Inorganic Chemistr

Structure and Vibrational Properties of Oxohalides of Vanadium

Vincent Guiot,[†] Irene Suarez-Martinez,[†] Philipp Wagner,[†] Jonathan Goss,[‡] Patrick Briddon,[‡] Abdul W. Allaf,[§] and Christopher Paul Ewels^{*,†}

Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322 Nantes, France, School of Electrical, Electronic and Computer Engineering, University of Newcastle, Newcastle Upon Tyne, NE1 7RU, United Kingdom, and Atomic Energy Commission, Department of Chemistry, P.O. Box 6091, Damascus, Syria

Received November 24, 2008

We study the structure and vibrational modes of a wide range of oxohalides of vanadium (VOX₀Y_m; X, Y = F, Cl, Br, I; n, m = 0-3, $n + m \le 3$). The results agree well with experimental results for VOCl₃ and VOF₃ and suggest reassignment of the experimentally observed VOF to VOF₂. We provide new assignments for various experimental modes, identifying several intermediates (VOBr₂, VOBr) and mixed structures (e.g., VOCl₂Br), and discuss formation trends and stabilities.

1. Introduction

Many high-valence transition metals form oxohalides¹ (also referred to in the literature as oxyhalogenides, oxyhalides, and oxide halides). They are strong oxidizing agents² used as reagents in organic synthesis,^{3,4} as well as in chemical vapor deposition,⁵ and as catalysts in the production of ethylene-propylene rubbers.⁶

Vanadium has catalytic properties that make it useful in many industrial applications. Vanadium pentoxide is used as a catalyst in the production of sulfuric acid and in the manufacturing of maleic anhydride, which is needed to make polyester resin and fiberglass. Vanadium plays an important role in battery technology and rust-resistant and high-speed tool steels, as a bonding agent in cladding titanium to steel, and generally by the aerospace industry in titanium alloys. Also, medical implants often contain vanadium alloys, which contribute to their long life.

Vanadium has four major oxidation states, resulting in a range of oxides: V_2O_5 (+5), VO_2 (+4), V_2O_3 (+3), and VO_2

- (3) Crans, D. C.; Chen, H.; Felty, R. A. J. Am. Chem. Soc. 1992, 114, 4543.
- (4) Meier, I. K.; Schwartz, J. J. Am. Chem. Soc. 1989, 111, 3069.
- (5) Anpo, M.; Sunamoto, M.; Che, M. J. Phys. Chem. 1989, 93, 1187.

(+2). The oxohalides of vanadium, VOX_nY_m (X, Y = F, Cl, Br, I; $n, m = 0-3, n + m \le 3$), are generally prepared from the oxides⁷ but are not particularly well-known. The former oxidation state (+5), such as VOX₃ and VO₂X where X is a halogen, are relatively stable. The latter vanadium oxohalide compounds (+4), such as VOX₂, are notably hydroscopic and hydrolyze vigorously to the hydrous pentoxide.

Among the oxohalides of vanadium, the oxotrihalides, VOX₃, are the most studied. VOCl₃ is commercially available and is often used as a molecular precursor in high-valence vanadium chemistry.¹ For example, VOCl₃ can be used to synthesize VOF₃, VOBr₃, and VOI₃ by reacting it in the gas phase at high temperatures and low pressures with halogen containing salts such as NaF, KBr, and KI.⁸

Experimental IR spectra are available in the literature for VOCl₃,⁸⁻¹⁰ VOF₃,^{8,7} and VOBr₃.^{8,11} Due to difficulties in synthesis, there is only one experimental report of VOI₃.⁸ Theoretical frequencies have been calculated for VOCl₃, VOF₃, VOBr₃, and VOI₃.¹²

The only available experimental structural parameters for vanadium oxotrihalides are for VOCl₃,^{13,14} although calculated values exist for other vanadium oxotrihalide mol-

- (6) Rawe, A. Principles of Polymer Chemistry; Springer: New York, 2000; ISBN 0306463687, p 276.
- (7) Selig, H.; Claassen, H. H. J. Chem. Phys. 1966, 44, 1404.

- (9) Miller, F. A.; Cousins, L. R. J. Chem. Phys. 1957, 26, 329.
- (10) Clark, R. J. H.; Rippon, D. M. Mol. Phys. 1974, 28, 305.

10.1021/ic8022562 CCC: \$40.75 © 2009 American Chemical Society Published on Web 03/23/2009

^{*} To whom correspondence should be addressed. E-mail: chris.ewels@ cnrs-imn.fr.

CNRS Nantes Institute of Materials.

University of Newcastle.

 ⁸ Atomic Energy Commission.
 (1) Greenwood, N. N. Earnshaw, A. Chemistry of the Elements, 1st ed.; Butterworth-Heinemann: Oxford, 1989.

Yajima, A.; Matsuzaki, R.; Saeki, Y. Bull. Chem. Soc. Jpn. 1978, 51, (2)1098

⁽⁸⁾ Zidan, M.; Allaf, A. Spectrochim. Acta A 2000, 56, 2693.

