Symmetry-Dependent Strong Reduction of the Spin Exchange Interactions in Cs_2CuCl_4 by the 6p Orbitals of Cs^+ lons

Changhoon Lee,[†] Jinhee Kang,^{†,‡} Kee Hag Lee,^{*,‡} and Myung-Hwan Whangbo^{*,†}

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, Nanoscale Science and Technology Institute, and BK21, Wonkwang University, Iksan 570-749, Korea

Received December 18, 2008

Despite a three-dimensional arrangement of its $CuCl_4^{2-}$ ions, the magnetic properties of Cs_2CuCl_4 are explained by a two-dimensional frustrated triangular antiferromagnetic spin—lattice. The origin of this low-dimensional magnetism was explored by evaluating the spin exchange interactions of A_2CuCl_4 (A = Cs, Rb, K, Na) on the basis of first principles density functional calculations. The calculated spin exchange parameters agree with experiment only when the Cs⁺ ions located between the $CuCl_4^{2-}$ ions are not neglected. The antiferromagnetic spin exchange interaction between adjacent $CuCl_4^{2-}$ ions is strongly reduced by the 6p orbitals of the intervening Cs⁺ ions when the arrangement of the $CuCl_4^{2-}$ and Cs⁺ ions has either mirror-plane or inversion symmetry. The observed magnetism of Cs₂CuCl₄ arises from this symmetry-dependent participation of the 6p orbitals of the Cs⁺ ions in the spin exchange interactions between $CuCl_4^{2-}$ ions.

1. Introduction

Recently, Cs_2CuCl_4 has received much attention because of its unconventional magnetic properties such as magneticfield induced Bose-Einstein condensation¹ and fractional spin quasiparticles.² The crystal structure of Cs_2CuCl_4 has a threedimensional (3D) arrangement of $CuCl_4^{2-}$ ions separated by Cs^+ ions (Figure 1a).³ The $CuCl_4^{2-}$ ion can be described as a distorted square plane or a distorted tetrahedron containing a Cu^{2+} (d⁹) ion. There are four different arrangements of nearest-neighbor $CuCl_4^{2-}$ ions so that Cs_2CuCl_4 has four $Cu-Cl\cdots Cl-Cu$ super-superexchange (SSE) paths (J_1-J_4) leading to 3D spin exchange interactions (Figure 1b). However, the explanation of the magnetic properties of Cs_2CuCl_4 requires the use of the two-dimensional (2D) triangular spin–lattice made up of the spin exchange J_1 and

10.1021/ic802412x CCC: \$40.75 © 2009 American Chemical Society Published on Web 03/27/2009

 J_2 with the ratio $J_2/J_1 = 0.34$, parallel to the *bc*-plane (Figure 1c).^{2,4} Here J_1 and J_2 are both antiferromagnetic (AFM), so that this lattice is spin frustrated.⁵ This 2D triangular AFM spin-lattice, deduced from a fitting analysis of the spin wave dispersion relations obtained from neutron scattering experiments,^{2,4} has not yet been confirmed by electronic structure calculations. Furthermore, the consideration of the geometrical parameters of the Cu-Cl····Cl-Cu SSE paths associated with $J_1 - J_4$ (Table 1) lead one to predict a different spin-lattice for Cs₂CuCl₄. Figure 2 shows the arrangement of the CuCl₄²⁻ and Cs⁺ ions associated with each of the SSE interactions $J_1 - J_4$. Several interatomic distances associated with these interactions are summarized in Table 1. In general, an SSE interaction involving the path $M-L\cdots L-M$ (M = transition metal, L = main group ligand) becomes stronger with decreasing the L···L contact distance.⁶ Thus, according to the Cl···Cl distances of Table 1, J_1 and J_3 should be two dominant interactions with J_1 stronger than J_3 . The resulting spin-lattice is a frustrated two-leg spin ladder (Figure 1d), which is quite different from the observed 2D triangular AFM spin-lattice.

Inorg. Chem. 2009, 48, 4165-4170

Inorganic Chemist

^{*} To whom correspondence should be addressed. E-mail: mike_whangbo@ncsu.edu.

