Inorganic Chemist

Asymmetric Oxygenation of a Ruthenium Dithiolate Mimics the Mixed Sulfenato/Sulfinato Donor Sets of Nitrile Hydratase and Thiocyanate Hydrolase

César A. Masitas, Mark S. Mashuta, and Craig A. Grapperhaus*

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292

Received March 2, 2010

The dithiolate complex (bmmp-TASN)RuPPh₃ reacts with $O₂$ under limiting conditions to yield the mixed sulfenato/sulfinato product (bmmp-O₃-TASN)RuPPh₃ in 82% yield. Isotopic labeling studies confirm O_2 as the sole source of O atoms in the product complex. X-ray crystallographic studies reveal decreases in the $Ru-S$ bond distances of 0.026(1) and 0.151(1) A for the sulfenato and sulfinato donors, respectively, and a $0.088(1)$ A increase in the $Ru-PPh₃$ bond distance upon oxygenation.

The active sites of nitrile hydratase $(NHase)^{1,2}$ and thiocyanate hydrolase $(SCNase)^3$ share a common asymmetric sulfenato $(RSO^-)/s$ ulfinato (RSO_2^-) donor set that results from sulfur oxygenation of metal-coordinated cysteine thiolates under aerobic conditions. Small-molecule studies provide numerous examples of metal sulfinates prepared upon $O₂$ oxidation, but metal sulfenates are scarce because they tend to oxidize further. Consequently, only three mixed sulfenato/ sulfinato complexes have been structurally reported. $4-6$ Of these, the only one isolated from aerobic oxidation is a sulfenic acid (RSOH)/sulfinate derivative of $\text{[Ru(DPPBT)}_3]^-$ (DPPBT = 2-diphenylphosphinobenzenethiolate) for which no yield is reported.⁵ A more biologically relevant (N_3S_2) Co example reported by Kovacs et al. is readily isolated by H_2O_2 oxidation of the sulfinato precursor due to η^2 -coordination of the sulfenate, which prevents further reactivity but does not mimic coordination of the active sites.⁴ Herein, we report oxygenation of the ruthenium(II) complex (bmmp-TASN)- $RuPPh₃$ (1) under limiting $O₂$ conditions to directly yield a

sulfenato/sulfinato derivative with η ¹-S-coordination of the oxygenated ligands (2; Scheme 1).

Previously, we reported (bmmp-TASN)FeCl and its derivatives as synthetic models of $NHase^{7,8}$ These complexes display spin-state-dependent oxygen sensitivity with the highspin chloro derivative degrading to disulfide and iron-oxo clusters, while the low-spin cyano complex undergoes sulfur oxygenation, yielding an insoluble disulfonate $((RSO_3^-)_2)$ product.^{9,10} As such, we prepared the low-spin ruthenium(II) derivative 1 and explored its O_2 sensitivity.

Complex 1 is isolated from $RuCl₂(PPh₃)₃$ and $H₂(bmmp-$ TASN) upon deprotonation of the ligand in tetrahydrofuran as an air- and water-stable orange solid. In a O_2 -saturated solution, 1 reacts within 96 h to yield an intractable brown product with an FT-IR spectrum (Figure S2 in the Supporting Information) reminiscent of our previously reported iron disulfonate derivative.⁹ Repeated attempts to isolate analytically pure samples from this product mixture were unsuccessful. This "overoxygenated" product can be avoided by limiting the quantity of $O₂$ and the reaction time.

In the O₂ limited reactions, \sim 5 equiv of O₂ were added to a solution of 1 under an argon atmosphere. After 12 h, the solvent was removed under vacuum. The solid residue was dissolved in methanol, which yielded crystals of the sulfenato/ sulfinato derivative 2 in 82% yield upon slow evaporation under air-free conditions. Additional air or O_2 exposure results in complex degradation. While limiting the quantity of O-atom-transfer reagents is a common tactic in attempts to obtain partially sulfur-oxygenated derivatives of metal thiolates,⁶ intentionally limiting the O_2 supply for their controlled oxygenation has not been exploited. The importance of limiting O_2 /metal thiolate interactions to achieve partial oxygenation was suggested by the results with $[Ru(DPPBT)_{3}]^{-}$. When suspensions of $[Ru(DPPBT)_{3}]^{-}$ as the poorly soluble $HNEt₃⁺$ salt were exposed to air, the mixed sulfenic acid/sulfinato product was obtained.⁵ However,

^{*}To whom correspondence should be addressed. E-mail: grapperhaus@ louisville.edu.

⁽¹⁾ Endo, I.; Nakasako, M.; Nagashima, S.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N. J. Inorg. Biochem. ¹⁹⁹⁹, 74, 22–22.

⁽²⁾ Shigehiro, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Tokoi, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Nat. Struct. Biol. ¹⁹⁹⁸, 5, 347–351.