⁽¹¹⁾ Miller, F. A.; Baer, W. K. Spectrochim. Acta A 1961, 17, 112.
(12) Socolsky, C.; Brandan, S. A.; Ben Altabef, A.; Varetti, E. L.

THEOCHEM 2004, 45, 672.

DFT study of gas phase oxohalides

Table 1. Vibrational Modes of VOX₃, VOX₂, and VOX, in Order of Decreasing Frequency^a

^{*a*} The following tables respect the same frequency ordering. Bonds are hidden where necessary to see the modes.

ecules.¹² Increasing the atomic number of X in VOX₃ leads to a corresponding increase in the V–X bond length. The VOX₃ molecules have C_{3v} symmetry and nine vibrational modes, three of which are doubly degenerate. This results in six vibrational frequencies (Table 1): three strong corresponding to stretching of V=O (symmetric) and V–X (symmetric and asymmetric) and three weaker corresponding to bending of O=V–X (symmetric) and V–X (symmetric and asymmetric).^{8,12} Both theory and experimentation confirm a decrease of frequencies with an increasing atomic mass of the halogen. Additional peaks associated with Cl isotopes (³⁵Cl and ³⁷Cl) have also be seen in VOCl₃ FTIR spectra.¹⁵

VOCl and VOF have recently been studied by infrared spectroscopy^{16,17} and Hartree–Fock and density functional theory (DFT) modeling.^{16–18} These molecules can be obtained by passing gas-phase VOCl₃ and VOF₃ directly over heated silver at high temperatures and low pressures.^{16,17} Although calculated frequencies are generally in good agreement with experimental results, there has been difficulty in reproducing the observed V–F stretching frequencies of VOF observed at 807 cm⁻¹.¹⁸ No experimental value for the

(18) Diez, R. P.; Baran, E. J. J. Mol. Struct. 2005, 732, 155.

low-frequency X–V=O bending mode has been reported directly in the literature.¹⁸ Moreover, theoretical models disagree concerning the value of the angle X–V=O, for which wide variation is observed.^{16–18}

VOX molecules belong to the C_s symmetry point group, and exhibit three vibrational frequencies (Table 1) corresponding to V=O stretching, V-X stretching, and X-V=O bending. Structural parameters have been theoretically calculated.¹⁸ To date, there are no reported data for VOX₂ nor for mixed species VOX_nY_m (X, Y = F, Cl, Br, I; X \neq Y; *n*, $m = 1-2, n + m \leq 3$).

While many experimental spectra show unassigned peaks^{8,16,17} and since no systematic theoretical study yet exists, we study here the family VOX_nY_m (X, Y = F, Cl, Br, I; $n, m = 0-3, n + m \le 3$) to obtain a complete set of structural and vibrational data and propose original assignments of observed peaks.

2. Methods

We use spin-polarized DFT calculations under the local density approximation¹⁹ as implemented in the AIMPRO package.^{20,21} The calculations were carried out using large supercells, fitting the charge density to plane waves within an energy cutoff of 300 Ha. Charge density oscillations in partly filled degenerate orbitals during the self-consistency cycle were damped using a Fermi occupation function with $k_{\rm B}T = 0.04$ eV. Relativistic pseudo-potentials are generated using the Hartwingster-Goedecker-Hutter scheme.²² Atom-centered Gaussian basis functions are used to construct the many-electron wave function. These functions are labeled by multiple orbital symbols, where each symbol represents a Gaussian function multiplied by polynomial functions including all angular momenta up to maxima p (l = 0, 1), d (l = 0, 1, 2), and f (l = 0, 1, 2), l = 0, 1, 2, 3). Following this nomenclature, the basis sets used for each atom type were dddfd (V), ppppp (O), dddd (Cl), and fddd (Br and I) with increasing functional localization from left to right (a more detailed discussion of the basis functions can be found in ref 23). A Bloch sum of these functions is performed over the lattice vectors to satisfy the periodic boundary conditions of the supercell. While we allowed full spin relaxation, in all cases, VOX molecules were found to be most stable with an effective spin of 1, VOXY with a spin of 1/2, and VOXY₂ with no spin (X, Y = F, Cl, Br, I). Since no indication about the symmetry of VOX₂ and VOXY was found in the literature, we did not impose symmetry constraints. However, after full geometric optimization, the VOX₂ molecules all showed C_{2v} symmetry. The vibrational modes of the species VOX_n (n = 1,3) are given in Table 1.

Vibrational frequencies and normal modes are obtained as follows. Each atom in a relaxed molecular structure is displaced in the *x*, *y*, and *z* directions by 0.2 au in turn, and the forces on all atoms are evaluated analytically. The second derivative of the energy with respect to the positions of atoms *i* and *j*, d^2E/dR_idR_j , is then obtained by a finite difference formulation of the derivative using the calculated forces. From these numerical second deriva-

⁽¹³⁾ Oberhammer, H.; Strähle, J. Z. Naturforsch. A 1975, 30, 296.

