

Disubstituted 1,8-Diamidonaphthalene Ligands as a Flexible, Responsive, and Reactive Framework for Tantalum Complexes

Nathalie Lavoie,[†] Serge I. Gorelsky,[†] Zhixian Liu,[†] Tara J. Burchell,[†] Glenn P. A. Yap,[‡] and Darrin S. Richeson^{*,†}

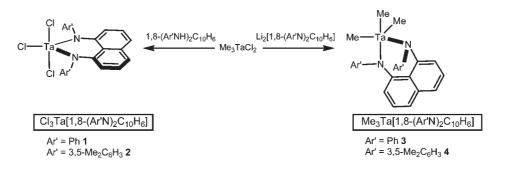
[†]Department of Chemistry and the Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, and [‡]Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Received February 26, 2010

Deprotonated N,N'-disubstituted 1,8-diaminonaphthalenes (R_2DAN^{2-} ; $R = (CH_3)_2CH$, C_6H_5 , 3,5-Me₂ C_6H_3) were incorporated into Ta(V) complexes employing two methods. The direct proton transfer reaction of the parent amine, 1,8-(RNH)₂ $C_{10}H_6$, with TaMe₃ Cl_2 led to elimination of methane and formation of TaCl₃[1,8-(RN)₂ $C_{10}H_6$] (1, 2). Reaction of the dilithiated amido species, Li₂R₂DAN, with TaMe₃Cl₂ or [Ta(NEt₂)₂Cl₃] yielded TaMe₃-[1,8-(RN)₂C₁₀H₆] (3, 4) and TaCl(NEt₂)₂[1,8-(RN)₂C₁₀H₆] (5, 6), respectively. X-ray structural studies of these complexes revealed the flexible coordination behavior of R₂DAN²⁻ by demonstrating that the ligand bonded to Ta with a coordination array dependent on the identity of the other ligands bonded to tantalum. Computational analysis of these complexes confirmed that the energetic components for binding of R₂DAN²⁻ to these TaX₃²⁺ fragments were dominated by the electronic features of the metal fragment. Chemical transformations of the bound ligand were evaluated by reaction of compounds 5 and 6 with LiNMe₂ and MeLi. Simple metathesis products Ta(NEt₂)₂NMe₂-[1,8-(ⁱPrN)₂C₁₀H₆] (R = ⁱPr 7, R = 3,5-Me₂(C₆H₃) 8) were obtained from reactions with LiNMe₂. In contrast, when the R group of the DAN ligand was ⁱPr, reaction with MeLi ultimately led to activation of the isopropyl group and formation of the metallaziridine [κ^3 -(Me₂CN)(ⁱPrN)C₁₀H₆]Ta(NEt₂)₂ (9) species via the elimination of methane.

Introduction

Exploring ligand-metal bonding and the associated impact on the stability and reactivity of metal complexes is a central theme in inorganic and organometallic chemistry. With d^0 , early transition metal complexes, amido ligands have a well-established position, and the role of such species in a host of small molecule transformations continues to stimulate interest in this area.^{1,2} Expanding the investigation of new ligands remains an important endeavor with the goal of revealing both fundamental and applied impact of the ligand in chemical transformation and catalysis. One of our general interests, the design and implementation of rigid chelating ligands with delocalized π -electrons, led us to investigate the utilization of a family of diamido ligands, $\{1,8-(RN)_2C_{10}H_6\}^{2-}$ (A, R₂DAN²⁻), in transition metal complexes.³ In particular, we reported the reaction of $1.8-(^{i}PrNH)_{2}C_{10}H_{6}$ with TaMe₃Cl₂ to produce an unusual metallaaziridine complex, { $[\kappa^{3}-(Me_{2}CN)(PrN)C_{10}H_{6}]TaCl_{2}$ } (**B**).^{3a} This species apparently arose from a σ -bond metathesis involving the ipso-CH function of the isopropyl substituents of the diamidonaphthalene ligand and elimination of methane from a Ta-Me function, yielding this novel tridentate trianionic ligand, $[(Me_2CN)(Me_2CHN)C_{10}H_6]^{3-}$. We now report on the elaboration of this chemistry along two avenues. The first involves changing the N-substituents of the $\{1,8-(RN)_2C_{10}H_6\}^{2-}$ ligand in an effort to control the reactivity of these groups when this scaffold is bonded to tantalum. The second explores the influence on the bonding and reactivity of the $\hat{R_2DAN^{2-}}$ through variation of the remaining ligands bonded to Ta. Through these efforts we


^{*}To whom correspondence should be addressed. E-mail: darrin@ uottawa.ca.

 ^{(1) (}a) Decams, J. M.; Daniele, S.; Hubert-Pfalzgraf, G. L.; Vaissermann,
 J.; Lecocq, S. Polyhedron 2001, 20, 2405. (b) Ketterer, A. N.; Fan, H.;
 Blackmore, J. K.; Yang, X.; Ziller, W. J.; Baik, M.-H.; Heyduk, A. F. J. Am.
 Chem. Soc. 2008, 130, 4364. (c) Ison, E. A.; Ortiz, C. O.; Abboud, K.; Boncella,
 J. M. Organometallics 2005, 24, 6310. (d) Ketterer, A. N.; Ziller, W. J.;
 Rheingold, L. A.; Heyduk, A. F. Organometallics 2007, 26, 5330. (e) Ison,
 A. E.; Abboud, A. K.; Ghiviriga, I.; Boncella, J. M. Organometallics 2004, 37
 Q29. (f) Cameron, M. T.; Ghiviriga, I.; Abboud, A. K.; Boncella, J. M.
 Organometallics 201, 20, 4378. (g) Aoyagi, K.; Gantzel, K. P.; Kalai, K.;
 Tilley, T. D. Organometallics 1996, 15, 923.

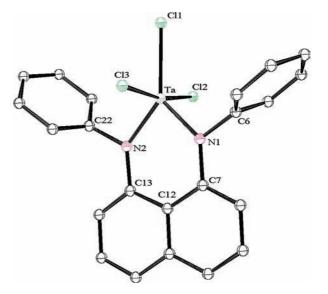
⁽²⁾ For selected reviews see: (a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428, and references therein.
(b) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154, and references therein. (c) Berresford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1995, 34, 1059, and references therein. (d) Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124, and references therein. (e) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22, and references therein.

^{(3) (}a) Bazinet, P.; Yap, G. P. A.; Richeson, D. S. *Organometallics* **2001**, *20*, 4129. (b) Lavoie, N.; Ong, T. G.; Gorelsky, S. I.; Korobkov, I.; Yap, G. P. A.; Richeson, D. S. *Organometallics* **2007**, *26*, 6586.

Scheme 1

 $\begin{array}{l} \textbf{Table 1. Selected Crystal Data and Structure Refinement Parameters for TaCl_3[1,8-(PhN)_2C_{10}H_6] (1), TaMe_3[1,8-(PhN)_2C_{10}H_6] (3), TaNEt_2Cl[1,8-(^{i}PrN)_2C_{10}H_6] (5), and TaNEt_3NMe[1,8-(^{i}PrN)_2C_{10}H_6] (7) \end{array} \right. \end{array}$