⁽³⁾ Arakawa, T.; Kawano, Y.; Kataoka, S.; Katayama, Y.; Kamiya, N.; Yohda, M.; Odaka, M. J. Mol. Biol. ²⁰⁰⁷, 366, 1497–1509.

⁽⁴⁾ Kung, I.; Schweitzer, D.; Shearer, J.; Taylor, W. D.; Jackson, H. L.; Lovell, S.; Kovacs, J. A. J. Am. Chem. Soc. 2000, 122, 8299-8300.

⁽⁵⁾ Dilworth, J.; Zheng, Y.; Lu, S.; Wu, Q. Transition Met. Chem. ¹⁹⁹², 17, 364–368.

⁽⁶⁾ Buonomo, R. M.; Font, I.; Maguire, M. J.; Reibenspies, J. H.; Tuntulani, T.; Darensbourg, M. Y. J. Am. Chem. Soc. ¹⁹⁹⁵, 117, 963–973.

⁽⁷⁾ Grapperhaus, C. A.; Patra, A. K.; Mashuta, M. S. *Inorg. Chem.* 2002, 41. 1039-1041. 41, 1039–1041. (8) Grapperhaus, C. A.; Li, M.; Patra, A. K.; Poturovic, S.; Kozlowski,

P. M.; Zgierski, M. Z.; Mashuta, M. S. Inorg. Chem. ²⁰⁰³, 42, 4382–4388.

⁽⁹⁾ O'Toole, M. G.; Kreso, M.; Kozlowski, P. M.; Mashuta, M. S.; Grapperhaus, C. A. J. Biol. Inorg. Chem. ²⁰⁰⁸, 13, 1219–1230.

⁽¹⁰⁾ Grapperhaus, C. A.; O'Toole, M. G.; Mashuta, M. S. Inorg. Chem. Commun. ²⁰⁰⁶, 9, 1204–1206.

homogeneous solutions of the complex as the PPN^+ salt reproducibly yield the disulfinato derivative.¹¹ As an additional example, the product distribution of singlet oxygen addition to an (N_2S_2) Ni complex shifts toward the sulfenato/ sulfinato derivative as the complex concentration increases and the relative O_2 concentration decreases.¹²

Isotopic labeling studies employing ${}^{18}O_2$ confirm O_2 as the O-atom source in the conversion of 1 to 2. The difference IR spectrum of 1 and 2 prepared with ${}^{16}O_2$ (Figure 1a) displays intense bands at 1140 and 1020 cm⁻¹ attributed to the asymmetric and symmetric $S=O$ stretches of the sulfinato donor. These bands shift by 45 and 38 cm⁻¹ to 1095 and 982 cm⁻¹, respectively, for samples of 2 prepared with $^{18}O_2$ (Figure 1b). The isotopic shifts are larger than those observed for 34 S-labeled NHase¹³ but consistent with a simple harmonic oscillator approximation and other 18O-labeled metal sulfinates.^{14,15} The weak sulfenato S=O stretch of 2 cannot be assigned. The sulfenato stretching band was also not able to be discerned in ³⁴S-labeled NHase. Our IR studies clearly show O_2 as the source of the sulfinato O atoms. To confirm O_2 as the source of all of the O atoms in 2, (+)ESI-MS was recorded (Figure S4 in the Supporting Information).

Figure 1. FT-IR difference spectra highlighting the ${}^{18}O_2$ -sensitive sulfinato stretching frequencies of (a) 1 and 2 prepared under ${}^{16}O_2$ (black line) and (b) 2 prepared under ${}^{16}O_2$ and ${}^{18}O_2$ (red line).

Figure 2. ORTEP representation of 2 showing 40% probability ellipsoids. H atoms and methanol solvates have been omitted to clearly illustrate the asymmetric oxygenation of S2 and S3. Selected bond distances are provided in Table 1.

Samples of 2 prepared with ${}^{16}O_2$ display a parent peak at m/z 731.1138 that shifts to m/z 737.1267 in samples prepared with $^{18}O_2$.

X-ray crystallographic analyses of 1 and 2 reveal similar $(N_2S_3)RuPPh_3$ donor environments.¹⁶ As shown in the ORTEP representations of 1 and 2 (Figure S5 in the Supporting Information and Figure 2, respectively), both complexes display a facially coordinated TASN ring (N1, N2, and S1), two pendant sulfur donors (S2 and S3), and triphenylphosphine (P1). The two O atoms O1 and O2 of the sulfinato donor (S2) of 2 are directed roughly along the $S1-Ru-S3$ bond axis with torsion angles of $-12.63(12)$ and $+35.55(13)$ ° for O1-S2-Ru1-S1 and O2-S2-Ru1-S3, respectively. The sulfenato oxygen (O3) is oriented toward N1 along the P1-Ru-N1 axis with an O3-S3-Ru1-N1 torsion angle of $-16.47(14)$ °. As shown in Figure 3, the triphenylphosphine donor restricts access to the remaining potential oxygenation site on S3, which may retard the rate of further oxygenation under limited $O₂$.