[†] North Carolina State University.

^{*} Wonkwang University.

Radu, T.; Wilhelm, H.; Yushankhai, V.; Kovrizhin, D.; Coldea, R.; Tylczynski, Z.; Lühmann, T.; Steglich, F. *Phys. Rev. Lett.* 2005, *95*, 127202.

⁽²⁾ Coldea, R.; Tennant, D. A.; Tsvelik, A. M.; Tylczynski, Z. Phys. Rev. Lett. 2001, 86, 1335.

^{(3) (}a) McGinnety, J. A. J. Am. Chem. Soc. 1972, 94, 8406. (b) Bailleul, S.; Svoronos, D.; Porcher, P.; Tomas, A. C. R. Acad. Sci. Ser 2 1991, 313, 1149. (c) Xu, Y.; Carlson, S.; Söderberg, K.; Norrestam, R. J. Solid State. Chem. 2000, 153, 212.

⁽⁴⁾ Coldea, R.; Tennant, D. A.; Habitch, K.; Smeibidl, P.; Wolters, C.; Tylczynski, Z. Phys. Rev. Lett. 2002, 88, 137203.

 ^{(5) (}a) Greedan, J. E. J. Mater. Chem. 2001, 11, 37. (b) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2004, 121, 672.

⁽⁶⁾ Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417.

(c)

Figure 1. Schematic drawings showing the crystal structure and the spin exchange paths of Cs₂CuCl₄: (a) Arrangement of the CuCl₄²⁻ and Cs⁺ ions. (b) 3D arrangement of the four spin exchange paths J_1-J_4 , where J_1 , J_2 , J_3 , and J_4 are represented by the red, gray, yellow, and white cylinders, respectively. The numbers 1-4 in (b) refer to J_1-J_4 , respectively. (c) 2D triangular net based on J_1 and J_2 . (d) Two-leg spin ladder based on J_1 and J_3 . (e) 3D lattice based on J_3 and J_4 .

(d)

Table 1. Several Interatomic Distances (in Å) Associated with the Spin Exchange Paths $J_1 - J_4$ in the RT and LT Crystal Structures of Cs₂CuCl₄

	Cu···Cu	Cl····Cl	Cl····Cs
		(a) RT Structure (ref 3a)	
J_1	7.609	3.634	3.460 (×2), 3.488 (×2), 3.636 (×2)
J_2	7.283	4.144	3.460, 3.483, 3.488, 3.518, 3.668
J_3	6.802	4.076 (×2)	3.599 (×2), 3.636 (×2)
J_4	6.417	4.103 (×2)	3.630, 3.559, 3.668 (×2)
	(b) Exper	imental (ref 3b) and Calculated LT	Structures ^a
J_1	7.607	3.623	3.889 (×2), 3.224 (×2), 3.635 (×2)
-	7.607	3.528	3.445 (×2), 3.495 (×2), 3.615 (×2)
J_2	7.276	4.145	3.889, 3.745, 3.224, 3.066, 3.676
-	7.276	4.173	3.445, 3.537, 3.494, 3.514, 3.654
J_3	6.809	4.079 (×2)	3.587 (×2), 3.635 (×2)
2	6.815	4.050 (×2)	3.550 (×2), 3.615 (×2)
J_4	6.419	4.104 (×2)	3.629, 3.587, 3.676 (×2)
*	6.412	4.176 (×2)	3.572, 3.550, 3.654 (×2)

^a For each entry, the values of the upper row refer to the experimental LT crystal structure, and those of the lower row to the calculated LT crystal structure.

In the present work, we examine the origin of the 2D triangular AFM spin–lattice by evaluating the spin exchange interactions of Cs_2CuCl_4 on the basis of first principles density functional theory (DFT) electronic structures calculations. The crystal structures of Cs_2CuCl_4 determined at room temperature (RT),^{3a} at 0.3 K [hereafter referred to as the low-temperature (LT)],^{3b} and under pressure^{3c} are known. Our calculations were carried out for the RT and LT structures because they are relevant for the discussion of the magnetic properties of Cs_2CuCl_4 . Our study reveals that the spin exchange between adjacent $CuCl_4^{2-}$ ions can be strongly reduced by the 6p orbitals of the intervening Cs^+ ions if the

arrangement of the CuCl_4^{2-} and Cs^+ ions has mirror-plane or inversion symmetry.