	1	3	5	7			
empirical formula	C ₂₅ H ₂₃ Cl ₃ N ₂ Ta	C ₂₅ H ₂₅ N ₂ Ta	C24H40ClN4Ta	C ₂₆ H ₄₆ N ₅ Ta			
formula mass	638.75	534.42	601.00	609.63			
temp (K)	203(2)	203(2)	201(2)	293(2)			
λ (Å)	0.71073	0.71073	0.71073	0.71073			
cryst syst	triclinic	triclinic	monoclinic	triclinic			
$a(\tilde{A})$	7.906(5)	10.5074(11)	14.8426(12)	10.5712(12)			
$b(\tilde{A})$	12.406(8)	10.5509(11)	11.4911(9)	10.6469(12)			
c (Ă)	13.806(9)	11.9869(13)	16.5518(13)	14.3310(17)			
α (deg)	70.028(7)	96.708(2)	90	74.850(2)			
β (deg)	85.467(7)	113.601(2)	113.9450(10)	73.189(2)			
γ (deg)	78.172(7)	113.073(2)	90	65.1710(10)			
$V(\tilde{A}^3)$	1245.7	1059.64(19)	2580.1(4)	1383.0(3)			
Z	2	2	4	2			
ρ (calc) (Mg/m ³)	1.703	1.675	1.547	1.464			
$\mu (\text{mm}^{-1})$	4.748	5.198	4.381	3.995			
absorp corr final <i>R</i> indices $[I > 2\sigma(I)]$	semiempirical from equivalents						
R_1^a	0.0581	0.0372	0.0367	0.0446			
wR_2^b	0.1138	0.1674	0.0762	0.1065			


$${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}wR_{2} = (\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w(|F_{o}|^{2})^{1/2}.$$

demonstrate the versatility and flexibility of this ligand class in bonding with metal centers, its responsiveness to the electronic demands of the metal center, and conditions to provoke reaction and CH activation.

Results and Discussion

Synthesis and Characterization of R_2DAN^{2-} Complexes of Ta(V). The introduction of the dianionic 1,8-diamidonaphthalene ligand, R_2DAN^{2-} , into the coordination sphere of a metal complex can be achieved using two complementary approaches. The first avenue involves the direct reaction of the parent amine, $1,8-(RNH)_2C_{10}H_6$ (R_2DANH_2), with a metal complex possessing two basic ligands that are capable of undergoing a proton transfer reaction. Elimination of the metal-bound ligand results in incorporation of dianion R_2DAN^{2-} into the metal coordination sphere. A second method involves a twostep process that first deprotonates R_2DANH_2 with butyllithium to generate a dilithiated amido species,

Figure 1. Thermal ellipsoid plot showing the molecular structure and partial atom numbering scheme for $TaCl_3[1.8-(PhN)_2C_{10}H_6]$ (1). Ellipsoids are drawn at 20% probability. Hydrogen atoms have been omitted for clarity.

 Li_2R_2DAN . A subsequent metathesis reaction between this reagent and a dichloro metal complex would incorporate the R_2DAN^{2-} ligand onto the metal center along with elimination of two equivalents of LiCl. **Table 2.** Selected Bond Lengths and Angles for $TaCl_3[1,8-(PhN)_2C_{10}H_6]$ (1), $TaMe_3[1,8-(PhN)_2C_{10}H_6]$ (3), $TaNEt_2Cl[1,8-(PrN)_2C_{10}H_6]$ (5), and $TaNEt_3NMe_1[1,8-(PhN)_2C_{10}H_6]$ (7)

Bond Lengths (Ã)										
1		3		5		7				
$\begin{array}{c} Ta - N(1) \\ Ta - N(2) \\ Ta - Cl(3) \\ Ta - Cl(2) \\ Ta - Cl(1) \\ N(2) - C(13) \\ N(2) - C(22) \\ N(1) - C(7) \\ N(1) - C(6) \end{array}$	1.892(8) 1.931(9) 2.393(3) 2.396(3) 2.414(3) 1.432(12) 1.422(12) 1.445(12) 1.450(13)	$\begin{array}{c} Ta-N(1)\\ Ta-N(2)\\ Ta-C(23)\\ Ta-C(25)\\ Ta-C(24)\\ N(2)-C(22)\\ N(2)-C(13)\\ N(1)-C(7)\\ N(1)-C(6) \end{array}$	2.064(7) 1.954(7) 2.120(10) 2.153(11) 2.181(10) 1.397(10) 1.420(10) 1.430(9) 1.430(10)	$\begin{array}{c} Ta(1)-N(1)\\ Ta(1)-N(2)\\ Ta(1)-N(3)\\ Ta(1)-N(4)\\ Ta(1)-Cl(1)\\ N(1)-C(1)\\ N(1)-C(1)\\ N(2)-C(9)\\ N(2)-C(14) \end{array}$	$\begin{array}{c} 1.938(5)\\ 2.084(5)\\ 1.948(5)\\ 1.965(5)\\ 2.468(2)\\ 1.443(8)\\ 1.491(8)\\ 1.391(8)\\ 1.488(8)\end{array}$	$\begin{array}{c} N(1)-Ta(1)\\ N(2)-Ta(1)\\ N(4)-Ta(1)\\ N(5)-Ta\\ N(3)-Ta\\ N(1)-C(1)\\ N(1)-C(11)\\ N(2)-C(10)\\ N(2)-C(14) \end{array}$	2.064(18) 2.04(3) 1.899(10) 1.987(10) 2.086(10) 1.405(15) 1.50(2) 1.418(15) 1.45(3)			
			Bond Ang	gles (deg)						
	1					3				
$\begin{array}{c} \hline C(7)-N(1)-C(6)\\ C(7)-N(1)-Ta\\ C(6)-N(1)-Ta\\ C(22)-N(2)-C(12)\\ C(22)-N(2)-Ta\\ C(13)-N(2)-Ta\\ N(1)-Ta-N(2) \end{array}$	3)	121.4 136.1 102.4 123.8 99.9 134.9 85.3	(7) (6) (9) (6) (7)	C(7)- C(6)- C(22)- C(22)- C(22)- C(13)-	$ \begin{array}{c} N(1)-C(6) \\ N(1)-Ta \\ N(1)-Ta \\ -N(2)-C(13) \\ -N(2)-Ta \\ -N(2)-Ta \\ Ta-N(1) \end{array} $		114.8(7) 111.2(5) 133.4(5) 120.5(7) 135.7(6) 101.0(5) 87.4(3)			
			Bond An	gles (deg)						
	5					7				
$ \frac{C(1)-N(1)-C(11)}{C(11)-N(1)-Ta(1)} \\ C(1)-N(1)-Ta(1) \\ C(9)-N(2)-C(14) \\ C(9)-N(2)-Ta(1) \\ C(14)-N(2)-Ta(1) \\ N(1)-Ta(1)-N(2) \\ \end{array} $	1))) 1)	116.9(110.3(128.7(118.9(130.9) 130.9(109.8(83.5(4) 4) 5) 4) 4)	C(11)- C(1)-1 C(10)- C(10)- C(14)- C(10)-	$ \begin{array}{l} N(1)-C(11) \\ \cdot N(1)-Ta(1) \\ N(1)-Ta(1) \\ \cdot N(2)-C(14) \\ \cdot N(2)-Ta(1) \\ \cdot N(2)-Ta(1) \\ \cdot N(2)-Ta(1) \\ Ta(1)-N(1) \end{array} $		116.3(17) 108.1(10) 135.2(15) 117(2) 118.9(13) 123.8(16) 81.9(7)			

We found that TaMe₃Cl₂ was a readily accessible and functional starting material to demonstrate both approaches. The direct reaction of the N, N'-diaryl-1,8diaminonaphthalene with TaMe₃Cl₂ produced two analogous species $TaCl_3[1,8-(RN)_2C_{10}H_6]$ (1 R = Ph; 2 R = $3,5-Me_2C_6H_3$) as red-brown powders in good yields (Scheme 1). The ¹H NMR spectra for these compounds provided the first indication for the formation of the symmetrical structures for 1 and 2 as represented in Scheme 1. Specifically, the spectrum for 2 displayed a singlet, integrating for the 12 protons, consistent with four equivalent methyl groups on the N-Ar' substituents. Furthermore, the simple ¹³C NMR spectra for both 1 and 2 also suggested a symmetrical structure for both species. Importantly, neither complex displayed spectroscopic indications of remaining Ta-Me functions, suggesting that the reaction involved exchange of Cl and Me groups bonded to tantalum during the reaction. This is an established phenomenon.⁴