⁽¹⁴⁾ Karakida, K.; Kuchitsu, K. Inorg. Chim. Acta 1975, 13, 113.

⁽¹⁵⁾ Filgueira, R. R.; Fournier, L. L.; Varetti, E. L. Spectrochim. Acta A 1982, 38, 965.

⁽¹⁶⁾ Allaf, A. W. J. Chem. Res. 2003, 9 (S), 554.

⁽¹⁷⁾ Allaf, A. W. J. Chem. Res. 2003, 12 (S), 800.

⁽¹⁹⁾ Perdew, J. P.; Wang, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 13244.

⁽²⁰⁾ Jones, R.; Briddon, P. Semiconductors Semimetals 1998, 51A, 287.
(21) Rayson, M. J.; Briddon, P. R. Comput. Phys. Commun. 2007, 178 (2), 128–134.

⁽²²⁾ Hartwingster, C.; Goedecker, S.; Hutter, J. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 58, 3641.

⁽²³⁾ Goss, J. P.; Shaw, M. J.; Briddon, P. R. Top. Appl. Phys. 2007, 104, 69–94.

Table 2. Structural Parameters for VO_nCl_m (Å for bond lengths and deg for angles)^{*a*}

	VOCl ₃		$VOCl_2$	V	VOCl	
	present work	literature	present work	present work	literature	present work
V=O	1.59	$1.571,^{12}{}^{1.57,^{14}}_{1.571^{13}}$	1.59	1.60	1.594, ¹⁸ 1.56 ¹⁶	1.60
V-Cl	2.11	2.168, ¹² 2.142, ¹⁴ 2.137 ¹³	2.12	2.15	2.26, ¹⁸ 2.33 ¹⁶	2.13
O=V-Cl	108.3	107.8 ¹³	116.4	120.6	139.1, ¹⁸ 179.97 ¹⁶	113.6
Cl-V-Cl	110.6	$110.9,^{12}, 111.3,^{14}$ 111^{13}	127.2			
0-V-0						108.2

^a Experimental data in italics.

Table 3. Calculated and Literature Frequencies for VO_nCl_m (cm⁻¹)^{*a*}

	VOCl ₃	$VOCl_2$	VOCl		VO ₂ Cl
present work	literature	present work	present work	literature	present work
1046	$\frac{1043,^{12}\ 1035,^{8}\ 1042.8,^{15}}{1042.5,^{25}\ 1035^{9}}$	1041	1014	1032.9, ¹⁸ 1010 ¹⁶	1025
502	$503,^{12}, 505,^{8}, 508.4,^{15}, 503,^{25}, 504^{9}$	524	427	$388.1,^{18}$ 420^{16}	1010
397	$409,^{12}, 408,^{8}, 413.2,^{15}, 409.5,^{25}, 408^{9}$	386			471
243	$246,^{12},^{12},^{248},^{25},^{249},^{9},^{9},^{246^{10}}$	220			346
161	$164,^{12}, 163,^{25}, 165,^{9}, 163^{10}$	116			190
126	$125,^{12},^{12},^{124.5},^{25},^{129,9},^{9},^{124.5^{10}}$	32	154	72.9 ¹⁸	161

^a Experimental data in italics.

tives, the dynamical matrix can be built up by dividing each term by the product of the masses of atoms *i* and *j*, $(d^2E/dR_idR_j)/M_iM_j$, and the subsequent eigenvalue problem solved in the usual way.

Although this procedure is derived using a harmonic approximation, the numerical nature of the second derivatives can be viewed as including contributions from quartic and higher-order even terms in the vibrational potential, and as such, the frequencies obtained are termed *quasi-harmonic*. A detailed discussion of this method is given in ref 24.

Where experimental data are available (e.g., for VOCl₃), we obtain bending modes typically within 5 cm⁻¹. However, the calculated stretching frequencies, which generally have a larger anharmonic component,²⁴ are slightly less accurate (errors varying from about 10 to 30 cm⁻¹) with a general correlation of increasing error with increasing frequency. To compensate for this effect, we correct the frequencies obtained from the dynamical matrix by applying a constant shift (considering all cited molecules) of -27 cm⁻¹ to all stretching frequencies (i.e., those involving both V–O as well as V–X; X = F, Cl, Br, I). All tabulated values incorporate this global mean shift.

3. Results

3.1. Vanadium Oxochlorides VOCl_x. VOCl₃ is the most well-characterized of the vanadium oxohalides, and our results are in good agreement with experimental^{13,14} and theoretical¹² data from the literature (less than 0.06 Å difference for bond lengths, less than 0.7° difference for angles; see Table 2). Our calculated vibrational frequencies are given in Table 3, and once again show good general agreement with the literature.