(e)

2. Spin Exchange Parameters from Cluster Calculations

We first evaluate the SSE parameters J_1-J_4 by performing DFT calculations for the four dimer clusters $(CuCl_4^{2-})_2$ representing these interactions by using the Gaussian 03 program package⁷ with the B3LYP exchange-correlation

⁽⁷⁾ Frish, M. J. et al. *Gaussian 03*, B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.

Figure 2. Arrangements of the two CuCl_4^{2-} and the intervening Cs^+ ions associated with the spin exchange paths J_1-J_4 .

Table 2. Spin Exchange Parameters $J_1/k_B - J_4/k_B$ (in K) of A₂CuCl₄ (A = Cs, Rb, K, Na) Determined from the GGA+U Calculations (with U = 6 eV) for Their RT Structures and Those of Cs₂CuCl₄ Determined from Cluster Calculations for the Spin Dimers (CuCl₄^{2–})₂ without the Intervening Cs⁺ Ions

	bai	band calculations for A2CuCl4			
	A = Cs	A = Rb	A = K	A = Na	cluster
$J_1/k_{\rm B}$	-8.5	-14.0	-16.6	-21.2	-36.2
$J_2/k_{\rm B}$	-4.8	-4.8	-4.8	-4.5	-4.3
$J_3/k_{\rm B}$	0.0	-3.6	-6.2	-12.6	-12.8
$J_4/k_{\rm B}$	+0.3	+0.2	+0.3	+0.7	0.3

functional⁸ and the 6-31++G(d, p) basis set. In these calculations, the Cs⁺ ions present between the two CuCl₄²⁻ ions are neglected. In these calculations, the spin exchange parameters *J* is related to the energies of the high-spin (HS) and broken-symmetry (BS) states of the spin dimer (E_{HS} and E_{BS} , respectively) as⁹

$$J = 2(E_{\rm BS} - E_{\rm HS}) \tag{1}$$

The J_i/k_B values (in units of K) determined from these calculations on the basis of the RT crystal structure of $Cs_2CuCl_4^{3a}$ are summarized in the last column of Table 2, which shows that J_1 and J_3 are the two dominating AFM interactions, as anticipated from their short Cl····Cl contact distances (Table 1a). The frustrated two-leg spin ladder model (Figure 1d) resulting from J_1 and J_3 is not in agreement with experiment. This failure of the cluster calculations is due most likely to the neglect of the Cs⁺ ions. Note that the arrangement of the CuCl₄²⁻ and Cs⁺ ions has pseudo mirrorplane symmetry in the SSE path J_1 , pseudo inversion symmetry in J_3 , but no symmetry in J_2 and J_4 . The effect of the Cs⁺ ions on the SSE interactions should depend on the geometrical arrangement of the CuCl₄²⁻ and Cs⁺ ions,

Figure 3. Five ordered spin states of Cs₂CuCl₄ employed to extract the spin exchange parameters J_1-J_4 . The filled and empty circles represent upspin and down-spin, respectively.

because the dominance of J_1 and J_3 in the absence of the Cs⁺ ions should be converted into that of J_1 and J_2 in the presence of the Cs⁺ ions.