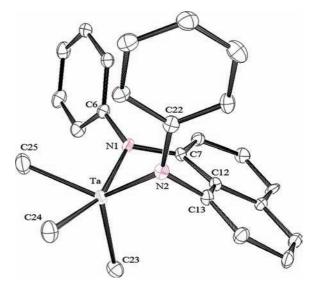
Details of the molecular connectivity and level of aggregation for **1** were revealed through X-ray crystallography (Table 1). These results are displayed in Figure 1 and summarized in Table 2. Examination of Figure 1 indicated that the coordination geometry for **1** is derived from a distorted trigonal-bipyramidal ligand array with two chloro ligands (Cl2 and Cl3) in the axial positions

fined by the remaining chloride (Cl1) and the N1 and N2 centers of the $R_2 DAN^{2-}$ ligand (\sum angles = 360°). The two nitrogen centers (N1, N2) for the DAN ligand are planar (\sum N angles 359.9° and 358.3°), and these planes are coincident with the plane of the naphthyl group, which aligns the lone pairs of electrons on these centers for π overlap with their adjacent atoms. The Ta-N bond lengths in 1 average 1.91 A, while the Ta-Cl distances average 2.40 Å. A distinctive feature of the coordination of the diamidonaphthalene ligand to the Ta center is the planar orientation of the naphthyl moiety and the plane defined by N1-Ta-N2. While this is similar to our observations with Ge(II)⁵ and our reported pnictogenium cations,⁶ this observation differs significantly from the previously reported tungsten^{3b} and tin⁷ complexes bearing this ligand. For example, in the W(VI) complex $W(=N^{t}Bu)_{2}[1,8-(^{t}Pr N)_{2}C_{10}H_{6}]$ the naphthyl moiety and the N(1)-W(1)-N(2) plane exhibit a fold angle of 122.6°.

 $(Cl_2-Ta-Cl_3 = 169.0(1)^\circ)$. The equatorial plane is de-

The starting material TaMe₃Cl₂ also represented an excellent choice for investigating a second approach for

⁽⁵⁾ Bazinet, P.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2001, 123, 11162.


⁽⁶⁾ Spinney, H. S.; Korobkov, I.; DiLabio, G. A.; Yap, G. P. A.; Richeson, D. S. *Organometallics* **2007**, *26*, 4972.

⁽⁴⁾ Fowles, G. W. A.; Rice, D. A.; Wilkins, J. D. J. Chem. Soc., Dalton Trans. 1973, 961.

 ⁽⁷⁾ Bazinet, P.; Yap, G. P. A.; DiLabio, G. A.; Richeson, D. S. Inorg. Chem. 2005, 44, 4616.

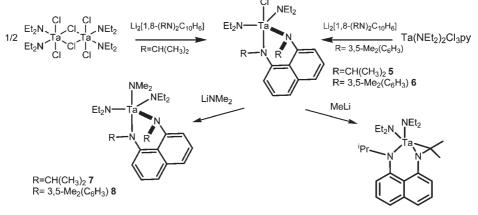
introducing the R_2DAN^{2-} ligand (Scheme 1). The stoichiometric reaction of the *in situ* generated species (R_2DAN^{2-})-(Li^+)₂ with one equivalent of TaMe₃Cl₂ led to the formation of TaMe₃[1,8-(RN)₂C₁₀H₆] (R = Ph 3; R = 3,5-Me₂C₆H₃ 4) as dark orange and red materials, respectively. As with compounds 1 and 2, complexes 3 and 4 displayed simple ¹H NMR spectra providing only one singlet for the three Ta-bonded methyl groups. Although this initially might suggest a symmetrical structure for 3, structural analysis revealed nonequivalent methyl groups (*vide infra*). Therefore, the simplicity of the NMR spectra are likely a consequence of fluxionality of 3 and 4 on the NMR time scale. Finally, neither the ¹H nor ¹³C NMR spectra indicated evidence of an α -agostic interaction of the Ta-Me groups.

Single crystals suitable for X-ray analysis where obtained for **3** from cooled solutions in diethyl ether (Table 1). These results, summarized in Figure 2 and Table 2, not only establish the connectivity for this compound but allow for comparison of this trimethyl species with the trichloro complex 1. Similar to compound 1, the Ta center of 3 resides in a distorted trigonal-bipyramidal coordination geometry. However, several key structural features of 3 contrast with those of 1. Notably, in 3 the three methyl moieties are coordinated in a facial array and the DAN ligand is bonded to Ta through axial and equatorial sites, leading to the pseudoaxial positions being defined by a methyl group and one of the nitrogen centers of the DAN ligand (C24-Ta-N1 = 159.2(4)°). The equatorial positions are occupied by the remaining two methyl groups (C23, C25) and the second N center (N2) of the $R_2 DAN^{2-}$ ligand. The Ta-N bond lengths in 3 are slightly longer (~ 0.1 A) than those observed for 1. Furthermore the axial Ta-N bond length is, as anticipated, slightly longer (Ta-N1 = 2.064(7) Å) than the equatorial Ta-N2 bond at 1.954(7) Å. One of the most pronounced differences between the ligand binding in 3 compared to 1 is the orientation of the N-substituents relative to the naphthyl plane. Importantly, while the two N centers in the $(PhN)_2C_{10}H_6^{2-1}$ ligand are planar with the sums of the angle around N1 and N2 being 360.0° and 359.4°, it is quite clear that the ligand in 3 is not planar. It is the relative orientation of the ligand components that clearly differentiates the DAN ligands of 1 and 3. While $TaCl_3[1,8-(PhN)_2C_{10}H_6]$ (1) exhibited N planes that are coplanar with the naphthyl group, in the trimethyl complex 3, only the plane for N1 is aligned with the napthyl moiety, while the N2 plane is almost perpendicular (77.2°) to the naphthyl plane. This orients the phenyl group bonded to N2 vertical to the ligand plane. As a result, the ligand in 3 is not coordinated to the Ta center in a planar fashion and the observed fold angle between the

Figure 2. Thermal ellipsoid plot showing the molecular structure and partial atom-numbering scheme for $TaMe_3[1,8-(PhN)_2C_{10}H_6]$ (3). Ellipsoids are drawn at 20% probability. Hydrogen atoms have been omitted for clarity.

naphthyl moiety and the N₁-Ta-N₂ plane is 61.4°. This feature is reminiscent of the reported tungsten^{3b} and tin⁷ complexes with the R₂DAN²⁻ ligand. Furthermore, it is similar to structural features that have been observed in high-valent group 4,^{1g} Ta,^{8,9} Mo,¹⁰ and W¹¹ species bearing *N*,*N'*-bis(trialkylsilyl)-*o*-phenylene diamide (PDA) ligands. In the case of the PDA complexes, the fold of the ligand about the N-N vector has been attributed to an increase in metal ligand interaction through a π donation from the phenylene component of the ligand into the metal orbitals.^{8,10} In order to better understand the origin of these structural differences, we have examined **1** and **3** computationally, and the results of our analysis are presented below.