Calculations on isotopes of VOCl₃ (with ³⁵Cl and ³⁷Cl) show coherent behavior of the vibrational frequencies with increasing atom mass (Table 4). Frequency shifts are proportional to the number of ³⁷Cl atoms in the molecule and do not affect the V=O stretching mode. Agreement with shifts reported by Filgueira et al.¹⁵ is excellent for the symmetrical V–Cl stretching mode, but we see a discrepancy for the asymmetrical V–Cl stretching mode. This can be corrected by inverting the assignments given by Filgueira et al. for the VO³⁵Cl³⁵Cl³⁷Cl and VO³⁵Cl³⁷Cl³⁷Cl isotopes, restoring a more logical frequency sequence with mass.

We consider next VOCl, with structural data given in Table 2. Our calculated structure shows good agreement on bond lengths with calculations in the literature¹⁸ (less than 0.11 Å difference). Our O=V-Cl angle is about 20° less than that of Diez and Baran,¹⁸ and about 40° less than that of Allaf;¹⁶ however, both groups agree that the real value should be smaller than their calculations.^{16,18} No experimental values are available. We see excellent agreement between our calculated vibrational frequencies and experimental data (Table 3). Notably, the V–Cl stretch mode matches experimental results¹⁶ better than previous calculations.¹⁸ Our O=V-Cl bend mode is higher than previous calculations^{16,18} due to our smaller bond angle (no experimental data are available for comparison).

Our calculated frequencies confirm the experimental attribution of VOCl.¹⁶ Our calculated V=O stretch frequency for VOCl₂ is very close to that of VOCl₃, and the V–X stretch lies within the broad shoulder of the VOCl₃ V–X stretch, which suggests that VOCl₂ is probably experimentally undetectable by FTIR without going to higher spectrometer resolutions. It therefore remains possible that dissociation of VOCl₃ can also form VOCl₂ along with VOCl. Another potential product, VO₂Cl, does not have frequencies that match peaks in the experimental spectra. Cl isotopic shifts for VOCl and VOCl₂ are given in Table 5, although no experimental data are yet available for comparison.

3.2. Vanadium Oxofluorides VOF_x. In this section, we begin by modeling VOF₃ for which various theoretical and experimental data are available in the literature and then consider other compounds. We notably discuss the peak attribution in the experimental VOF¹⁷ and VOF₃⁸ spectra (Figures 1 and 2).

For VOF₃, we obtain excellent agreement with theoretical¹² structural data in the literature where available, of less than 0.03 Å difference for bond lengths and less than 0.3° difference for angles (Table 6). Vibrational frequencies are given in Table 7. Stretching modes show good agreement with the literature (variations from 1 to 12 cm⁻¹), and bending modes differ by less than 20 cm⁻¹.

Tables 8 and 9 show new results for the hypothetical intermediate molecules VOCl₂F and VOClF₂, which could be created when VOCl₃ reacts with NaF^{8,16,17} to produce VOF₃. Compared to VOCl₃ or VOF₃, these molecules have a lower symmetry which breaks degeneracy and increases the number of frequencies. Their calculated frequencies are often very near to those of VOCl₃ and VOF₃; in particular,

⁽²⁴⁾ Jones, R.; Goss, J.; Ewels, C.; Oberg, S. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 8378.

⁽²⁵⁾ Clark, R. J. H.; Mitchell, P. D. J. Chem. Soc. 1972, 22, 2429.

DFT study of gas phase oxohalides

Table 4. Calculated and Literature Frequencies for VOCl₃ with Varying Chlorine Isotopes $(cm^{-1})^a$

VOCl ₃		³⁵ Cl ³⁵	Cl ³⁷ Cl	³⁵ Cl ³⁷	Cl ³⁷ Cl	³⁷ Cl ³⁷ Cl ³⁷ Cl	
present work	literature	our DFT shift	literature shift	our DFT shift	literature shift	our DFT shift	literature shift
1046 502 397	$\frac{1043, ^{12}}{503, ^{12}} \frac{1035, ^{8}}{503, ^{12}} \frac{1042.8, ^{15}}{503, ^{12}} \frac{1042.5, ^{25}}{503, ^{12}} \frac{1035^{9}}{503, ^{12}} \frac{1035^{9}}{5$	$ \begin{array}{c} 0 \\ -2 \\ -3 \end{array} $	0^{15} -3.73 ¹⁵ -3.22 ¹⁵	$0 \\ -4 \\ -7$	0^{15} -1.8 ¹⁵ -6.3 ¹⁵	$0 \\ -6 \\ -10$	0^{15} -5.7 ¹⁵ -9.6 ¹⁵

^{*a*} Experimental data in italics.

Figure 1. VOF₃ FTIR absorption spectrum (cm⁻¹), modified from ref 8. Colored bars correspond to our calculated frequencies for various molecules, as given in the legend. Several previously unassigned peaks are due to VOF₂, VOCl₂F, and VOClF₂.