3. Spin Exchange Parameters from Electronic Band Structure Calculations

To confirm the implication of the previous section, we carried out first principles DFT electronic band structure calculations for the RT crystal structure of Cs₂CuCl₄ by employing the frozen-core projector augmented wave method encoded in the Vienna ab initio simulation package (VASP)¹² with the generalized-gradient approximation (GGA) for the exchange-correlation functional,¹³ the plane-wave cutoff energy of 400 eV, 96 k-points for the irreducible Brillouin zone, and the threshold of 10^{-6} eV for the self-consistentfield convergence of the total electronic energy. To properly describe the strong electron correlation of the Cu 3d states, we employ the GGA plus on-site repulsion U (GGA+U) method.¹⁴ To evaluate the SSE parameters $J_1 - J_4$ by GGA+U calculations using the VASP, we calculate the energies of the five ordered spin states Cs₂CuCl₄ shown in Figure 3. The relative energies of these states obtained for the RT structure of Cs_2CuCl_4 with U = 2, 4, and 6 eV on Cu are summarized in Table 3a.

The energies of the five ordered spin states FM, AF1, AF2, AF3, and AF4 can be expressed in terms of the spin Hamiltonian,

$$\hat{H} = -\sum_{i < j} J_{ij} \hat{S}_i \cdot \hat{S}_j \tag{2}$$

 ^{(8) (}a) Beck, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785.

 ^{(9) (}a) Noodleman, L. J. Chem. Phys. 1981, 74, 5737. (b) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2003, 118, 29.

⁽¹⁰⁾ Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.

⁽¹¹⁾ Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.

⁽¹²⁾ Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.

⁽¹³⁾ Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

⁽¹⁴⁾ Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505.

where \hat{S}_i and \hat{S}_j are the spin operators at the spin sites *i* and *j*, respectively, and J_{ij} (= J_1 , J_2 , J_3 , J_4) is the SSE parameter between the sites *i* and *j*. Then, by applying the energy expressions obtained for spin dimers with *N* unpaired spins per spin site (in the present case, N = 1),^{9b} the energies (per four formula units) for the five spin states of Cs₂CuCl₄ are written as

$$E_{FM} = (-4J_1 - 8J_2 - 4J_3 - 4J_4)N^2/4$$

$$E_{AFI} = (-4J_1 - 8J_2 + 4J_3 + 4J_4)N^2/4$$

$$E_{AF2} = (-4J_1 + 8J_2 - 4J_3 + 4J_4)N^2/4$$

$$E_{AF3} = (+4J_1 - 4J_4)N^2/4$$

$$E_{AF4} = (-4J_1 + 8J_2 + 4J_3 - 4J_4)N^2/4$$
(3)

Therefore, by mapping the energy differences of the five states obtained from the GGA+U calculations onto the corresponding energy differences obtained from the spin Hamiltonian,^{6,9b} we obtain the spin exchange parameters listed in Table 4a. For U = 2, 4, and 6 eV, our GGA+U calculations show that J_1 and J_2 are the two dominant AFM interactions leading to the 2D triangular AFM spin-lattice (Figure 1c) in agreement experiment. Experimentally, $J_1/k_{\rm B}$ = -4.34 K, and $J_2/k_B = -1.48$ K,^{2,4} so that our calculations overestimated the spin exchange parameters by a factor of \sim 3. This is not surprising because DFT calculations with the GGA13 for the exchange-correlation functional tend to overestimate spin exchange parameters by a factor of up to ~4.¹⁵ The experimental J_2/J_1 ratio of 0.34⁴ is best reproduced by U = 6 eV (i.e., $J_2/J_1 = 0.56$, 0.63, 0.86 for U = 6, 4, and 2 eV, respectively). Thus, our discussion hereafter will be based on results from the use of U = 6 eV.

4. Discussion

4.1. Symmetry-Dependent Participation of Cs 6p Orbitals in Spin Exchange. It is interesting to compare the spin exchange parameters $J_1 - J_4$ of Cs₂CuCl₄ obtained from the cluster calculations neglecting the Cs⁺ ions with those determined from the band structure calculations including the Cs^+ ions. Table 2 shows that the inclusion of the Cs^+ ions significantly weakens J_1 and J_3 , but does not much affect J_2 and J_4 . To account for this selective participation of the Cs⁺ ions into the spin exchange interactions, we consider the symmetry of the arrangement of the $CuCl_4^{2-}$ and Cs^+ ions associated with each SSE path. As already noted (Figure 2), the arrangement has pseudo mirror-plane symmetry in J_1 , pseudo inversion symmetry in J_3 , but no symmetry in J_2 and J_4 . From the viewpoint of orbital interactions,⁶ the strength of the SSE interaction between two CuCl₄²⁻ ions is proportional to $(\Delta e)^2$, where Δe is the energy split between the two magnetic orbitals, Ψ_+ and Ψ_- , of the spin dimer

