal bonding interaction within the Ir<sub>4</sub>N<sub>4</sub> moiety, which is consistent with the 72e structure of this core. The unsymmetrical (Ir)N-C and (Pd)N-C bond distances at 1.32 and 1.16 Å (mean), respectively, and the almost linear Pd-N-C bond angles (175° (mean)) confirm that the cyanamido ligands in 8 can be described as cyanoimido(2-) with the  $\mu_4$ - $\kappa N,\kappa N,\kappa N,\kappa N'$  coordination mode. This coordination mode has rarely been found in molecular cyanamido complexes;<sup>21</sup> related structures have been found



**Figure 4.** ORTEP drawing of **8** with thermal ellipsoids drawn at 50% probability level. Solvating  $CH_2Cl_2$  molecules and hydrogen atoms are omitted for clarity.

Table 4. Selected Bond Distances (Å) and Angles (deg) for 8.6CH<sub>2</sub>Cl<sub>2</sub><sup>a</sup>

|                                   | (         | / 0 (0/                 | 2 .       |  |
|-----------------------------------|-----------|-------------------------|-----------|--|
| Ir(1)-N(1)                        | 2.161(8)  | Ir(1)-N(1)*             | 2.157(6)  |  |
| Ir(1)-N(3)                        | 2.154(7)  | Ir(2) - N(1)            | 2.163(7)  |  |
| Ir(2)-N(3)                        | 2.175(7)  | Ir(2)-N(3)*             | 2.180(6)  |  |
| Pd(1) - N(2)                      | 2.062(8)  | Pd(2) - N(4)            | 2.072(8)  |  |
| N(1) - C(1)                       | 1.317(11) | N(2) - C(1)             | 1.156(12) |  |
| N(3) - C(2)                       | 1.313(12) | N(4) - C(2)             | 1.162(12) |  |
|                                   |           |                         |           |  |
| $N(1) - Ir(1) - N(1)^*$           | 74.6(2)   | N(1) - Ir(1) - N(3)     | 73.5(2)   |  |
| N(1)*-Ir(1)-N(3)                  | 75.3(2)   | N(1) - Ir(2) - N(3)     | 73.0(2)   |  |
| $N(1) - Ir(2) - N(3)^*$           | 74.7(2)   | $N(3) - Ir(2) - N(3)^*$ | 75.0(2)   |  |
| Ir(1) - N(1) - Ir(1)*             | 103.2(2)  | Ir(1) - N(1) - Ir(2)    | 105.5(3)  |  |
| Ir(1) - N(1) - C(1)               | 113.9(6)  | Ir(1)*-N(1)-Ir(2)       | 102.8(2)  |  |
| Ir(1)*-N(1)-C(1)                  | 115.5(5)  | Ir(2) - N(1) - C(1)     | 114.5(5)  |  |
| Pd(1) - N(2) - C(1)               | 175.8(7)  | Ir(1) - N(3) - Ir(2)    | 105.3(3)  |  |
| Ir(1)-N(3)-Ir(2)*                 | 102.4(2)  | Ir(1) - N(3) - C(2)     | 115.2(6)  |  |
| Ir(2)-N(3)-Ir(2)*                 | 102.7(3)  | Ir(2) - N(3) - C(2)     | 115.2(5)  |  |
| Ir(2)*-N(3)-C(2)                  | 114.4(5)  | Pd(2) - N(4) - C(2)     | 173.8(7)  |  |
| N(1)-C(1)-N(2)                    | 178.7(8)  | N(3) - C(2) - N(4)      | 178.7(9)  |  |
| $a^{a} - x + 1, y, -z + 1/2 + 1.$ |           |                         |           |  |

only in the Ru<sub>3</sub>B complex (PPN)[(Cp\*Ru)<sub>3</sub>( $\mu_3$ -NCN){( $\mu_4$ -NCN)(BEt<sub>3</sub>)}] (PPN = (Ph<sub>3</sub>P)<sub>2</sub>N<sup>+</sup>) and Ru<sub>3</sub>Au complex [(Cp\*Ru)<sub>3</sub>( $\mu_3$ -NCN){( $\mu_4$ -NCN)(AuPPh<sub>3</sub>)}], though in the latter case considerable  $\pi$ -electron delocalization over the  $\mu_4$ -NCN ligand was observed.<sup>6d</sup>

It would be reasonable to presume that the  $Ir_4(NCN)_4$  core of **8** is formed by dimerization of the  $Ir_2(NCN)_2$  core of **1**. We have previously disclosed that **1** is kinetically stable at room temperature but dimerizes to give **2** at 80 °C in 1-propanol.<sup>6b</sup> Since the conversion of **1** to **8** takes place under ambient conditions, a palladium species such as  $[PdCl(\eta^3-C_3H_5)]$  is considered to act as a promoter for the dimerization. However, we must await further investigation to clarify the mechanism of this process. It is also expected that complex **8** is obtained more conveniently and selectively from **2**. In fact, treatment of **2** with 2.2 equiv of  $[PdCl(\eta^3-C_3H_5)]_2$  in CH<sub>2</sub>Cl<sub>2</sub> at room temperature afforded **8** quantitatively.