Similarly versatile Ta starting materials are represented by the two readily available Ta diethylamido species {Ta- $(NEt_2)_2Cl_3$ and the mononuclear analogue $Ta(NEt_2)_2$ - $Cl_{3}py$).¹² These species allow for further investigation of the role of the tantalum ligand scaffold on $R_2 DAN^{2-}$ bonding. Both of these starting complexes undergo metathesis reactions with an equimolar ratio of $Li_2(R_2DAN)$ to yield the analogous products $Ta[1,8-(RN)_2C_{10}H_6]$ - $(NEt_2)_2Cl (R = (CH_3)_2CH 5, 3,5-Me_2C_6H_3 6) (Scheme 2),$ which were isolated as orange-red solids in 63% yield. The structure of $Ta(NEt_2)Cl[1,8-(PrN)C_{10}H_6]$ (5) was initially proposed on the basis of the ¹H NMR spectrum, which displayed single sets of resonances for the two diethyl amido groups and for two isopropyl groups on the DAN ligand. Significantly, the NMR data indicated that the ipso-CH signals of the isopropyl groups are intact in compound 5 and that both the ethyl CH_2 signals and the ipso-CH signals appeared as broad signals. These features point to two conclusions regarding 5. First, in spite of the presence of basic amido sites within the tantalum complex, there is no reaction of these $Ta-NR_2$ groups with the isopropyl C-H bond. This contrasts with the reported reaction of $1.8 - (^{l}PrNH)_{2}C_{10}H_{6}$ and


⁽⁸⁾ Aoyagi, K.; Gantzel, P. K.; Tilley, T. D. *Polyhedron* 1996, *15*, 4299.
(9) Pindado, G. J.; Thornton-Pett, M.; Bochmann, M. J. Chem. Soc., *Dalton Trans.* 1998, 393.

^{(10) (}a) Cameron, T. M.; Abboud, K. A.; Boncella, J. M. *Chem. Commun.* 2001, 1224. (b) Ortiz, C. G.; Abboud, K. A.; Boncella, J. M. *Organometallics* 1999, *18*, 4253.

^{(11) (}a) Cameron, T. M.; Ortiz, C. G.; Abboud, K. A.; Boncella, J. M.;
Baker, R. T.; Scott, B. L. *Chem. Commun.* 2000, 573. (b) Wang, S. Y. S.;
Vanderlende, D. D.; Abboud, K. A.; Boncella, J. M. *Organometallics* 1998, *17*, 2628. (c) Wang, S. Y. S.; Abboud, K. A.; Boncella, J. M. *J. Am. Chem. Soc.* 1997, *119*, 11990. (d) VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. *Organometallics* 1994, *13*, 3378.

⁽¹²⁾ Chao, Y.-W.; Wexler., P. A.; Wigley., D. E. Inorg. Chem. 1989, 28, 3860.

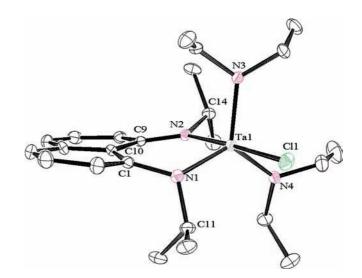
Scheme 2

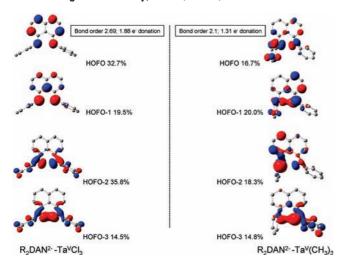
R=CH(CH₃)₂ 9

TaMe₃Cl₂, which involved the elimination of the isopropyl C-H bond and a Ta-Me group with formation of the metallaaziridine [(Me₂CN)(Me₂CHN)(C₁₀H₆)TaCl₂]^{3a} Second, complex 5 appeared to be fluxional on the NMR time scale at room temperature.

The connectivity of 5 was firmly established by X-ray crystallography (Table 1), with the results summarized in Figure 3 and Table 2. The Ta core is reminiscent of 3, and, once again, the coordination geometry of the tantalum center can be described as a distorted trigonal bipyramidal with N(2) and Cl defining the axial positions $(N(2)-Ta(1)-Cl(1)=176.18(14)^{\circ})$. The sum of the angles in the equatorial plane defined by N1, N3, and N4 is 360°. The Ta-N1 and Ta-N2 bond lengths of 1.983(5) and 2.084(5) Å are comparable to reported complexes.^{1a,3a} The Ta-NEt₂ bond lengths are slightly shorter at 1.948(5) Å (Ta-N3) and 1.965(5) Å (Ta-N4). Within the chelating $\{1,8-({}^{i}PrN)_{2}C_{10}H_{6}\}^{2^{-1}}$ ligand, nitrogen center N2 is planar, while N1 deviates very slightly from planarity (\sum angles N1 = 355.9°). The plane of nitrogen N2 approaches alignment with the naphthyl plane. However, the mean plane for the N1 nitrogen makes an angle of 57° with the naphthyl plane. As a result, the isopropyl substituent on N1 points away from the napthyl plane. The overall coordination geometry and the relative orientation of the DAN ligand in 5 are similar to those observed in compound 3.

Computational Studies of Complexes 1, 3, and 5. The fundamental electronic features that led to the observed structural differences for the trichloro complex 1 compared




Figure 3. Thermal ellipsoid plot showing the molecular structure and partial atom-numbering scheme for $Ta(NEt_2)_2Cl[1,8-(N'Pr)_2C_{10}H_6]$ (5). Ellipsoids are drawn at 20% probability. Hydrogen atoms have been omitted for clarity.

to the trimethyl compound 3 and the amido compound 5 were examined computationally using density functional theory (DFT).¹³ Optimizations of $[TaCl_3(1,8-(PhN)_2C_{10}H_6)]$ (1), $[TaMe_3(1,8-(PhN)_2C_{10}H_6)]$ (3), and $Ta(NEt_2)_2Cl [1,8-(N^{i}Pr)_{2}C_{10}H_{6}]$ (5) using the B3LYP functional¹⁴ with a LANL2DZ basis set¹⁵ yielded computed structures that were similar to the experimental X-ray structures of these species in terms of metal coordination geometry, ligand orientation, and bond distances, thus supporting this approach. Our examination of these results begins with a comparison of the electronic features of 1 and 3 and is followed by inclusion of compound 5.

In the case of compound 1 the computed structure displayed an $R_2 DAN^{2-}$ ligand with a planar coordination, as observed experimentally. An electronic analysis was first carried out by examination of the interaction of the diamido ligand $((PhN)_2C_{10}H_6)^{2-}$ fragment orbitals with those of the $TaCl_3^{2+}$ fragment.¹⁶ The key donor orbitals of the ligand fragment are the four highest

⁽¹³⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

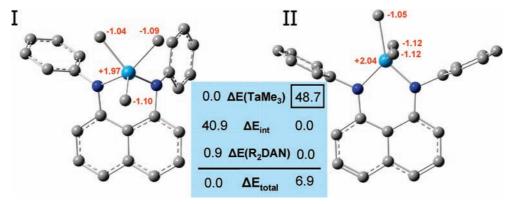
⁽¹⁴⁾ Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
 (15) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

Figure 4. Highest occupied fragment orbitals (HOFOs) for the R_2DAN^{2-} ligand that participate in bonding with the $TaCl_3^{2+}$ fragment in complex 1 (left) and with the $Ta(CH_3)_3^{2+}$ fragment in complex 3 (right). The ligand-metal bond order and net electron donation as well as the change in occupancy for each HOFO are given.

occupied fragment orbitals (HOFOs) shown in Figure 4. The HOFO and HOFO-1 of the ligand participate in π donation to the metal fragment, and HOFO-2 and HOFO-3 participate in σ donation to the metal fragment. The changes in the orbital populations upon the formation of the complex are indicated by the percentage values next to each HOFO in the figure. Since these ligand orbitals are doubly occupied, charge donation from the ligand orbitals to the $TaCl_3^{2+}$ fragment can be evaluated. For example, the π donation from the interaction of the HOFO of the ligand with the unoccupied orbitals of the $TaCl_3^{2+}$ fragment is $0.327 \times 2 = 0.65$ electron. Adding contributions from all orbital interactions together, 1.88 electrons are donated from the $R_2 DAN^{2-}$ fragment to the $TaCl_3^{2+}$ fragment, giving a total bond order of 2.69. The donation from the ligand reduces the NPA charge¹⁷ on Ta in the $TaCl_3^{2+}$ fragment from +1.75 to +1.54 au.

