Tristability Arising from Singlet-Triplet and Quartet Spin States for Dimeric Co^{ll}Salen

Kil Sik Min,^{†,§} Jordan Arthur,[†] William W. Shum,[†] Muktha Bharathy,[‡] Hans-Conrad zur Loye,[†] and Joel S. Miller*^{,†}

† Department of Chemistry, 315 South 1400 East, Room 2124, University of Utah, Salt Lake City, Utah 84112-0850, and[‡] Department of Chemistry and Biochemistry, 631 Sumter Street, University of South Carolina, Columbia, South Carolina 29208. $\rm{^8}$ Current address: Department of Chemistry Education, Kyungpook National University, Daegu, 702-701, Republic of Korea.

Received March 4, 2009

<u>Inorganic Chem</u>

The magnetic behavior of N,N'-ethylenebis(salicylideniminato) cobalt(II) (Co^{II}Salen, 1) has been reinvestigated and reveals spin-crossover behavior above 295 K. It has a singlet ground state and a triplet excited state at 30 K (21 cm $^{-1}$; 60 cal/mol) above the ground state, and at a higher temperature spin crossover to the quartet, a second excited state occurs.

Bistable molecule-based materials that respond to external stimuli are increasingly important as key components in sensors, switches, actuators, and information storage.¹ Technologically important stimuli include electric fields, temperature, pressure, and light. Spin-crossover, $²$ valence tauto-</sup> meric,³ and photochromic⁴ systems are examples of bistable materials. Spin-crossover materials, whereby a stimuliinduced change from a low to high spin state of a metal ion occurs, have been identified as suitable bistable materials.^{1b,e} Likewise, valence tautomers exhibit spin-state changes (this results from an intramolecular oxidation-reduction) and have also been explored as bistable materials.

As part of our studies of technologically important magnetic materials, we reinvestigated N, N' -ethylenebis(salicylideniminato)cobalt(II) (Co^HSalen , 1). 1 has been extensively studied as an oxygen absorber and exists in several structural forms. While 1 is planar (C_{2v}) , it dimerizes in the solid state, with each Co^{II} site being square-pyramidal with overall C_i symmetry (Figure 1).⁶ Its temperature-dependent susceptibility, $\gamma(T)$, indicates that it has a singlet ground state with a triplet excited state above the ground state.⁷

 $\chi T(T)^8$ of 1₂ is 0.43 emu K/mol of Co at 200 K, and it creases with decreasing temperature until it reaches decreases with decreasing temperature until it reaches \sim 0 emu \cdot K/mol of Co at 5 K. Upon warming above 200 K, it gradually increases to 0.45 emu \cdot K/mol of Co at 300 K, before increasing more rapidly to 1.70 emu \cdot K/mol of Co at 550 K (Figure 2). Above 525 K, thermal decomposition occurs. Note that the data below 400 K and above 300 K were taken using different sample holders,⁸ and because of different orientations of the polycrystalline sample, different average g values occurred; nonetheless, the data are

^{*} To whom correspondence should be addressed. E-mail: jsmiller@ chem.utah.edu.

⁽¹⁾ For example: (a) Feringa, B. L. Molecular Switches; Wiley-VCH: Weinheim, Germany, 2001. (b) Kahn, O.; Launary, J. P. Chemtronics 1988, ³, 140. (c) Guihery, N.; Durad, G.; Lepetit, M.-B. Chem. Phys. 1994, ¹⁸³, 45. (d) Sato, O.; Zhang, Y.-Z. Angew. Chem., Int. Ed. 2007, ⁴⁶, 2152. (e) Kahn, O.; Kröber, J.; Jay, C. Adv. Mater. 1992, 4, 718. (f) Guihery, N.; Durad, G.; Lepetit, M.-B.; Malrieu, J.-P. Chem. Phys. 1994, ¹⁸³, 61.

⁽²⁾ For example: Spin Crossover in Transition Metal Compounds; Gütlich, P., Goodwin, H. A., Eds.; Springer: New York, 2004; Vols $1-3$.

⁽³⁾ For example: Shultz, D. A. In Magnetism- M olecules to Materials; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 2, p 281. Pierpont, G. C.; Buchanan, R. M. Coord. Chem. Rev. 1981, 38, 45. Pierpont, G. C.; Lange, C. W. Prog. Inorg. Chem. 1994, 41, 331.

Pierpont, G. C.; Lange, C. W. *Prog. Inorg. Chem.* **1994**, 41, 331.
(4) For example: *Photochromism: Molecules and Systems*; Dürr, H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; p 64. Organic Photochromic and Thermochromic Compounds. Main Photochromic Families; Crano, J. C., Guglielmetti, R., Eds.; Plenum Publishers: New York, 1999; Vol. 1.

⁽⁵⁾ Diehl, H.; Hach, C. C.; Bailar, J. C. *Inorg. Synth*. **1959**, 3, 196.
(6) DeIasi, R.; Hol, S. L.; Post, B. *Inorg. Chem.* **1971**, 10, 1498. Brückner, S.;
"ligaris, M.: Nardin, G.: Randaccio, J. *Acta Crystallogr*. **196** Calligaris, M.; Nardin, G.; Randaccio, L. Acta Crystallogr. 1969, B25, 1671.
(7) Carlisle, G. O.; Simpson, G. D.; Hatfield, W. E.; Crawford, V. H.;

Drake, R. F. Inorg. Chem. 1975, ¹⁴, 217.