On the other hand, **2** was transformed selectively into the trinuclear complex **3a** on reaction with  $[Pd(\eta^3-C_3H_5)-(acetone)_n]^+$  cation in 71% isolated yield. In this case, the cubane core of **2** is split into two diiridium fragments at least in a formal sense, which is the reverse process of the formation of **2** and **8**. The interconversion between a M<sub>2</sub>N<sub>2</sub>-type dinuclear species and a M<sub>4</sub>N<sub>4</sub>-type cubane cluster has

<sup>(20)</sup> Related metal–NCN structures have been characterized crystallographically only in inorganic cyanamide salts such as Sm<sub>2</sub>(NCN)<sub>3</sub><sup>5a</sup> and Zn(NCN): Becker, M.; Jansen, M. Acta Crystallogr. C 2001, 57, 347–348.

<sup>(21)</sup> Related metal—NCN structures have also been found in a few inorganic cyanamide salts such as Cu<sub>4</sub>(NCN)<sub>2</sub>NH<sub>3</sub>: Liu, X.; Müller, P.; Dronskowski, R. Z. Anorg. Allg. Chem. **2005**, 631, 1071–1074.

Scheme 2



scarcely been reported in the literature;<sup>22</sup> it has recently been described that the alkylimido-bridged diiron complex [FeCl( $\mu_2$ -N'Bu)(NH<sub>2</sub>'Bu)]<sub>2</sub> undergoes reductive dimerization to form the cubane complex [FeCl( $\mu_3$ -N'Bu)]<sub>4</sub><sup>-</sup>, while the fission of the cubane core has not been observed.<sup>23</sup> Furthermore, although dimerization of sulfido-bridged dinuclear complexes to form M<sub>4</sub>S<sub>4</sub> cubane complexes have been reported with a variety of transition metals,<sup>24</sup> the reverse reaction has not been developed. The NCN-bridged iridium complexes including **1** and **2** provide a unique system where both assembly and fission of multimetallic complexes are controlled by the nature of the reactant metal species.

NCN-Bridged Ir<sub>2</sub>M<sub>2</sub> Complexes 9–11 (M = Pd, Rh, Ir). In the reaction of 1 with [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> giving 7, the coordination of chloro ligands to the 32e Ir<sub>2</sub> core plays an important role in forming the  $\mu_4$ - $\kappa N, \kappa N, \kappa N', \kappa N'$  type NCN bridge. To gain further insight into this coordination behavior, reactivities of complexes 4 and 5 with [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> were examined (Scheme 2). Complexes 4 and 5 have a 36e and a 34e Ir<sub>2</sub> core, respectively, and are anticipated to have lower tendency to bind chloro ligands or to dimerize to form the cubane core. As expected, the reaction of 4 with 1 equiv of [PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub> in benzene at room temperature gave the Ir<sub>2</sub>Pd<sub>2</sub> complex [(Cp\*Ir)<sub>2</sub>( $\mu_3$ -NCN-N, N, N')<sub>2</sub>{PdCl( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)]<sub>2</sub>-( $\mu$ -dppm)] (9) as the sole product in 81% yield (Scheme 2).



**Figure 5.** ORTEP drawing of **11a** with thermal ellipsoids drawn at 50% probability level. Solvating  $C_2H_4Cl_2$  and hydrogen atoms are omitted for clarity.