Tabl	e 5.	Calculate	d and	Literature	Frequencies	for	VOCl	and	VOCl ₂
with	Vary	ing Chlor	ine Is	otopes (cm	$(n^{-1})^{a}$				

	VOCl	VO ³⁷ Cl	VOCl ₂	35Cl37Cl	37Cl37Cl
present work	literature	our DFT shift	present work	our DFT shift	our DFT shift
1014	1032.9,18 101016	0	1041	0	0
427	388.1, ¹⁸ 420 ¹⁶	-7	524	-3	-6
154	72.9 ¹⁸	-1	386	-4	-9
			220	-1	-1
			116	-2	-3
			32	0	0

^a Experimental data in italics.

the experimentally observed shoulders⁸ around two of the main peaks of VOF₃ (1058 and 722 cm⁻¹) we assign here to VOCl₂F and VOClF₂ (see Figure 1). Other peaks of these compounds around 500 cm⁻¹ are hidden by the noise. The weak peak intensities suggest low concentrations of these intermediates in the gas phase. We note that the P and R sidebands observed in the VOF₃ FTIR spectra of ref 7 are too weak to be observed in the current spectra.

We turn next to VOF. As for VOCl, our structural parameters (Table 6) show good agreement on bond lengths with those reported in the literature^{17,18} (less than 0.09 Å difference), with O=V-X angles $\sim 20^{\circ}$ less than those in ref 18 and $\sim 40^{\circ}$ less than those in ref 17, apparently closer to experimental results,^{17,18} although no experimental data are available. Once again, this results in a higher calculated O=V-F bending mode (Table 7).

Figure 2. "VOF_x" FTIR absorption spectrum previously assigned to VOF, modified from ref 17. Colored bars correspond to our calculated frequencies for various molecules, as given in the legend. Peaks at 668.7, 807, and 1048 cm⁻¹ are here assigned to VOF₂.

Our calculated V–F stretching frequency matches better with the experimental one¹⁷ than those calculated previously;¹⁸ however, it remains in poor agreement and suggests a potential misassignment of the experimental data. We therefore compared frequencies of VOF and VOF₂ for our calculations with the experimental frequencies¹⁷ for the peaks assigned to VOF, referred to hereafter as VOF_x (see Table 7

Table 6. Structural Parameters for VO_nF_m (Å for bond lengths, deg for angles)^{*a*}

	VOF ₃		VOF_2	VOF		VO_2F	
	present work	literature	present work	present work	literature	present work	
V=O	1.59	1.575 ¹²	1.59	1.60	1.606,18 1.5817	1.61	
V-F	1.71	1.7312	1.73	1.75	1.848, ¹⁸ 1.85 ¹⁷	1.74	
O=V-F	108.3		116.1	123.0	144.4, ¹⁸ 167.4 ¹⁷	114.7	
F-V-F	110.6	110.912	127.7				
0 - V - 0						109.4	

^{*a*} Experimental data in italics.

Table 7. Calculated and Literature Frequencies for VO_nF_m (cm⁻¹)^{*a*}

VOF ₃		VOF_2	V	'OF	VOF _x	VO ₂ F
present work	literature	present work	present work	literature	literature	present work
1065	1058, ¹² 1058, ⁸ 1057,8	1048	1013	$1028.3,^{18}$ 1132^{17}	102817	1033
807	806, ¹² 806 ^{8,7}	807	694	$617,^{18}$ 630^{17}	80717	1017
710	$722,^{12},722,^{8}$ 721.5^{7}	673	148	109.8, ¹⁸ 66.48 ¹⁷	668.7 ¹⁷ (*)	731
289	308, ¹² 308 ⁷	265				360
240	256, ¹² 257.8 ⁷	192				237
186	205 12 204 37	30				173

 $a^{a}(*)$ indicates previously unassigned peak not considered by the authors. Experimental data in italics.

Table 8. Structural Parameters for VOCl₃, VOF₃, VOCl₂F, and VOClF₂ (Å for bond lengths and deg for angles)^{*a*}

	VOCl ₃		$VOCl_2F$	$VOClF_2$	VOF ₃		
	present work	literature	present work	present work	present work	literature	
V=O	1.59	$1.571,^{12}{}^{1.57,^{14}}_{1.571^{13}}$	1.59	1.59	1.59	1.575 ¹²	
V-Cl	2.11	2.168, ¹² 2.142, ¹⁴ 2.137 ¹³	2.11	2.11			
O=V-Cl	108.3	107.813	108.1	108.0			
V-F			1.71	1.71	1.71	1.73^{12}	
O=V−F			108.7	108.3	108.3		

^{*a*} Experimental data in italics.