⁽⁸⁾ χ T was measured in 1 kOe between 5 and 400 K on either a Quantum Design MPMS 5 or 5 XL SQUID magnetometer equipped with a reciprocating sample measurement system as previously described (Brandon, E. J.; Rittenberg, D. K.; Arif, A. M.; Miller, J. S. Inorg. Chem. 1998, 37, 3376). In addition to correcting for the diamagnetic contribution from the sample holder, the core diamagnetic correction of -166×10^{-6} emu/mol of Co was used. The XL magnetometer was equipped with a high-temperature attachment to study the material in the range of 300-600 K. The temperature reproducibility of the high-temperature attachment is $\pm 1\%$. A home-built brass sample holder (7.9 cm in length with an outer diameter of 0.30 cm) was suspended from the standard transport assembly by a copper wire and was used for the magnetic measurement. The paramagnetic contribution from the sample holder was subtracted from the overall magnetic moment using a point-by-point background subtraction.

Figure 1. Dimer structure of 1, 1_2 (Co, blue; N, light blue, O, red).⁶

Figure 2. $\chi T(T)$ of 1₂ for three samples $(\times, +, \bullet)$; no hysteresis is observed. The solid line is a fit of eq 1 below 250 K observed. The solid line is a fit of eq 1 below 250 K.

reproducible (Figure 2). Below 200 K, $\chi T(T)$ can be fit to the Bleaney-Bowers singlet-triplet expression, eq 1 per Co $(H = -2JS_i \cdot S_j)$, with $g = 2.26$ and $J/k_B = -30$ K (-2) cm⁻¹; -60 cal/mol) in agreement with earlier work $[g = 2.4; J/k_B = -29 \text{ K } (-20 \text{ cm}^{-1}; -58 \text{ cal/mol})]$.⁷ The rise in $\chi T(T)$ above 200 K is suggestive of spin-crossover behavior. The dimer model gives a good fit to the data below the onset of the spin-crossover region (\sim 200 K). χ T(T), however, increases faster than expected from the Boltzmann population of the high-spin state at higher temperature (as is characteristic for spin-crossover materials²). Thus, $\chi T(T)$ cannot be mathematically modeled above 200 K. The limiting value for χT for the high-spin $S = \frac{3}{2}$ state is 2.39 emu \cdot K/mol for $g = 2.26$, and only 71% of this is observed; hence,

temperatures greater than the decomposition temperature are needed.

$$
\chi T = \frac{N g^2 \mu_{\rm B}^2}{k_{\rm B} (3 + e^{-2J/k_{\rm B}T})}
$$
(1)

The spin-crossover behavior observed for $1₂$ is associated with a dinuclear site, not a single-ion site, as is well documented.² $\chi T(T)$ increases with heating until \sim 525 K, when thermal decomposition occurs.⁹ The singlet $(S = 0)$ ground state arises from the antiferromagnetically coupled pair of $1_2 \text{Co}^{\text{II}}$ ions, each being in the single-ion, low-spin $S = \frac{1}{2}$ electron configuration, and the triplet $(S = 1)$ excited state arises from ferromagnetic coupling of this pair of $Co^H S = \frac{1}{2}$ ions. As the temperature increases, the thermal energy populates both the singlet and triplet states. This leads to $\chi T(T)$ approaching the Curie behavior for two Co^{II} $S = \frac{1}{2}$ doublets at higher temperature because the exchange coupling, J, is less significant with respect to the thermal energy, $k_B T$. Spin crossover for Co^H has been reported for several five-coordinate Co(Salen)L $(L =$ imidazole, pyridine, etc.), as is the situation for [Co $(Salen)_{2}$ ¹⁰ Likewise, spin crossover of 1₂ above room
temperature is due to population of the quartet state temperature is due to population of the quartet state and depopulation of the doublet state. Both the thermally populated singlet-triplet excitation of the dimer leading to $\chi T(T)$ approaching the Curie limit at ∼200 K and spin crossover to the quartet state at higher temperature do not exhibit thermal hysteresis (Figure 2). This temperature dependence has also been reported for dinuclear $Co_2L(NCS)_2$ (L = $C_{18}H_{20}N_8$) with octahedral Co^{II} sites, which has lower J/k_B of -17 K (-12 cm^{-1}) ; -23 cal/mol), and the crossover onset occurs at $~200 \text{ K}$.¹¹ Further work targeting spin crossover with hysteresis around room temperature is in progress.

Supporting Information Available: DSC of $1₂$ showing decomposition. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽⁹⁾ A total of 12 reddish-orange crystals turn black irreversibly at ∼550 K, and the differential scanning calorimetry (DSC) trace shows a small endotherm, prior to an exotherm similar to melting at $~\sim$ 610 K.

⁽¹⁰⁾ Marzilli, L. G.; Marzilli, P. A. Inorg. Chem. 1972, ¹¹, 457. Kennedy, B. J.; Fallon, G. D.; Gatehouse, B. M. K. C.; Murray, K. S. Inorg. Chem. 1984, ²³, 580.

⁽¹¹⁾ Brooker, S.; Plieger, P. G.; Moubaraki, B.; Murray, K. S. Angew. Chem., Int. Ed. 1999, ³⁸, 408.