

$[Ru(bpy)_{3-n}(dpb)_n]^{2+}$: Unusual Photophysical Property and Efficient DNA **Photocleavage Activity**

Qian-Xiong Zhou,^{†,‡} Wan-Hua Lei,[†] Yi Sun,^{†,‡} Jing-Rong Chen,[†] Chao Li,[†] Yuan-Jun Hou,[†] Xue-Song Wang,^{*,†} and Bao-Wen Zhang*,[†]

[†]Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China, and [‡]Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China

Received February 1, 2010

The sequential replacement of a bpy ligand (bpy=2,2'-bipyridine) by a dpb ligand (dpb=2,3-bis(2-pyridyl) benzoquinoxaline) in the series $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ (n = 1-3) leads to a remarkable increase of the excited state lifetime, the ¹O₂ quantum yield, and the binding affinity toward dsDNA, rendering both $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ efficient DNA photocleavage activities upon red light irradiation (\geq 600 nm).

Transition metal complexes that possess DNA photocleavage activities have drawn much attention by virtue of their utilities as DNA structure probes and as anticancer agents.¹ Among them, Ru(II) polypyridyl complexes were extensively studied owing to their tunable photophysical, photochemical, and redox properties.² Ru(II) complex-based DNA photocleavers generally show two distinct features, high singlet oxygen $({}^{1}O_{2})$ quantum yield and strong binding ability to DNA. Both features favor their application in photodynamic therapy (PDT),³ a tumor treatment strategy that uses the combination of a photosensitizer and visible or nearinfrared (NIR) light to generate cytotoxic reactive oxygen species (ROS), mainly ${}^{1}O_{2}$.⁴ Besides the high ${}^{1}O_{2}$ quantum yield, an ideal PDT photosensitizer should have strong

absorptivity within the phototherapeutic window of 600-900 nm. However, most Ru(II) polypyridyl complexes suffer from short wavelength absorption, with the metal-to-ligand charge transfer (MLCT) absorption maximum shorter than 500 nm. Though the ligands having a delocalized π -system may shift the MLCT absorption to longer wavelengths,^{5,6} shortened excited state lifetimes accompany them,⁷ unfavorable for ¹O₂ generation. For example, $[Ru(bpy)_2(dpb)]^{2+}$ (bpy = 2,2'-bipyridine, dpb = 2,3-bis(2-pyridyl) benzoquinoxaline, Scheme 1) exhibits a ¹MLCT maximum at 550 nm,⁸ a 100 nm red shift compared to its parent complex $[Ru(bpy)_3]^{2+}$ (450 nm). However, both the ³MLCT lifetime (66 ns) and the ${}^{1}O_{2}$ quantum yield (0.22) of $[Ru(bpy)_2(dpb)]^{2+9}$ are much lower than those of $[Ru(bpy)_3]^{2+}$ (900 ns¹⁰ and 0.57¹¹). We recently synthesized a new Ru(II) polypyridyl complex, [Ru(bpy)(dpb)(dppn)]²⁺ (dppn = 4,5,9,16-tetraaza-dibenzo[a,c]naphthacene), which exhibits not only a long wavelength ¹MLCT band centered at 548 nm but also a long ³MLCT lifetime of 229 ns and a high ¹O₂ quantum yield of 0.43.⁹ The long ³MLCT lifetime of [Ru(bpy)-(drb)(dres))²⁺ $(dpb)(dppn)]^{2+}$ originates from the long-lived (13 μ s) triplet excited state of the dppn ligand, which is in close proximity to ${}^{3}MLCT(Ru \rightarrow dpb)$ in energy, making an equilibrium established between the two states, i.e., the reservoir effect.¹

R. L.; Toft, N.; Winkel, B.; Brewer, K. J. *Inorg. Chem.* 2003, *42*, 4394.
(7) Englman, R.; Jortner, J. *Mol. Phys.* 1970, *18*, 145.
(8) Carlson, D. L.; Rorer Murphy, W. *Inorg. Chim. Acta* 1991, *181*, 61.
(9) Zhou, Q. X.; Lei, W. H.; Chen, J. R.; Li, C.; Hou, Y. J.; Wang, X. S.;

^{*}To whom correspondence should be addressed. E-mail: xswang@ mail.ipc.ac.cn (X.-S.W.) and g203@mail.ipc.ac.cn (B.-W.Z.).