Table 9. Calculated and Literature Frequencies for VOCl₃, VOF₃, VOCl₂F, and VOCl₂F (cm⁻¹)^a

VOCl ₃	VOCl ₂ F	VOClF ₂	VOF ₃	VOF ₂
present work	present work	present work	present work	present work
$1046 (1035^8) 502 (505^8) 397 (408^8) 243 (248^{12}) 161 (163^{12}) 126 (124 5^{12}) 126 (124 $	1055 759, 509 435 270, 248 184	1060 794, 731 475 287, 266 207	$1065 (1058^8) 807 (806^{8.7}) 710 (722^8) 289 (308^{12}) 240 (256^{12}) 186 (205^{12}) $	1048 807 673 265 192

^{*a*} Experimental data in italics. The VOF₂, VOCl₂F, and VOClF₂ frequencies correspond to unassigned peaks in the spectrum of ref 8 (see Figure 1).

and Figure 2). A much better match is obtained between VOF_x and VOF_2 than between VOF_x and VOF, particularly concerning the peak at 807 cm⁻¹ (VOF₃ also has a mode at 807 cm⁻¹, but we assume, regarding its other very weak peak intensities, that it cannot alone explain the strong observed peak at 807 cm⁻¹). Moreover, the experimental spectrum for VOF_x includes another peak at 668.7 cm⁻¹ which was previously neglected.¹⁷ This peak is in good agreement with our calculated frequency at 673 cm⁻¹ for VOF_2 , which has more vibrational frequencies than VOF. Since the process used to produce VOF could reasonably also produce other species such as VOF_2 , and given the data above, we therefore reassign the experimental data

Table 10. Structural Parameters for VO_nBr_m (Å for bond lengths and deg for angles)^{*a*}

	V	OBr ₃	VOBr ₂	VOBr	VO ₂ Br	
	present work	literature	present work	present work	present work	
V=O	1.59	1.57212	1.59	1.60	1.60	
V-Br	2.25	2.33112	2.26	2.29	2.27	
O=V−Br	108.3		116.5	120.5	113.5	
Br-V-Br	110.6	111112	126.9			
O-V-O					109.2	

^a Experimental data in italics.

Table 11. Calculated and Literature Frequencies for $VO_nBr_m (cm^{-1})^a$

	VOBr ₃	VOBr ₂	VOBr	VO ₂ Br
present work	literature	present work	present work	present work
1046	1025, ¹² 1030, ⁸ 1025	1036	1013	1023
395	401, ¹² 400, ⁸ 400 ¹¹	422	320	1008
284	269, ¹² 271 ¹¹	280		394
210	212, ¹² 212 ¹¹	188		305
120	$118,^{12} 120^{11}$	76		168
81	84, ¹² 83 ¹¹	26	137	143
a n :				

^a Experimental data in italics.

Table 12. Structural Parameters for VOCl₃, VOBr₃, VOBr₂, and VOBr₂Cl Molecules (Å for bond lengths and deg for angles)^{*a*}

	VOCl ₃		$\underline{\text{VOBrCl}_2}$	VOBr ₂ Cl	V	OBr ₃
	present work	literature	present work	present work	present work	literature
V=0	1.59	1.571, ¹² <i>1.57</i> , ¹⁴ <i>1.571</i> ¹³	1.59	1.59	1.59	1.572 ¹²
V-Cl	2.11	2.168, ¹² 2.142, ¹⁴ 2.137 ¹³	2.11	2.11		
O=V-Cl	108.3	107.8 ¹³	108.5	108.6		
V-Br			2.25	2.25	2.25	2.33112
O=V−Br			108.1	108.3	108.3	

^{*a*} Experimental data in italics.

Figure 3. VOBr₃ FTIR absorption spectrum, modified from ref 8. Colored bars correspond to our calculated frequencies for various molecules, as given in the legend. Peaks at 457 and 479 cm⁻¹ are assigned respectively to VOBrCl₂ and VOBr₂Cl. The shoulder at 422 cm⁻¹ is assigned to VOBr₂.

previously assigned to VOF to VOF₂. This is with the proviso that the spectra are somewhat noisy and the peak quite sharp, and without repeat experiments the possibility that the peak is an artifact cannot be completely excluded.

We note that this also suggests that the primary product of $VOCl_3$ reaction over NaF is VOF_2 rather than VOF_3 (Table 9 and Figure 1).

DFT study of gas phase oxohalides

Table 13. Calculated and Literature Frequencies for VOCl₃, VOBr₃, VOBr₂, VOBr₂, VOBr₂Cl₂, and VOBr₂Cl $(cm^{-1})^{a}$

VOCl ₃	VOBrCl ₂	VOBr ₂ Cl	VOBrCl	VOBr ₃	VOBr ₂
present work	present work	present work	present work	present work	present work
$ \begin{array}{r} 1046 (1035^8) \\ 502 (505^8) \\ 397 (408^8) \\ 243 (248^{12}) \\ 161 (163^{12}) \\ 126 (124 5^{12}) \end{array} $	1044 500, 457 328 242, 215 148	1043 479, 397 319 227, 205 133 104, 87	1037 489 334 182	1046 (<i>1030</i> ⁸) 395 (<i>400</i> ⁸) 284 (271 ¹¹) 210 (212 ¹¹) 120 (<i>120</i> ¹¹) 81 (<i>83</i> ¹¹)	1036 422 280 188 76 26

^{*a*} Experimental data in italics. The VOBr₂, VOBrCl₂, and VOBr₂Cl calculated frequencies explain previously unassigned peaks in the VOBr₃ spectrum (see Figure 3).