The optimization calculation for the trimethyl species 3 also reflected the orientation of the two amido moieties and the nonplanar orientation of the R_2DAN^{2-} ligand that was obtained from X-ray analysis. Again, the interactions of the diamido fragment, $((PhN)_2C_{10}H_6)^{2-}$, and the metal fragment $TaMe_3^{2+}$ were examined. The donor HOFOs for the ligand orientation represented in complex 3 are shown in Figure 4, and the energies of these fragment orbitals are similar to the orbital energies of those in 1. The distortion from planarity changes the nature of the HOFOs to a mixture of σ and π overlap with the metal fragment. Again, the donor contribution from each ligand fragment orbital is shown by the percentage value of the change in electron population. Significant reduction in donation from the HOFO and HOFO-2 are the most important differences of 3 from 1. With the nonplanar ligand orientation, the $R_2 DAN^{2-}$ fragment donates only 1.31 electrons to the $TaMe_3^{2+}$ fragment, and this in turn leads to a reduced bond order between the fragments of 2.10. The reduced donation is also reflected by the higher NPA charge on the Ta center in 3 of +1.97 au compared to 1.

From this orbital interaction analysis it is clear that the degree of $R_2 DAN^{2-}$ donation and the ligand-metal fragment bond order is lower for the trimethyl complex 3 compared to the trichloro complex 1. In order to determine the origin for these differences, the trimethyl complex $[TaMe_3(1,8-(PhN)_2C_{10}H_6)]$ (3) was examined with two different structural models. Specifically, the energy of the experimentally obtained structure for 3, with a facial orientation of the Me groups, was compared to a model structure in which, analogously to complex 1, positions of the methyl ligands were in a meridional array and a planar Ta-R₂DAN is maintained.¹⁸ These two structures are displayed in Figure 5 along with their relative electronic energies. The relative energies for the two R_2DAN^{2-} ligand fragments of these species are also included in this figure. Interestingly, these results indicate that the planar geometry for the $R_2 DAN^{2-}$ fragment is slightly lower in energy (0.9 kcal mol^{-1}) than the nonplanar orientation that was observed in the experimental structure of 3. More importantly, the electronic interaction energy between the $R_2 DAN^{2-}$ and $TaMe_3^{2+}$ fragments is 40.9 kcal mol⁻¹ more negative (stable) for the planar ligand configuration than for the nonplanar configuration. However, the overall electronic energy of the nonplanar structure of 3 is 6.9 kcal mol⁻¹ lower in energy than the model structure with the planar ligand and meridional methyl moieties.


These results directed our attention to the features that stabilize the facial orientation of the methyl groups in $TaMe_3^{2+}$ compared to the meridional chloro ligands in $TaCl_3^{2+}$ as the driving force for the determining the overall structures of 3 and 1. A comparison of the energies for the two orientations of the methyl substituents in $TaMe_3^{2+}$ revealed that the facial disposition, experimentally observed for 3, is 48.7 kcal mol^{-1} lower in energy than a meridional orientation of these groups in the model complex. The ultimate origin of this energy difference is revealed by examining the electrostatic interactions within the $TaMe_3^{2+}$ fragment. The C atoms of the methyl ligands in the TaMe₃²⁺ fragment bear large negative charges (from -0.97 to -1.02 au). The electrostatic repulsion between these negative moieties results in the meridionally ligated $TaMe_3^{2+}$ lying 30.5 kcal mol⁻¹ higher in energy than the facially ligated TaMe₃²⁺ fragment. This electrostatic component appears to be the major contributor to stabilizing the experimentally observed structure of **3**.

A similar examination can be made for $[TaCl_3(1,8-(PhN)_2C_{10}H_6)]$, 1. In this case, the electronic energy of a model structure of 1 with nonplanar R_2DAN^{2-} and facial chloro groups is 12.4 kcal mol⁻¹ higher in energy than that of the experimentally observed structure. Similar to the $TaMe_3^{2+}$ fragment, the meridional $TaCl_3^{2+}$ fragment is 33.5 kcal mol⁻¹ higher in energy than the computed facially ligated $TaCl_3^{2+}$ fragment. This indicates that the stabilizing energy for the observed

⁽¹⁶⁾ Gorelsky, S. I.; Ghosh, S.; Solomon, E. I. J. Am. Chem. Soc. 2006, 128, 278. Gorelsky, S. I. AOMix software for molecular orbital analysis, www. sg-chem.net.

⁽¹⁷⁾ Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

⁽¹⁸⁾ The atomic coordinates for the optimized structures are provided in the Supporting Information.

Figure 5. Comparison of the calculated energies for the experimental structure of **3** (I) and a model structure (II) for this compound. The hydrogen atoms on the two structures are omitted for clarity. The largest energy differences between these two isomers are the electronic interaction (ΔE_{int}) between the TaMe₃²⁺ and R₂DAN²⁻ fragments and the relative energies between the two orientations of the TaMe₃²⁺ fragments given by ΔE (TaMe₃). The difference in energy between the two R₂DAN²⁻ fragments is given by ΔE (R₂DAN). For reference, the charges on the Ta and Me centers are provided in red.

structure of **1** must originate from a different interaction than for **3**. In fact, the major stabilizing feature for complex **1** turns out to be the electronic interaction energy between the R_2DAN^{2-} and $TaCl_3^{2+}$ fragments. This interaction is 42.4 kcal mol⁻¹ more negative for the planar ligand configuration than for the nonplanar configuration and arises from the stronger charge transfer interaction.

From these results we can conclude that the observed geometries of 1 and 3 are dictated by the balance between the energetics of the TaX_3^{2+} fragment and the TaX_3-R_2 . DAN interaction energy. The loss of energy in distorting the DAN ligand from planarity is rather minor.

The similarity in the bonding array displayed by compound 5, $[Ta(NEt_2)_2Cl(1,8-(PrN)_2C_{10}H_6)]$, to trimethyl compound 3 suggested that a similar electronic analysis of 5 should be carried out. Again the computed optimized structure for 5 at the B3LYP/DGDZVP level of theory was in accordance with the X-ray structure. The R_2DAN^{2-} ligand fragment of 5 displayed a set of donor HOFOs that correlated with the analogous fragment in 3. The donation level of each of the ligand fragment frontier orbitals to the $Ta(NEt_2)_2Cl^{2+}$ fragment was very similar to what we observed in 3 with a total donation of 1.33 electrons, a bond order of 2.1, and a resulting NPA charge of +1.95 for the Ta(V) ion. The energy of this nonplanar ligand orientation is slightly higher than was observed for the nonplanar orientation observed for compound 3 and is 14.9 kcal mol⁻¹ less stable than the planar R₂DAN ligand.

Calculations on a model structure of **5** with planar R_2DAN^{2-} and *mer*-Ta(NEt₂)₂Cl ligand arrangement gave an electronic energy that was 20.8 kcal mol⁻¹ higher in energy than that of the experimentally observed structure. As observed with **3**, the energy required to reorganize from the facial to the meridional Ta(NEt₂)₂Cl²⁺ orientation is the dominant component for this increased energy. This *mer* orientation was computed to be 53.1 kcal mol⁻¹ higher in energy than the *fac*-Ta(NEt₂)₂Cl²⁺ fragment. Even though the planar R₂DAN²⁻ ligand would provide a more stabilizing interaction energy, by 17.5 kcal mol⁻¹, with the Ta(NEt₂)₂Cl²⁺ fragment compared to the nonplanar configuration, this is not adequate to overcome the favored *fac*-Ta(NEt₂)₂Cl²⁺ configuration.

Overall, these computational results correlate with experiment and demonstrate that the R_2DAN^{2-} ligand

bonding configuration and the corresponding donation to the metal fragment is flexible. Significantly, the R_2DAN ligand-metal interactions respond to the demands of the Ta(V) fragment, which in turn is largely controlled by the nature of the ligands of the TaX₃²⁺ fragment.