⁽¹⁾ Bruce, A. Chem. Rev. 1998, 98, 1171.

^{(2) (}a) Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev. 1999, 99, 2777. (b) Zeglis, B. M.; Pierre, V. C.; Barton, J. K. Chem. Commun. 2007, 4565. (3) (a) Tossi, A. B.; Kelly, J. M. Photochem. Photobiol. 1989, 49, 545. (b) Mei, H. Y.; Barton, J. K. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 1339. (c) Arantxa, H. B.; Emilia, J.-H. M.; Francisco, M.; Esther, O.; Guillermo, O. J. Phys. Chem. B 2002, 106, 4010. (d) Ding, H.-Y.; Wang, X.-S.; Song, L.-Q.; Chen, J.-R.; Yu, J.-H.; Chao, L.; Zhang, B.-W. J. Photochem. Photobiol. A 2006, 177, 286. (e) Liu, Y.; Hammitt, R.; Lutterman, D. A.; Thummel, R. P.; Turro, C. Inorg. Chem. 2007, 46, 6011. (f) Ryan, G. J.; Quinn, S.; Gunnlaugsson, T. Inorg. Chem. 2008, 47, 401. (g) Liu, Y.; Hammitt, R.; Lutterman, D. A.; Thummel, R. P.; Turro, C. Inorg. Chem. 2009, 48, 375. (h) Zhou, Q. X.; Yang, F.; Lei, W. H.; Chen, J. R.; Li, C.; Hou, Y. J.; Ai, X. C.; Zhang, J. P.; Wang, X. S.; Zhang, B. W. J. Phys. Chem. B 2009, 113, 11521

^{(4) (}a) Dougherty, T. J. Photochem. Photobiol. 1993, 58, 895. (b) Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. J. Natl. Cancer Inst. 1998, 90, 889. (c) Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380. (d) Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004, 47, 3897.

⁽⁵⁾ Chouai, A.; Wicke, S. E.; Turro, C.; Bacsa, J.; Dunbar, K. R.; Wang, D.; Thummel, R. P. *Inorg. Chem.* 2005, 44, 5996.
 (6) (a) Anderson, P. A.; Keene, F. R.; Meyer, T. J.; Moss, J. A.; Strouse,

G. F.; Treadway, J. A. J. Chem. Soc., Dalton Trans. 2002, 3820. (b) Williams,

Zhang, B. W. *Chem.—Eur. J.* **2010**, *16*, 3157. (10) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von

Zelewsky, A. Coord. Chem. Rev. **1988**, 82, 85. (11) Young, R. H.; Wehrly, K.; Martin, R. L. J. Am. Chem. Soc. **1971**, 93,

⁵⁷⁷⁴

^{(12) (}a) Wang, X. Y.; Guerzo, A. D.; Schmehl, R. H. J. Photochem. Photobiol. C: Photochem. Rev. 2004, 5, 55. (b) Passalacqua, R.; Loiseau, R.; Campagna, S.; Fang, Y. Q.; Hanan, G. S. Angew. Chem., Int. Ed. 2003, 42, 1608. (c) Tyson, D. S.; Bialecki, J.; Castellano, F. N. Chem. Commun. 2000, 2355. (d) Morales, A. F.; Accorsi, G.; Armaroli, N.; Barigelletti, F.; Pope, S. J. A.; Ward, M. D. Inorg. Chem. 2002, 41, 6711. (e) Kozlov, D. V.; Tyson, D. S.; Goze, C.; Ziessel, R.; Castellano, F. N. Inorg. Chem. 2004, 43, 6083. (f) Wang, J. H.; Hanan, G. S.; Loiseau, F.; Campagna, S. Chem. Commun. 2004, 2068.

Figure 1. Normalized absorption spectra of the complexes in acetonitrile.