Table 14. Structural Parameters for VO_nI_m (Å for bond lengths and deg for angles)

	VOI ₃		VOI ₂	VOI	VO ₂ I	
	present work	literature	present work	present work	present work	
V=0	1.59	1.57412	1.59	1.60	1.61	
V-I	2.47	2.33212	2.48	2.50	2.48	
O=V-I	108.3		116.5	119.5	112.7	
I-V-I	110.6	11112	127.1			
O-V-O					109.3	

Table 15. Calculated and Literature Frequencies for VO_nI_m (cm⁻¹)^{*a*}

V	OI ₃	VOI ₂	VOI	VO_2I
present work	literature	present work	present work	present work
1037	1022, ¹² 1025 ⁸	1034	1013	1020
331	33312	360	265	1006
216	20712	218		367
185	18712	173		270
87	91 ¹²	62		154
58	62 ¹²	31	121	133
a Evenningen	tal valua in itali.	20		

^a Experimental value in italics.

As with VO₂Cl, VO₂F does not have frequencies that match any peaks in the experimental spectra.

3.3. Vanadium Oxobromides VOBr_{*x*}. We first consider VOBr₃, once again obtaining good structural agreement with

Table 16. Structural Parameters for VOCl₃, VOI₃, VOCl₂I, and VOCl₂ (Å for bond lengths, deg for angles)

VOCl ₃		VOCl ₂ I	VOClI ₂	VOI ₃	
present work	literature	present work	present work	present work	literature
1.59	$1.571,^{12}, 1.57,^{14}, 1.571^{13}$	1.59	1.59	1.59	1.572 ¹²
2.11	2.168, ¹² 2.142, ¹⁴ 2.137 ¹³	2.12	2.12		
108.3	107.8 ¹³	108.8	109.4		
		2.46 107.3	2.47 107.8	2.47 108.3	2.33112
	present work 1.59 2.11 108.3	$\begin{tabular}{ c c c c c c } \hline VOCl_3 \\ \hline present \\ work & literature \\ \hline 1.59 & 1.571, {}^{12}, 1.57, {}^{14}, \\ 1.577, {}^{13}, \\ 2.11 & 2.168, {}^{12}, 2.142, {}^{14}, \\ 2.137^{13}, \\ 108.3 & 107.8^{13} \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c } \hline VOCl_3 & VOCl_2I \\ \hline present & present \\ \hline work & literature & work \\ \hline 1.59 & 1.571.^{12} 1.57.^{14} & 1.59 \\ 1.571.^{13} & 1.57.^{14} & 2.12 \\ 2.131 & 2.168.^{12} 2.142.^{14} & 2.12 \\ 2.1371 & 108.3 & 107.8^{13} & 108.8 \\ & 2.46 \\ 107.3 & 107.3 & 107.8^{13} & 107.8^{13} \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 17. Calculated and Literature Frequencies for VOCl₃, VOI₃, VOCl₁, VOCl₂I, and VOCll₂ (cm⁻¹)^a

VOCl ₃	VOCl ₂ I	VOClI ₂	VOCII	VOI ₃	VOI ₂
present work	present work	present work	present work	present work	present work
1046 (1035 ⁸)	1042	1039	1035	1037 (1025 ⁸)	1034
$502(505^8)$	497	487	475	331 (333 ¹²)	360
397 (408 ⁸)	442	381	290	216 (207 ¹²)	218
243 (24812)	313	323	182	185 (187 ¹²)	173
161 (16312)	240	275		87 (9112)	62
126 (124.5 ¹²)	195	197		58 (62 ¹²)	31

^a Experimental data in italics.

theoretical¹² data from the literature where available (less than 0.08 Å difference for bond lengths, less than 0.4° difference for angles; see Tables 10 and 12).

Previously reported experimental FTIR data⁸ for VOBr₃ (see Figure 3) show three unexplained peaks: a shoulder at the left of the V–Br stretching frequency around 400 cm⁻¹ and two peaks to the right of the peak attributed to VOCl₃ (500 cm⁻¹). We propose the attribution of the shoulder peak to VOBr₂ (see Figure 3). The only other calculated frequency for VOBr₂ in the experimentally measured range is the V=O stretching frequency, which is almost identical to that of VOBr₃ (1030 cm⁻¹) and so will not be observable (see Tables 11 and 13). According to our calculations, the last two unassigned peaks correspond to the compounds VOBr₂Cl and VOBrCl₂ (see Table 13 and Figure 3). We also determined

Figure 4. VOI₃ spectrum modified from ref 8. Colored bars correspond to calculated frequencies for various molecules, as given in the key. While the majority of observed unassigned peaks cannot be explained by our calculations, there appears evidence for the intermediates VOCl₂I, VOCll₂, and VOCII.