The IR spectrum of **9** shows one strong  $\nu_{\text{NCN}}$  band at 2095 cm<sup>-1</sup>, which is about 50 cm<sup>-1</sup> higher in wavenumber than that of **4** (2048 cm<sup>-1</sup>),<sup>6b</sup> suggesting that the coordination of palladium takes place with maintenance of the cyanoimido(2-) structure as observed with **6**. The <sup>1</sup>H NMR spectrum exhibits a set of signals attributable to the two Cp\*, two  $\eta^3$ -C<sub>3</sub>H<sub>5</sub>, and one dppm ligands. These spectral features are in full agreement with the formulation. The molecular structure was further confirmed by a preliminary X-ray study, although the low quality of the crystals prevented full refinement of the structure.<sup>25</sup>

Complex **5** reacted similarly with  $[PdCl(\eta^3-C_3H_5)]_2$  to form  $[(Cp*Ir)_2(\mu_3-NCN-N,N,N')_2\{PdCl(\eta^3-C_3H_5)\}_2(PMe_3)]$  (**10**) in moderate yield. Again, a  $\nu_{NCN}$  band is observed at 2113 cm<sup>-1</sup> in the IR spectrum of **10**, which is about 60 cm<sup>-1</sup> higher in wavenumber than that of **5** (2063 cm<sup>-1</sup>) and diagnostic of the  $\mu_3 - \kappa N, \kappa N, \kappa N'$  type cyanoimido(2-) ligands. The structure of **10** was also confirmed by a preliminary X-ray study.<sup>26</sup>

Although only preliminary X-ray structures were available for **9** and **10**, related Ir<sub>2</sub>M<sub>2</sub> (M = Rh, Ir) were synthesized from **4** and structurally characterized.<sup>27</sup> Thus, the reaction of **4** with 1 equiv of [RhCl(cod)]<sub>2</sub> in benzene at room temperature gave the NCN-bridged Ir<sub>2</sub>Rh<sub>2</sub> tetranuclear complex [(Cp\*Ir)<sub>2</sub>( $\mu_3$ -NCN-N,N,N')<sub>2</sub>{RhCl(cod)}<sub>2</sub>( $\mu$ -dppm)] (**11a**) in 81% yield. All spectral features of **11a** including the  $\nu_{NCN}$  absorption at 2077 cm<sup>-1</sup> are comparable to those of **9** and **10**. Similar reaction with [IrCl(cod)]<sub>2</sub> afforded [(Cp\*Ir)<sub>2</sub>( $\mu_3$ -NCN-N,N,N')<sub>2</sub>{IrCl(cod)}<sub>2</sub>( $\mu$ -dppm)] (**11b**) in good yield, which exhibits a  $\nu_{NCN}$  band at 2084 cm<sup>-1</sup>.

The molecular structures of  $11a \cdot C_2H_4Cl_2$  and  $11b \cdot C_2H_4Cl_2$  have been established by X-ray diffraction studies (Figure 5, Table 5). The crystals of these compounds are isomorphous and only the molecular structure of 11a is shown in Figure 5. In complexes 11a and 11b, like in

<sup>(22)</sup> Allan, R. E.; Beswick, M. A.; Cromhout, N. L.; Paver, M. A.; Raithby, P. R.; Steiner, A.; Trevithick, M.; Wright, D. S. *Chem. Commun.* 1996, 1501–1502.

<sup>(23)</sup> Duncan, J. S.; Zdilla, M. J.; Lee, S. C. Inorg. Chem. 2007, 46, 1071– 1080.

<sup>(24) (</sup>a) Dobbs, D. A.; Bergman, R. G. Inorg. Chem. 1994, 33, 5329–5336.
(b) Herberhold, M.; Jin, G.-X.; Milius, W. Chem. Ber. 1995, 128, 557–560. (c) Feng, Q.; Krautscheid, H.; Rauchfuss, T. B.; Skaugset, A. E.; Venturelli, A. Organometallics 1995, 14, 297–304. (d) Tang, Z.; Nomura, Y.; Ishii, Y.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta 1998, 267, 73–79. (e) Kuwata, S.; Andou, M.; Hashizume, K.; Mizobe, Y.; Hidai, M. Organometallics 1998, 17, 3429–3436. (f) Kabashima, S.; Kuwata, S.; Hidai, M. J. Am. Chem. Soc. 1999, 121, 7837–7845.

<sup>(25)</sup> Cell parameters for **9**·CH<sub>2</sub>Cl<sub>2</sub>: a = 19.32(3) Å, b = 13.181(14) Å, c = 22.07(3) Å,  $\beta = 102.75(2)^{\circ}$ , V = 5482(13) Å<sup>3</sup>; monoclinic, space group  $P2_1/c$ , R ( $I > 3\sigma(I)$ ) = 0.055.

<sup>(26)</sup> Cell parameters for **10**: a = 12.35(2) Å, b = 18.94(2) Å, c = 17.23(2) Å,  $\beta = 107.53(3)^\circ$ , V = 3750(10) Å<sup>3</sup>; monoclinic, space group  $P2_1/c$ , R ( $I > 3\sigma(I)$ ) = 0.061.