Scheme 1. Structures of dpb and bpy Ligands

To fully explore the capabilities of dpb-based Ru(II) complexes, we examined the photophysical and photochemical properties of $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ (n=1, 2, and 3). Both $[Ru(bpy)_2(dpb)]^{2+}$ and $[Ru(dpb)_3]^{2+}$ are known compounds;⁸ however, their excited state lifetimes have never been reported (except our recent work on $[Ru(bpy)_2(dpb)]^{2+9}$). To our surprise, with the increase of n from 1 to 3, the excited state lifetimes of $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ extend from 66 ns to 330 ns to 530 ns, while the ${}^{1}O_2$ quantum yields increase from 0.22 to 0.45 to 0.52. Moreover, the binding affinities of $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ toward double stranded DNA also increase with the increase of n. Consequently, both $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ exhibit efficient DNA cleavage abilities upon red light irradiation (≥ 600 nm).

Figure 1 shows the normalized absorption spectra of $[\operatorname{Ru}(\operatorname{bpy})_{3-n}(\operatorname{dpb})_n]^{2+}$ (*n* = 1-3) and $[\operatorname{Ru}(\operatorname{bpy})_3]^{2+}$. Comparison of these spectra can lead to the assignments of a $\pi \rightarrow \pi^*$ transition to the bpy ligand centered at 286 nm, a $\pi \rightarrow \pi^*$ transition to the dpb ligand centered at both 315 and 400 nm, and a ¹MLCT transition over the visible region, in good agreement with the previous results.8 The dpb ligand renders the ¹MLCT of $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ 100 nm red-shifted compared to that of $[Ru(bpy)_3]^{2+}$. In aqueous solutions, $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ undergoes a further bathochromic shift (Supporting Information), favorable for PDT application. The ³MLCT emissions of $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ fall in the region of NIR (Table 1 and Supporting Information), recorded on a Confocal Laser Micro-Raman Spectroscope (532 nm excitation). On the same instrument, an emission centered at 619 nm was observed for $[Ru(bpy)_3]^{2+}$, in line with the result obtained on a conventional fluorescence spectrophotometer.

The electrochemical properties of these complexes were examined using cyclic voltammetry (Table 1 and Supporting Information). $[Ru(bpy)_2(dpb)]^{2+}$ displays a reversible Ru-(III/II) based oxidation wave at +1.43 V versus SCE. The 0.14 V of anodic shift compared to that of $[Ru(bpy)_3]^{2+}$ (+1.29 V) may be attributed to the more electronegative character or stronger π -accepting feature of dpb than bpy. This is supported by the less negative reduction potential of

-0.60 V for dpb compared to -1.33 V for bpy (Table 1). For $[\text{Ru}(\text{bpy})(\text{dpb})_2]^{2+}$ and $[\text{Ru}(\text{dpb})_3]^{2+}$, the dpb ligand-based first reduction potentials appear at -0.50 V and -0.47 V, respectively, in accordance with the previous results.⁸ The oxidation processes of $[\text{Ru}(\text{bpy})(\text{dpb})_2]^{2+}$ and $[\text{Ru}(\text{dpb})_3]^{2+}$ are no longer reversible with the peak potentials at 1.65 and 1.64 V, respectively. Carlson and Rorer Murphy ascribed the irreversible oxidation wave of $[\text{Ru}(\text{dpb})_3]^{2+}$ to the oxidation of the dpb ligand.⁸

The DNA titration approach was used to examine the binding abilities of these complexes toward calf thymus DNA (CT-DNA). The absorption spectrum of $[Ru(bpy)_2(dpb)]^{2+}$ shows negligible changes upon the addition of DNA, indicative of a weak interaction. For $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$, the MLCT absorbance increased at first and then decreased continuously with the addition of CT-DNA. Such behavior was also observed for other Ru(II) complexes, probably due to the DNA-induced complex aggregation.^{3g,5,13} Thus, an EB displacement assay was carried out to compare the DNA binding affinities of these complexes (Table 1 and Supporting Information). The binding constants of $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ are much higher than that of $[Ru(bpy)_2(dpb)]^{2+}$, presumably due to the more hydrophobic property of dpb than bpy (Supporting Information).¹⁴