Table 18. Comparison of X-V-X Bond Angles between VOCl₃, VOF₃, VOBr₃, and VOI₃^a

	VOCl ₃		VOF ₃		VOBr ₃		VOI ₃	
	present work	literature	present work	literature	present work	literature	present work	literature
X-V-X	110.6	110.9, ¹² 111.3, ¹⁴ 111 ¹³	110.6	110.912	110.6	111 ¹²	110.6	11112
	. 1 11							

^a Experimental literature values in italics.

modes for VOBrCl, but they fall too close to other peaks for clear identification. Other calculated frequencies either fall outside the experimentally reported frequency range (under 400 cm⁻¹) or lie too near to VOCl₃ and VOBr₃ frequencies to be observed. Tables 10 and 11 also include new calculated data for VOBr and VO₂Br which have not previously been considered in the literature. With the exception of the V=O stretch modes, all of their modes fall below the experimentally reported frequency range 400–1200 cm^{-1 8} (see Figure 3), thus precluding their identification.

3.4. Vanadium Oxoiodides VOI_x. Again for VOI₃, we obtain excellent structural agreement with literature data where available¹² (less than 0.14 Å difference for bond lengths, less than 0.4° difference for angles; see Tables 14 and 16). The experimental FTIR spectrum for VOI_r in ref 8 (see Figure 4) contains many more peaks than for the other vanadium oxohalides, the vast majority of which were unassigned. We have calculated vibrational frequencies of VOI₂, VOI, and VO₂I, but as for VOI₃, they do not show frequencies in the experimentally reported range 400–1200 cm^{-1} (Table 15) apart from V=O stretch modes, which are too close to use for identification. We have also considered other possible contaminant species such as potassium compounds but did not clearly identify any species that accurately reproduced the experimental data. However, the calculated frequencies for VOCl₂I or VOCl₁ may explain some of the structure at the lower-frequency edge of the strong 505 cm⁻¹ absorption due to VOCl₃ (see Table 17 and Figure 4).

4. Conclusions

We have studied a wide range of oxohalides of vanadium $(VOX_nY_m; X, Y = F, Cl, Br, I; n, m = 0-3, (n + m) \le 3)$, giving generally excellent agreement between our calculated data and previous literature data where available. The results lead to the assignment and reassignment of many experimentally observed FTIR absorption peaks. Notably, we propose a reassignment of peaks for VOF^{16,17} to VOF₂. The reported⁸ spectrum for VOF₃ includes weak peaks and shoulders that we assign to VOCl₂F, VOClF₂, and VOF₂. The presence of VOCl₂ in samples of VOCl₃ thermally treated to produce VOCl cannot be excluded since its calculated absorption peaks lie in the shoulders of VOCl₃ peaks. We propose an inversion of attribution for two Cl

isotope peaks in the literature for VOCl₃.¹⁵ The VOBr₃ spectrum includes three peaks that we assign to VOBr₂Cl and VOBrCl₂, and a shoulder we assign to VOBr₂. Finally, we are not able to definitively assign any of the many peaks observed in the VOI₃ spectrum to related VOI_n or VOI_nCl_m species but suggest that some lower-frequency modes could be due to VOCl₂I and VOCII₂. We note that some of the remaining unassigned peaks in the spectra could be due to species hydrolyzing, forming hydrous pentoxides; however, these lie beyond the scope of the current study.

The lengthening of the V-X bond from X = F to I appears to be due to the size of the halogen atoms. Steric hindrance between the halogen atoms is unlikely given the X-V-X angle for VOX₃ (Table 18), which remains practically unchanged from Cl to I.

Given the new frequency assignments, a more complete interpretation of vanadium oxohalide formation via online heating of halide salts is now possible, following clearly a trend of decreasing the V-X bond strength (and increasing bond length) as X moves down the periodic table from F to I.

VOF₃ is a very stable molecule, and V–F bonds seem hard to break. Indeed, dissociation processes lead to VOF₂ rather than to VOF. While conversion of VOCl₃ to VOF₃ does not have 100% yield, the byproducts (VOCl₂F and VOClF₂) are only observed in small quantities.

 $VOCl_3$ is less stable, and V-Cl bonds are easier to break. Dissociation thus gives experimentally VOCl, although $VOCl_2$ byproduct production cannot be excluded.

VOBr₃ has much weaker V–Br bonds. In this case, the production of VOBr₃ by cracking VOCl₃ results in large quantities of stable VOBr_xCl_{3-x} (x = 1, 2) intermediates, as well as spontaneous formation of some VOBr₂.

VOI₃ is certainly the least stable of the four. Its existence cannot be definitely confirmed with the available literature data,⁸ and observed peaks may be due to other species, possibly VOCII₂ and VOCl₂I. Experimental data at lower IR frequencies are needed to confirm these assignments.

Acknowledgment. I.S.-M. and C.P.E. acknowledge the EU project "nano2hybrids" 033311 for funding and the CCIPL for use of supercomputer facilities.

IC8022562