Reactivity and Transformations of Ta(NEt₂)₂Cl[1,8-(NR)₂C₁₀H₆] (R = ^{*i*}Pr 5; R = 3,5-Me₂(C₆H₃) 6). The reactivity of compounds 5 and 6 provided an attractive avenue for exploring the stability and bonding of the R₂DAN²⁻ ligand coupled with the effects of metal coordination environment. Specifically, substitution of the chloro ligand of these species with both LiNMe₂ and LiMe was examined as summarized in Scheme 2. The reaction of either 5 or 6 with LiNMe₂ proceeded to introduce the dimethyl amido group on the tantalum center with elimination of LiCl and generation of compounds 7 and 8. The ¹H and ¹³C NMR spectra of these reaction products appear similar to the corresponding starting materials with the addition, in each case, of resonances corresponding to the incorporated dimethyl amido protons.

Suitable crystals for single-crystal X-ray diffraction analysis of $Ta(NEt_2)_2NMe_2[1,8-({}^{l}PrN)_2C_{10}H_6]$ (7) were obtained from hexanes (Table 1). The results are summarized in Figure 6 and Table 2. Most striking is the similarity of 7 to the starting material 5 with the replacement of a chloro group with a dimethylamido ligand. The tantalum center remains in a distorted trigonal-bipyramidal coordination geometry with the R_2DAN^{2-} ligand spanning axial/equatorial sites $(N1-Ta-N3 = 172.1(5)^{\circ})$ and with N2, N4, and N5 defining the equatorial plane $(\sum \text{ angles} = 360^\circ)$. The nitrogen centers of the R₂DAN²⁻ ligand are planar (\sum angles N1 = 359.6°, \sum angles N2 = 359.7°). The plane of nitrogen N1 approaches alignment with the naphthyl plane with the angle between these planes being only 21°. On the other hand, the mean plane for the N2 nitrogen makes an angle of 55° with the mean naphthyl plane. The net result is an $R_2 DAN^{2-}$ ligand geometry that is twisted and similar to that obtained in compound 5.

A notable feature of 7 is that the ⁱPr groups of the DAN ligand remain intact in the formation of this compound. There is no deprotonation of the ispo-CH group even in the presence of three strongly basic amido ligands. This contrasts with the documented reactivity of the methyl

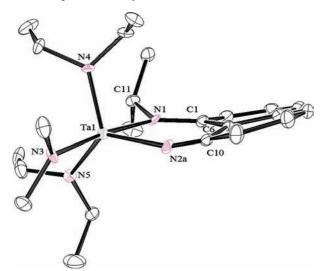


Figure 6. Thermal ellipsoid plot showing the molecular structure and partial atom-numbering scheme of Ta(NEt₂)₂NMe₂[1,8-(ⁱPrN)₂C₁₀H₆] (7). Ellipsoids are drawn at 20% probability. Hydrogen atoms have been omitted for clarity.

groups in TaMe₃Cl₂ with 1,8-('PrNH)₂C₁₀H₆, which ultimately led to metallaziridine via deprotonation of the isopropyl CH group.

These observations prompted our deployment of methyllithium in a reaction with Ta(NEt₂)₂Cl[1,8-('PrN)₂- $C_{10}H_6$ (5). The goal was to determine if this reaction would proceed by simple metathetical substitution of the chloro ligand with a methyl group or would involve transformation of the isopropyl CH group. From this reaction, an orange powder was obtained. Our previous experience with the appearance of the ¹H NMR spectrum for the tridentate trianionic metallaziridine ligand (Me₂CN)- $(Me_2CHN)C_{10}H_6]^{3-}$ allowed us to rapidly identify compound 9 (Scheme 2) as the metallacyclic product. In particular, the spectrum for 9 displayed one intact 'Pr group, exhibiting a doublet for the methyl moieties, and the methyl signals of the metallacycle appearing as a singlet with an integration value of six hydrogens. The remaining ¹H and ¹³C NMR signals supported the structural assignment for $[(Me_2CN)(Me_2CHN)C_{10}H_6]Ta(NEt_2)_2$ (9).

Conclusions

A set of N,N'-disubstituted 1,8-diaminonaphthalenes have been employed in the preparation of a series of Ta(V) complexes with general formulas (R₂DAN)TaX₃. Characterization of these complexes allowed an examination of the influence of the R₂DAN ligand substituents as well as the influence of the other ligands on the structures and stability of the tantalum complexes. The use of aromatic substituents enabled the isolation of trichloro, trimethyl, and mixed bis-(amido)/chloro Ta compounds with an analogous bis-(amido)/chloro complex also being accessible with 'Pr ligand substituents. While all of these species displayed distorted trigonal-bipyramidal Ta coordination geometries, there were significant differences in bonding of the R₂DAN²⁻ ligand to Ta and in the ligand orientation within the TaX_3^{2+} fragments.

A DFT computational analysis and modeling of the interaction between the $R_2 DAN^{2-}$ and TaX_3^{2+} fragments revealed that the distortion of the $R_2 DAN^{2-}$ ligand from planarity was a minor energy debt. Furthermore, the nonplanar ligand did exhibit a lower R₂DAN-TaX₃ interaction energy, which led to reduced electron donation from the ligand and diminished bond order between the ligand and Ta. In opposition to these destabilizing features was a rather large energy contribution favoring a facial arrangement of the ligands in the TaX_3^{2+} fragments. Interestingly, the balance of these energy terms demonstrated the flexibility of the R_2DAN^{2-} ligand in bonding to a metal center and the responsiveness of this donor species to the demands of the Ta(V) fragment, Ta X_3^{2+} , which in turn was dictated by the nature of the groups constituting this fragment.

Finally, the substitution reactions of the chloro ligand in $Ta(NEt_2)_2Cl[1,8-({}^iPrN)_2C_{10}H_6]$ (5) provided a probe for the σ -bond metathesis transformation of the Ta-NCHMe₂ moiety into a metallaziridine κ^2 -(Me₂CN)Ta. This conversion was observed in the reaction of 5 with MeLi but not with LiNMe₂.

Experimental Section

General Methods. All manipulations were carried out either in a nitrogen-filled drybox or under nitrogen using standard Schlenk line techniques. Unless otherwise noted, solvents were sparged with nitrogen and then dried by passage through a column of activated alumina using an apparatus purchased from Anhydrous Engineering. Deuterated benzene and methylene chloride were dried by vacuum transfer from molecular sieves. TaCl₅ was purchased from Strem and used without further purification. N,N-Diethyltrimethylsilylamine was purchased from Aldrich and used without further purification. ¹H NMR spectra were recorded at room temperature and run on either a Bruker Avance 300 MHz or a Bruker 500 MHz spectrometer with deuterated benzene or methylene chloride as a solvent and internal standard. Elemental analyses were carried out by Robertson Microlit Laboratories, Inc. (Madison, NJ) or Midwest Microlab, LLC (Indianapolis, IN). Multiple attempts to obtain microanalyses of compounds 1-4 were unsuccessful. Samples of these compounds changed color from orange to dark brown during overnight shipping. $[Ta(NEt_2)_2Cl_3]$,¹² Ta-(NEt_2)_2Cl_3Py,¹² 1,8-(2,6-Me_2C_6H_3NH)_2C_{10}H_6,¹⁹ 1,8-(NH'Pr)_2-C_{10}H_6, and TaMe_3Cl_2²⁰ were prepared according to literature methods.

Preparation of TaCl₃[1,8-(Ph)₂C₁₀H₆] (1). A dark brown solution was formed after stirring $1,8-(C_6H_5NH)_2C_{10}H_6$ (0.191 g, 0.64 mmol) and TaMe₃Cl₂ (0.201 g, 0.65 mmol) in 10 mL of diethyl ether under nitrogen for 24 h. Ether was removed under vacuum from the reaction mixture, and the solid was extracted with 4 mL of toluene. Addition of hexanes to this solution and cooling to -20 °C gave red crystals (0.151 g, 39.6%) of compound 1.