The DNA photocleavage abilities of the dpb-based complexes were examined by agarose gel electrophoresis of the supercoiled pBR322 DNA upon red light irradiation (≥ 600 nm; Figure 2). $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ show much higher DNA photocleavage activities than $[Ru(bpy)_2(dpb)]^{2+}$. Control experiments (Supporting Information) indicated that the DNA photocleavage was an ¹O₂ mechanism. ¹O₂ quantum yields of these complexes were determined to be 0.22 for $[Ru(bpy)_2(dpb)]^{2+}$, 0.45 for $[Ru(bpy)(dpb)_2]^{2+}$, and 0.52 for $[Ru(dpb)_3]^{2+}$ in CH₃CN, using $[Ru(bpy)_3]^{2+}$ as the standard $(0.57 \text{ in CH}_3\text{CN})^{11}$ and 1,3-diphenyl-isobenzofuran as the trapping agent of ${}^{1}O_{2}$. Obviously, the high ${}^{1}O_{2}$ quantum yield, the strong DNA binding affinity, and the long wavelength absorption of $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ are the main reasons for their efficient DNA photocleavage activities under red light irradiation. [Ru(bpy)₂(dppz)]²⁺, a well-known DNA photocleaver that shows the activity within the visible region (< 550 nm), nearly did not photocleave DNA upon red light irradiation, due to its short wavelength absorption (Supporting Information).

To better understand the ${}^{1}O_{2}$ generation behaviors of these complexes, the time-resolved absorption spectra were measured (Supporting Information). [Ru(bpy)₂(dpb)]²⁺ shows a ground-state bleaching band centered at 550 nm, and two positive absorption bands below 515 nm and over 580 nm, similar to the typical ${}^{3}MLCT$ T–T absorption spectra of Ru(II) polypyridyl complexes that do not emit or have a low quantum yield of emission.^{3e,15} The bleaching band intensity

^{(13) (}a) Rueba, E.; Hart, J. R.; Barton, J. K. *Inorg. Chem.* 2004, *43*, 4570.
(b) Angeles-Boza, A. M.; Bradley, P. M.; Fu, P. K.-L.; Shatruk, M.; Hilfiger, M. G.; Dunbar, K. P.; Turro, C. *Inorg. Chem.* 2005, *44*, 7262. (c) Liu, Y.; Chouai, A.; Degtyareva, N. N.; Lutterman, D. A.; Dunbar, K. R.; Turro, C. *J. Am. Chem. Soc.* 2005, *127*, 10796.

⁽¹⁴⁾ Jain, A.; Slebodnick, C.; Winkel, B. S. J.; Brewer, K. J. J. Inorg. Biochem. 2008, 102, 1854.

^{(15) (}a) Braterman, P. S.; Harriman, A.; Heath, G. A.; Yellowless, L. *J. Chem. Soc., Dalton Trans.* **1983**, 1801. (b) Gholamkhass, B.; Nozaki, K.; Ohno, T. *J. Phys. Chem. B* **1997**, *101*, 9010. (c) Gholamkhass, B.; Koike, K.; Negishi, N.; Hori, H.; Sano, T.; Takeuchi, K. *Inorg. Chem.* **2003**, *42*, 2919.

Table 1. Photophysical and Electrochemical Properties, ¹O₂ Quantum Yields, and Binding Constants Toward CT-DNA of the Examined Complexes^a

complex	MLCT absorption maximum/nm	MLCT emission maximum/nm	$\frac{E_{1/2}(\text{ox})/\text{V}}{(\text{vs SCE})}$	$\frac{E_{1/2}(\mathrm{red})/\mathrm{V}}{\mathrm{(vs~SCE)}^b}$	$ au_{\mathrm{TA}}/\mathrm{ns}^c$	¹ O ₂ quantum yield ^d	binding constant $K_{\rm b}/*10^6 { m M}^{-1e}$
$[Ru(bpy)_3]^{2+}$	449	619	1.29^{b}	-1.33, -1.52, -1.76	900	0.57	
$[Ru(bpy)_2(dpb)]^{2+}$	551	863	1.43^{b}	-0.60, -1.24, -1.58	66	0.22	1.7
$[Ru(bpy)(dpb)_2]^{2+}$	549	858	1.65^{f}	-0.50, -0.78, -1.37	330	0.45	6.97
$\left[\operatorname{Ru}(\operatorname{dpb})_3\right]^{2+}$	541	858	1.64^{f}	-0.47, -0.64, -0.87	530	0.52	8.85