Table 3. Relative Energies (in meV per Four Formula Units) of the Five Ordered Spin States of the RT and LT Crystal Structures of Cs_2CuCl_4 Obtained from the GGA+U Calculations As a Function of U

	U = 2 eV	U = 4 eV	U = 6 eV			
(a) RT Structure (ref 3a)						
FM	0.00	0.00	0.00			
AF1	0.20	0.09	0.05			
AF2	-2.70	-2.12	-1.59			
AF3	-3.09	-2.86	-2.30			
AF4	-2.85	-2.22	-1.65			
(b) Experimental (ref 3b) and Calculated LT Structures ^a						
FM	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)			
AF1	+0.02(-0.34)	-0.02(-0.25)	-0.03(-0.19)			
AF2	+0.37(-2.49)	+0.11(-1.87)	+0.02(-1.39)			
AF3	+0.17(-6.31)	-0.33(-5.29)	-0.42(-4.12)			
AF4	+0.12(-3.03)	-0.05(-2.26)	-0.09(-1.67)			

^{*a*} The relative energies for the calculated LT crystal structure (see Supporting Information, Table S1) are given in parentheses.

Table 4. Spin Exchange Parameters $J_1/k_B - J_4/k_B$ (in K) Determined for the RT and LT Structures of Cs₂CuCl₄ from the GGA+U Calculations As a Function of *U*

	U = 2 eV	U = 4 eV	U = 6 eV		
(a) RT Structure (ref 3a)					
$J_1/k_{\rm B}$	-9.7	-10.1	-8.5		
$J_2/k_{\rm B}$	-8.3	-6.4	-4.8		
$J_3/k_{\rm B}$	+0.1	0.0	0.0		
$J_4/k_{ m B}$	+1.0	+0.5	+0.3		
(b) Experimental (ref 3b) and Calculated LT Structures ^a					
$J_1/k_{\rm B}$	+0.6(-27.8)	-1.8(-24.1)	-2.2 (-19.1)		
$J_2/k_{\rm B}$	+0.7(-7.5)	+0.1(-5.6)	-0.1(-4.2)		
$J_3/k_{\rm B}$	-0.7(-2.6)	-0.5(-1.9)	-0.4(-1.4)		
$J_4/k_{ m B}$	+0.8 (+0.6)	+0.4(+0.4)	+0.2 (+0.3)		

^{*a*} The relative energies for the calculated LT crystal structure (see Supporting Information, Table S1) are given in parentheses.

 $(\text{CuCl}_4^{2^-})_2$. As depicted in Figure 4a,b for J_1 , Ψ_+ and $\Psi_$ are given by the bonding and antibonding combinations of the magnetic orbitals of the constituent $\text{CuCl}_4^{2^-}$ ions.¹⁶ By symmetry, the magnetic orbital Ψ_- can make bonding interaction with the 6p orbitals of the intervening Cs⁺ ions to reduce the Δe value (Figure 4c). This reasoning assumed that the energy lowering of Ψ_- by the 6p orbitals of the Cs⁺ ions is much stronger than that of Ψ_+ by the 6s orbitals of the Cs⁺ ions. If this is true, the plot of density of states calculated for Cs₂CuCl₄ should show that, in the occupied energy region, the Cs 6p orbital contribution is much stronger than the Cs 6s orbital contribution. This is indeed the case, as shown in Figure 5.