¹H NMR (300 MHz, C₆D₆): δ 6.38 (d, 2H), 7.02 (m, 6H), 7.19 (m, 2H), 7.23(m, 2H), 7.80 (m, 4H). ¹³C NMR (300 MHz, C₆D₆): δ 115.5 (CH_{Ar}), 125.6 (C_{Ar}), 126.6 (C_{Ar}), 127.3 (CH_{Ar}), 128.5 (CH_{Ar}), 129.2 (CH_{Ar}), 129.3 (CH_{Ar}), 132.9 (C_{Ar}), 134.2 (CH_{Ar}), 135.5 (C_{Ar}).

Preparation of $TaCl_3[1,8-(3,5-Me_2C_6H_3N)_2C_{10}H_6]$ (2). In a nitrogen-filled glovebox, TaMe₃Cl₂ (0.243 g, 0.82 mmol) and $1,8-(3,5-Me_2C_6H_3NH)_2C_{10}H_6$ (300 mg, 0.82 mmol) were dissolved in toluene, and the reaction mixture was allowed to stir overnight at room temperature. The resulting red solution was dried by vacuum evaporation of the reaction solvent. A brown powder was obtained, which was dissolved in hexanes cooled to -20 °C to give a red powder of **2** (269 mg, 51.0%).

⁽¹⁹⁾ Bazinet, P.; Ong, T. G.; O'Brien, S. J.; Lavoie, N.; Bell, E.; Yap, G. P. A.; Korobkov, I.; Richeson, D. S. Organometallics 2007, 26, 2885.
 (20) Juvinall, G. L. J. Am. Chem. Soc. 1964, 86, 4202.

Article

¹H NMR (300 MHz, C_6D_6): δ 2.02 (s, 12H, CH₃), 6.45 (s, 2H, CH_{Ar}) 6.55 (s, 4H, CH_{Ar}), 7.18–7.27 (m, 4H, CH_{Ar}), 7.43 (d, 2H, CH_{Ar}). ¹³C NMR (500 MHz, CD₂Cl₂): δ 21.6 (CH₃), 116.8 (CH_{Ar}), 117.4 (CH_{Ar}), 122.2 (C_{Ar}), 123.6 (CH_{Ar}), 126.5 (C_{Ar}), 126.6 (CH_{Ar}), 137.7 (C_{Ar}),139.5 (CH_{Ar}), 141.3 (C_{Ar}), 145.4 (C_{Ar}).

Preparation of TaMe₃[1,8-(Ph)₂C₁₀H₆] (3). In a nitrogen-filled glovebox, 1,8-(C₆H₅NH)₂C₁₀H₆ (0.62 g, 2 mmol) was dissolved in 5 mL of diethyl ether and cooled to -30 °C. To this solution was added dropwise methyllithium (2.9 mL of a 1.4 M solution in diethyl ether, 4.06 mmol). The reaction mixture was maintained at -30 °C and stirred for 30 min. TaMe₃Cl₂ (0.59 g, 1 mmol), which had been dissolved in 5 mL of diethyl ether, was then added slowly to the reaction mixture. This mixture was allowed to stir for 1 h at room temperature. After filtration, the resulting dark red solution was cooled to -30 °C. Dark orange crystals of **3** were obtained after several hours (0.31 g, 29%).

¹H NMR (300 MHz, C₆D₆): δ 1.20 (s, 9H), 6.73 (m 2H), 6.95 (m, 4H), 7.06 (m, 2H), 7.18 (m, 6H), 7.24 (m, 2H). ¹³C NMR (300 MHz, C₆D₆): δ 75.3 (CH₃), 120.1 (CH_{Ar}), 123.9 (CH_{Ar}), 125.2 (CH_{Ar}), 125.8 (CH_{Ar}), 126.4 (C_{Ar}), 129.5 (C_{Ar}), 130.2 (CH_{Ar}), 137.0 (C_{Ar}), 143.1 (C_{Ar}), 146.4 (CH_{Ar}).

Preparation of TaMe₃[1,8-(3,5-Me₂C₆H₃N)₂C₁₀H₆] (4). In a round-bottom flask 1,8-(3,5-Me₂C₆H₃NH)₂C₁₀H₆ (300 mg, 0.82 mmol) was dissolved in diethyl ether at room temperature. To this solution was added dropwise "BuLi (1.02 mL of 1.6 M solution in ether, 1.6 mmol). The reaction mixture was allowed to stir for 1 h. TaMe₃Cl₂ (0.243 g, 0.82 mmol) was then added slowly to the reaction flask. The reaction mixture was then stirred for an additional 3 h and filtered, and the solvent was evaporated under vacuum to yield a brown solid. Compound **4** was purified by precipitation from toluene (208 mg, 89%).

¹H NMR (300 MHz, C₆D₆): δ 1.24 (s, 9H, Me), 1.98 (s, 12H, Me) 6.60 (s, 2H, CH_{Ar}), 6.80 (s, 4H, CH_{Ar}), 6.87 (d, 2H, CH_{Ar}), 7.15–7.27 (m, 4H, CH_{Ar}). ¹³C NMR (300 MHz, C₆D₆): δ 21.4 (C_{Ar}CH₃), 73.6 (TaCH₃), 119.2 (C_{Ar}), 123.8 (CH_{Ar}), 123.9 (CH_{Ar}), 126.5 (C_{Ar}), 127.7 (CH_{Ar}), 127.8 (CH_{Ar}), 137.4 (C_{Ar}), 140.3 (CH_{Ar}), 144.4 (C_{Ar}), 144.7 (C_{Ar}).

Preparation of Ta(NEt₂)₂Cl[1,8-(NⁱPr)₂C₁₀H₆] (5). In a roundbottom flask 1,8-(ⁱPrNH)₂C₁₀H₆ (0.50 g, 2.06 mmol) was dissolved in diethyl ether at room temperature. To this solution was added dropwise "BuLi (2.58 mL of a 1.6 M solution in diethyl ether, 4.13 mmol). The reaction mixture was allowed to stir for 1 h. [Ta(NEt₂)₂Cl₃]₂ (0.89 g, 1.03 mmol) was then added to the reaction flask. This mixture was then allowed to stir overnight and filtered through Celite, and the solvent was evaporated under vacuum. The resulting orange solid was recrystallized from hexanes cooled to -20 °C to yield 5 (0.782 g, 63.2%) as orange crystals.

¹H NMR (300 MHz, C_6D_6): δ 0.88 (t, 12H, NCH₂CH₃), 1.25 (d, 12H, CH(CH₃)₂), 3.62–3.44 (br, 8H, NCH₂CH₃), 4.67–4.24 (br, 2H, CH(CH₃)₂), 6.75–7.14 (m, 2H, Ar-H), 7.26–7.47 (m, 4H, Ar-H). ¹³CNMR (300 MHz, C_6D_6): δ 13.8 (NCH₂CH₃), 21.7 (CHCH₃), 45.8 (NCH₂CH₃), 50.4 (CH(CH₃)₂, 55.3 (CH-(CH₃)₂, 113.6 (C_{Ar}), 119.5 (C_{Ar}), 124.3 (C_{Ar}), 126.1 (CH_{Ar}), 128.9 (CH_{Ar}), 137.2 (CH_{Ar}). Anal. Calcd for C₂₄H₄₀N₄ClTa: C 47.96, H 6.71, N 9.32 Found: C 47.69, H 6.43, N 9.16

Preparation of Ta(NEt₂)₂Cl[1,8-(3,5-Me₂C₆H₃N)₂C₁₀H₆] (6). In a round-bottomed flask 1,8-(3,5-Me₂C₆H₃NH)₂C₁₀H₆ (0.5 g, 1.36 mmol) was dissolved in diethyl ether at room temperature. To this solution was added dropwise "BuLi (1.71 mL of a 1.6 M solution in diethyl ether, 2.7 mmol). The reaction mixture was allowed to stir for 1 h. Ta(NEt₂)₂Cl₃Py (0.697 g, 1.36 mmol) was then added to the reaction flask. This mixture was then allowed to stir overnight and filtered through Celite, and the solvent was evaporated under vacuum. The resulting red solid was recrystallized from hexanes cooled to -20 °C to yield **6** (612 mg, 62.5%).