^{*a*} In CH₃CN. ^{*b*} Half-wave potential for reversible process in CH₃CN. ^{*c*} Excited state lifetime obtained by transient absorption in CH₃CN. ^{*d*} Measured using $[\text{Ru}(\text{bpy})_3]^{2+}$ as the standard and 1,3-diphenyl-isobenzofuran as the trapping agent of ${}^{1}\text{O}_2$ in CH₃CN. ^{*e*} Obtained by ethidium bromide displacement assay. ^{*f*} Peak potential for irreversible process in CH₃CN.

Figure 2. Agarose gel electrophoresis pattern of supercoiled pBR322 DNA (31 μ M in base pair) upon visible light irradiation (≥ 600 nm) for 120 min (lanes 1, 2, 4, and 6) or dark control (lanes 3, 5, and 7) in an air-saturated Tris-CH₃COOH/EDTA buffer (pH = 7.4). Lane 1: DNA alone; lanes 2, 3: DNA + [Ru(bpy)₂(dpb)]²⁺; lanes 4, 5: DNA + [Ru(bpy)₋(dpb)₂]²⁺; lanes 6, 7: DNA + [Ru(dpb)₃]²⁺. The concentration of the complex was 10 μ M. SC and NC denote supercoiled circular and nicked circular forms, respectively.

of $[\text{Ru}(\text{bpy})(\text{dpb})_2]^{2+}$ is much lower than that of $[\text{Ru}(\text{bpy})_2(\text{dpb})_2]^{2+}$. In the case of $[\text{Ru}(\text{dpb})_3]^{2+}$, no bleaching band was observed. The transient absorption spectra of these three complexes show single-exponential decay at all the wavelengths with the lifetimes of 66, 330, and 530 ns, respectively. The excited state lifetime of $[\text{Ru}(\text{dpb})_3]^{2+}$ is among the longest for the Ru(II) complexes that have MLCT absorption maxima beyond 550 nm.^{5,9} Considering the fact that the triplet excited state of the dpb ligand is long-lived (4 μ s) and exhibits a strong positive band in the region of 300–570 nm, the transient absorption spectrum changes from $[\text{Ru}(\text{dpb})_2]^{2+}$ to $[\text{Ru}(\text{dpb})_3]^{2+}$ seem the result of the augmented

mixing of the triplet excited state of the dpb ligand with ³MLCT. This unusual finding undoubtedly deserves further study, and theoretical calculations may shed light on the interesting behaviors. The long excited state lifetimes of $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ facilitate their photosensitized generation of ¹O₂.

In summary, $[Ru(bpy)_{3-n}(dpb)_n]^{2+}$ (n = 1-3) not only possesses long wavelength MLCT absorption but also shows some unexpected properties; i.e., the sequential replacement of the bpy ligand by the dpb ligand leads to a remarkable extension of the excited state lifetime, a significant enhancement of the ¹O₂ quantum yield, and a marked improvement of the binding affinity toward dsDNA. As a result, both $[Ru(bpy)(dpb)_2]^{2+}$ and $[Ru(dpb)_3]^{2+}$ exhibit efficient DNA photocleavage activities upon red light irradiation (≥ 600 nm), showing application potential in PDT.

Acknowledgment. This work was financially supported by NNSFC (20772133, 20873170) and CAS (KJCX2. YW.H08).

Supporting Information Available: Synthesis and characterization of the complexes, crystal structure of $[Ru(bpy)_2(dpb)]^{2+}$, luminescence spectra at room temperature, cyclic voltammograms, EB displacement assay, time-resolved absorption spectra, and partition coefficient. This material is available free of charge via the Internet at http://pubs.acs.org.