There are two factors that affect the lowering of the Ψ_{-} orbital by the Cs 6p orbitals; one is the symmetry of the arrangement of the CuCl₄²⁻ and Cs⁺ ions. Only when this arrangement is symmetrical as found for the SSE paths J_{1} and J_{3} (Figure 2) can Ψ_{-} make bonding interaction with the 6p orbitals of the Cs⁺ ions. The other factor is the spatial extension of the Cs 6p orbital, which appears ideal for its overlap with Ψ_{-} in the SSE paths J_{1} and J_{3} . To verify this implication, we construct the hypothetical compounds A₂CuCl₄ (A = Rb, K, Na) by replacing the Cs atoms of Cs₂CuCl₄ with smaller alkali atoms Rb, K, or Na, without

^{(15) (}a) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2001, 114, 2887. (b) Dai, D.; Koo, H.-J.; Whangbo, M.-H. J. Solid State Chem. 2003, 175, 341. (c) Dai, D.; Whangbo, M.-H.; Koo, H.-J.; Rocquefelte, X.; Jobic, S.; Villesuzanne, A. Inorg. Chem. 2005, 44, 2407. (d) Grau-Crespo, R.; de Leeuw, N. H.; Catlow, C. R. J. Mater. Chem. 2003, 13, 2848. (e) Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2008, 47, 128. (f) Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2008, 47, 4779.

⁽¹⁶⁾ The orbital plots were made from extended Hückel tight binding calculations using the SAMOA program (http://chvamw.chem.ncsu.edu).

Figure 4. (a, b) Magnetic orbitals Ψ_+ and Ψ_- and their energy split Δe in the spin dimer unit $(CuCl_4^{2-})_2$ associated with the spin exchange path J_1 . (c) Lowering of the Ψ_- level by the 6p orbitals of the intervening Cs⁺ ions.

Figure 5. Plots of the total and partial density of states determined for Cs_2CuCl_4 from the GGA+U calculations with U = 6 eV. The upper and the lower panels of each diagram represent the up-spin and down-spin band structures, respectively. There are two nonequivalent Cs atoms, Cs(1) and Cs(2), in Cs_2CuCl_4. The Cs 6s orbital contribution is lower in magnitude than the Cs 6p orbital contribution by an order of magnitude, and hence is not shown.

relaxing the resulting structures. The spatial extension of the np (n = 6-3) orbital of A (A = Cs, Rb, K, Na) decreases gradually with decreasing n. Therefore, the reduction of Δe in the SSE path J_1 or J_3 would decrease in the order, Cs > Rb > K > Na. Consequently, the strength of J_1 or J_3 should increase in the order Cs < Rb < K < Na. This prediction is confirmed by the SSE parameters determined for the RT structures of A₂CuCl₄ (A = Cs, Rb, K, Na) on the basis of our GGA+U calculations (with U = 6 eV) (Table 2). Note that J_3 vanishes in Cs₂CuCl₄ because the interaction between the two CuCl₄²⁻ ions through the intervening Cs⁺ ions, which is strong because of their symmetrical arrangement, cancels out the direct interaction between the two CuCl₄²⁻ ions. The

strengths of J_2 and J_4 remain essentially constant for all alkali cations (A⁺ = Cs⁺, Rb⁺, K⁺, Na⁺), because their CuCl₄²⁻ ions and intervening A⁺ ions have a low-symmetry arrangement.

It is clear from the above discussion that the 6p orbitals of Cs⁺ ions can strongly affect spin exchange interactions. This finding is contrary to the usual belief that an alkaline metal element A acts simply as an electron donor with the resulting alkaline cation A⁺ providing the electrostatic field. It has been reported¹⁷ that the interchain spin exchange interactions of cyano-bridged Ni^{2+}/M^{3+} (M = Cr, Fe, Co) chain complexes can be tuned by the size of the alkaline ion A⁺. In this case, the interchain spin exchange increases in the order $Li < K < Rb < Cs.^{17}$ It is unclear whether this finding arises solely from the size of the alkaline ion or the orbitals of the alkaline ion are involved in the interchain spin exchange. An important related observation is that the 3d orbitals of the alkaline earth element Ca are essential in producing the interlayer band of CaC_6 ,¹⁸ which is important for its superconductivity.