¹H NMR (300 MHz, C₆D₆): δ 0.65 (t, 12H, NCH₂CH₃), 2.05 (12H, s, C_{Ar}CH₃), 3.60 (q, 8H, NCH₂CH₃), 6.57 (s, 2H, Ar-H),

6.73 (br, 2H, Ar-H), 7.06–7.14 (br, 4H, Ar-H), 7.17–7.25 (m, 4H, Ar-H). 13 C NMR (300 MHz, C₆D₆): δ 13.0 (NCH₂CH₃), 21.5 (C_{Ar}CH₃), 45.6 (NCH₂CH₃), 117.1 (CH_{Ar}), 117.5 (C_{Ar}), 123.8 (C_{Ar}), 125.7 (CH_{Ar}), 126.5 (C_{Ar}), 126.7 (CH_{Ar}), 127.5 (CH_{Ar}), 129.5 (C_{Ar}), 136.9 (C_{Ar}), 139.2 (CH_{Ar}). Anal. Calcd for C₃₄H₄₄N₄CITa: C 56.32, H 6.12, N 7.73. Found: C 56.53, H 6.21, N 7.59.

Preparation of Ta(NEt₂)₂NMe₂[1,8-(N^{*i*}Pr)₂C₁₀H₆] (7). In a round-bottomed flask, compound 5 (0.18 g, 0.30 mmol) was dissolved in 40 mL of diethyl ether. To this solution was added LiNMe₂ (0.015 g, 0.30 mmol), and the reaction mixture was allowed to stir overnight. The reaction mixture was filtered, and the solvent was removed under vacuum. Orange crystals of 7 (117 mg, 65.1%) were obtained by recrystallization from hexanes cooled to -20 °C.

¹H NMR (300 MHz, C₆D₆): δ 0.90 (t, 12H, NCH₂CH₃), 1.26 (d, 12H, CH(CH₃)₂), 3.35 (s, 6H, NCH₃), 3.39 (q, 4H, NCH₂CH₃), 3.68 (q, 4H, NCH₂CH₃), 4.16 (sept, 2H, CH(CH₃)₂), 6.96–6.99 (m, 2H, Ar-H), 7.34–7.38 (m, 4H, Ar-H). ¹³C NMR (300 MHz, C₆D₆): δ 14.5 (NCH₂CH₃), 23.6 (CHCH₃), 46.4 (NCH₃), 48.6 (NCH₂CH₃), 51.6 (CH(CH₃)₂), 115.2 (C_{Ar}), 119.8 (C_{Ar}), 125.8 (CH_{Ar}), 128.8 (CH_{Ar}), 137.7 (CH_{Ar}), 147.7 (C_{Ar}). Anal. Calcd for C₃₂H₄₂N₅Ta: C 51.22, H 7.62, N 11.49. Found: C 50.74, H 7.27, N 11.15.

Preparation of Ta(NEt₂)₂NMe₂[1,8-(2,6-Me₂C₆H₃N)₂C₁₀H₆] (8). In a round-bottom flask, compound 6 (0.765 g, 1.05 mmol) was dissolved in 40 mL of diethyl ether. To this solution was added LiNMe₂ (0.057 g, 1.12 mmol), and the reaction mixture was allowed to stir overnight. The reaction mixture was filtered, and the solvent was removed under vacuum. Orange crystals of 8 (0.607 g, 78.8%) were obtained by recrystallization from hexanes and THF.

¹H NMR (300 MHz, C₆D₆): δ 0.64 (t, 12H, NCH₂CH₃), 2.15 (s, 12H, C_{Ar}CH₃), 3.01 (s, 6H, N(CH₃)₂), 3.31 (q, 4H, NCH₂CH₃), 3.81 (q, 4H, NCH₂CH₃), 6.58 (s, 4H, Ar-H), 6.71 (s, 4H, Ar-H), 7.14–7.30 (m, 4H, Ar-H). ¹³C NMR (300 MHz, C₆D₆): δ 14.4 (NCH₂CH₃), 21.7 (C_{Ar}CH₃), 46.1 (N(CH3)), 47.8 (NCH₂CH₃), 115.0 (C_{Ar}), 119.6 (C_{Ar}), 124.8 (CH_{Ar}), 124.9 (C_{Ar}), 125.2 (CH_{Ar}), 127.3 (CH_{Ar}), 128.2 (C_{Ar}), 137.9 (C_{Ar}), 138.6 (CH_{Ar}), 151.3 (C_{Ar}), 153.4 (CH_{Ar}). Anal. Calcd for [C₃₆H₅₀N₅Ta]· 2[THF]: C 60.19, H 7.58, N 7.98. Found: C 60.59, H 7.49, N 8.24.

Preparation of η^3 -C₁₀H₆(Me₂CN)(Me₂CHN)Ta(NEt₂)₂ (9). In a round-bottomed flask, compound 5 (469 mg, 0.78 mmol) was dissolved in 30 mL of diethyl ether. To this solution was added MeLi (0.49 mL of a 1.6 M solution in diethyl ether (0.78 mmol)), and the reaction mixture was allowed to stir overnight. The reaction mixture was filtered, and the solvent was removed under vacuum to give an orange solid. Orange crystals of 9 (224 mg, 50.8%) were obtained by recrystallization from ether at -20 °C.

¹H NMR (300 MHz, C₆D₆): δ 0.83 (t, 12H, NCH₂CH₃), 1.57 (d, 6H, CH(CH₃)₂), 2.16 (s, 6H, C(CH₃)₂, 3.02 (br, 8H, NCH₂CH₃), 4.47 (sept, 1H, CH(CH₃)₂), 6.90–6.96 (m, 2H, Ar-H), 7.34–7.47 (m, 4H, Ar-H). ¹³C NMR (300 MHz, C₆D₆): δ 16.7 (NCH₂CH₃), 21.8 (CH₃), 27.4 (CH₃), 42.6 (NCH₂CH₃), 52.6 (CH(CH₃)₂), 107.0 (CH_{Ar}), 109.1 (CH_{Ar}), 118.8 (CH_{Ar}), 125.3, (CH_{Ar}), 126.3 (CH_{Ar}), 126.7 (CH_{Ar}), 128.7 (CAr), 129.9 (CAr), 139.1 (C_{Ar}), 145.3 (C_{Ar}). Anal. Calcd for C₂₄H₃₉N₄Ta: C 51.06, H 6.96, N 9.92. Found: C 50.93, H 6.84, N 9.84.

Computational Details

DFT calculations with the B3LYP functional were carried out using the Gaussian 03 (revision D.01) suite of programs. Spin-restricted treatment was used for all closedshell species. The basis set LANL2DZ was employed. Atomic charges were calculated by natural population analysis (NPA) as implemented in Gaussian 03. Mayer bond orders were obtained using the AOMix-L program. The analysis of molecular orbitals (MOs) in terms of fragment orbital (FO) contributions and calculations of the FO overlap matrices and FO populations were carried out using the AOMix-CDA program. The converged wave functions were tested to confirm that they represent the true ground state. Acknowledgment. This work was supported by the NSERC of Canada.

Supporting Information Available: Atomic coordinates for the optimized experimental and model structures of **1**, **3**, and **5**. Crystallographic files (cif) for compounds **1**, **3**, **5**, and **7**. This material is available free of charge via the Internet at http://pubs.acs.org.