<sup>(27)</sup> Reaction of complex **1** with 1 equiv of  $[RhCl(cod)]_2$  resulted in the formation of the NCN-bridged heterotrinuclear complex  $[(Cp*Ir)_2 + (Rh(cod))(\mu_3-NCN-N,N,N)_2][RhCl_2(cod)]$  (**3b** $[RhCl_2(cod)]$ ).<sup>6b</sup>

Table 5. Selected Bond Distances (Å) and Angles (deg) for  $11a \cdot C_2 H_4 C l_2$ 

| Ir(1)-N(1)           | 2.110(5)  | Ir(1)-N(3)          | 2.118(4)  |
|----------------------|-----------|---------------------|-----------|
| Ir(2) - N(1)         | 2.103(4)  | Ir(2) - N(3)        | 2.125(4)  |
| Rh(1) - N(2)         | 2.051(5)  | Rh(2)-N(4)          | 2.056(5)  |
| N(1)-C(1)            | 1.271(7)  | N(2) - C(1)         | 1.177(8)  |
| N(3)-C(2)            | 1.278(7)  | N(4) - C(2)         | 1.189(8)  |
|                      |           |                     |           |
| N(1)-Ir(1)-N(3)      | 72.52(17) | N(1)-Ir(2)-N(3)     | 72.51(18) |
| Ir(1) - N(1) - Ir(2) | 108.0(2)  | Ir(1) - N(1) - C(1) | 121.3(3)  |
| Ir(2) - N(1) - C(1)  | 128.0(4)  | Rh(1) - N(2) - C(1) | 166.7(5)  |
| Ir(1) - N(3) - Ir(2) | 106.9(2)  | Ir(1) - N(3) - C(2) | 124.4(4)  |
| Ir(2) - N(3) - C(2)  | 125.2(3)  | Rh(2) - N(4) - C(2) | 157.3(5)  |
| N(1)-C(1)-N(2)       | 178.3(8)  | N(3)-C(2)-N(4)      | 178.5(8)  |
|                      |           |                     |           |

complex **6**, each cyanamido ligand is coordinated by an MCl(cod) unit at the terminal nitrogen atom with essentially linear M–N–C angles (**11a**, 162°; **11b**, 164° (mean)). The apparent difference between the (Ir<sub>2</sub>)N–C and (M)N–C bond distances (**11a**, 1.27 and 1.18 Å; **11b**, 1.26 and 1.18 Å (mean)) also confirms the description of the NCN-bridges as cyanoimido(2-) ligands. These observations with complexes **4** and **5** clearly indicate that the coordination behavior of metal fragments at the terminal nitrogen atoms of the cyanamido ligands in the Ir<sub>2</sub>( $\mu$ -NCN)<sub>2</sub> type complexes is strongly coupled with the electronic nature of the Ir<sub>2</sub> core.

## Conclusion

In this study we have demonstrated syntheses and characterization of novel tetra-, hexa-, and octanuclear heterobimetallic cyanamido complexes by utilizing the coordination ability of the terminal nitrogen atoms of the NCN ligands in 1, 2, 4, and 5. In these core expansion reactions, the  $\mu_2$ - $\kappa N,\kappa N$  and  $\mu_3-\kappa N,\kappa N,\kappa N$  cyanoimido(2-) ligands in the starting complexes were found to change their coordination modes depending both on the nature of the metal fragment introduced and on the electronic situation of the Ir<sub>2</sub> core, and unique coordination modes of NCN-bridges such as  $\mu_3$ - $\kappa N, \kappa N, \kappa N'$  (cyanoimido(2-)),  $\mu_4 - \kappa N, \kappa N, \kappa N', \kappa N'$  (carbodiimido(2-)) and  $\mu_4 - \kappa N, \kappa N, \kappa N, \kappa N'$  (cyanoimido(2-)) were characterized in the products. Splitting of the cubane-type tetrairidium core was also observed in the reaction of 2 and  $[PdCl(\eta^3-C_3H_5)]_2$ . These results exemplify that the cyanamido ligand can act as a flexible and versatile building block for heterobimetallic clusters. Further studies on the reactivities of the new cyanamido clusters obtained here are now in progress.

Acknowledgment. This work was supported by Grantsin-Aid for Scientific Research (20036046, 20037060) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Chuo University Grant for Special Research.

Supporting Information Available: Crystallographic data for 6, 7,  $8 \cdot 6CH_2Cl_2$ ,  $11a \cdot C_2H_4Cl_2$ , and  $11b \cdot C_2H_4Cl_2$  in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC8017503