4.2. LT Crystal Structure of Cs₂CuCl₄. So far, our discussion was based on GGA+U calculations carried out for the RT crystal structure^{3a} of Cs₂CuCl₄. The neutron scattering experiments^{2,4} of Cs₂CuCl₄, which led to the 2D triangular AFM spin–lattice model, were carried out at very low temperatures (below 1 K).^{2,4} Thus, it is of importance to check whether our conclusions based on the RT crystal structure ^{3b} of Cs₂CuCl₄ is used for our analysis. We repeated our mapping analysis by using the experimental LT structure. However,

⁽¹⁷⁾ Atanasov, M.; Comba, P.; Frster, S.; Linti, G.; Malcherek, T.; Miletich, R.; Prikhod'ko, A. I.; Wadepohl, H. *Inorg. Chem.* **2006**, 45, 7722.

⁽¹⁸⁾ Deng, S.; Simon, A.; Köhler, J. Angew. Chem., Int. Ed. 2008, 47, 6703.

the quality of this crystal structure is not high because it leads to unreasonably short Cs····Cl distances. As listed in Table 1b, some Cs····Cl distances are shorter than 3.48 Å, the sum of the ionic radii of Cs⁺ and Cl⁻ ions.¹⁹ To remedy this undesirable situation, we optimized the atomic positions of Cs₂CuCl₄ on the basis of GGA+U calculations (with U= 2 eV) for the lowest-energy magnetic state (i.e., the AF3 state) of Cs₂CuCl₄ while keeping the cell parameters at those values found in the experimental structure.^{3b} The optimized atomic positions are presented in the Supporting Information, Table S1. This calculated LT structure does not lead to unreasonably short Cs····Cl distances, as summarized in Table 1b.

Table 3b lists the relative energies of the five ordered spin states determined for the LT crystal structure of Cs₂CuCl₄ from GGA+U calculations, and Table 4b the spin exchange parameters resulting from the subsequent mapping analysis. Note that the 2D triangular AFM spin—lattice is not reproduced by the J_1-J_4 values determined from the experimental LT crystal structure but by those from the calculated LT crystal structure (with $J_2/J_1 = 0.27$, 0.23, and 0.22 for U = 2, 4, and 6 eV, respectively). Nevertheless, the calculated LT crystal structure is not quite perfect because the calculated J_1 is much stronger than the experimental value and because the calculated J_3 is not negligibly small. Thus, as has been observed,^{6,20} use of accurate crystal structures is crucial in correctly determining the relative strengths of spin exchange interactions on the basis of electronic structure calculations.

5. Concluding Remarks

In summary, the 2D triangular antiferromagnetism of Cs_2CuCl_4 originates from the fact that the strength of the SSE interaction between adjacent $CuCl_4^{2-}$ ions is strongly reduced by the 6p orbitals of the intervening Cs^+ ions when the arrangement of the $CuCl_4^{2-}$ and Cs^+ ions has mirrorplane or inversion symmetry. This finding is contrary to the usual preconception that alkaline-metal and alkaline-earth elements act simply as electron donors without affecting the electronic structures of their hosts. Clearly, one needs to exercise caution in using this simplifying assumption, because the diffuse orbitals of these elements (e.g., 6p orbitals of Cs and 3d orbitals of Ca) can give rise to delicate changes in the electronic structures of the hosts hence affecting their magnetic and/or metallic properties.

Acknowledgment. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259 and by the resources of the NERSC Center supported under Contract No. DE-AC02-05CH11231. J.H.K. and K.H.L. thank the support from the Korea Research Foundation Grant funded (MOEHRD, KRF-2007-612-C00036, and KRF-2007-313-C00332). M.H.W. thanks Dr. R. K. Kremer for an invaluable discussion.

Supporting Information Available: Further details are given in Table S1. This material is available free of charge via the Internet at http://pubs.acs.org.

IC802412X

⁽¹⁹⁾ Shannon, R. D. Acta Crystallogr. A 1976, 32, 751.

⁽²⁰⁾ Koo, H.-J.; Whangbo, M.-H.; VerNooy, P. D.; Torardi, C. C.; Marshall, W. J. *Inorg. Chem.* **2002**, *41*, 4664.