Sulfur oxygenation significantly influences bond distances in the first coordination sphere of ruthenium (Table 1). The Ru-S bond distances to the oxygenated sulfur donors S2 and S3 are shorter in 2 than in 1. The $Ru-S_{sulfinate}$, Ru-S2, bond distance decreases by $0.151(1)$ Å, while the $Ru-S_{sulfenate}$ bond distance, $Ru-S3$, shortens by only 0.026(1) Å.

⁽¹¹⁾ Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S. Inorg. Chem. ²⁰⁰⁵, 44, 8185–8187.

⁽¹²⁾ Grapperhaus, C. A.; Maguire, M. J.; Tuntulani, T.; Darensbourg, M. Y. Inorg. Chem. ¹⁹⁹⁷, 36, 1860–1866.

⁽¹³⁾ Noguchi, T.; Nojiri, M.; Takei, K.-i.; Odaka, M.; Kamiya, N. Biochemistry ²⁰⁰³, 42, 11642–11650.

⁽¹⁴⁾ Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. ¹⁹⁹⁸, 31, 451–459.

⁽¹⁵⁾ Farmer, P. J.; Solouki, T.; Mills, D. K.; Soma, T.; Russell, D. H.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. ¹⁹⁹², 114, 4601–4605.

⁽¹⁶⁾ Crystal data for 1: orange block, monoclinic, space group $P2_1/n$, $a =$ 11.085(4) \AA , $b = 16.885(6) \AA$, $c = 16.110(6) \AA$, $\alpha = 90^{\circ}$, $\beta = 95.848(6)^{\circ}$, $\gamma =$ 90°, $V = 2999.7(19)$ \AA^3 , $\rho_{\text{calcd}} = 1.514 \text{ Mg/m}^3$, $Z = 4$. Data were collected on a Bruker SMART APEX CCD using Mo K α radiation. For all 6966 unique a Bruker SMART APEX CCD using Mo $K\alpha$ radiation. For all 6966 unique reflections $[R(int) = 0.0319]$, the final anisotropic full-matrix least-squares refinement on F^2 for 356 variables converged at $\overline{R}1 = 0.0490$, wR2 = 0.0738 with a GOF of 1.058. Crystal data for 2: yellow plate, triclinic, space group $P\overline{1}$, $a = 9.0426(5)$ \AA , $b = 10.4315(6)$ \AA , $c = 19.8314(11)$ \AA , $\alpha =$ $80.6320(10)^\circ$, $\beta = 88.2470(10)^\circ$, $\gamma = 70.8840(10)^\circ$, $V = 1743.41(17)$ \AA^3 , $\alpha_{\text{tot}} = 1.509$ Mg/m³, $Z = 2$ Data were collected on a Bruker SMART $\rho_{\text{calcd}} = 1.509 \text{ Mg/m}^3$, $Z = 2$. Data were collected on a Bruker SMART APEX CCD using Mo Kg radiation. For all 7795 unique reflections APEX CCD using Mo $K\alpha$ radiation. For all 7795 unique reflections $[R(int) = 0.0327]$, the final anisotropic full-matrix least-squares refinement on F^2 for 427 variables converged at R1 = 0.0605, wR2 = 0.1139 with a GOF of 1.074. CCDC 767263 for 1 and CCDC 767264 for 2 contain the supplementary crystallographic data for this paper. Data can be obtained free of charge from The Cambridge Crystallographic Data Center via www. ccdc.cam.ac.uk/data_request.cif.

Figure 3. Space-filling representation of 2 illustrating the steric crowding imposed by the phenyl substituents around the sulfenato sulfur, S3.

The decrease in the $M-S$ bond distance has previously been attributed to the elimination of a four-electron $d\pi-\mathbf{p}\pi$ antibonding interaction as the thiolate S atoms lose their π -donating electrons upon oxygenation.^{6,17,18} Consistent with this explanation, 2 displays significantly longer bond distances to its π -accepting ligands than 1. The Ru-P1 bond distance to the triphenylphosphine increases by $0.088(1)$ Å, and the $Ru-S_{thioether}$, $Ru-S1$, bond distance similarly increases by $0.072(1)$ Å. This is similar to a recent theoretical prediction by Mascharak et al. of a 0.023 Å increase in the Fe-NO bond distance upon sulfur oxygenation of a dithiolatoiron nitrosyl.²⁵ The average $S-O$ distance for the sulfinate, S2, of 1.48 Å falls in the usual range $(1.42 - 1.48 \text{ Å})^{4,14,19}$ The sulfenato $S-O$ bond is more polarized, resulting in a longer $S-O$ distance of $1.556(3)$ Å, which also lies in the typical range $(1.50-1.60 \text{ Å})^{4,14,20,21}$

The polarized S-O bond of the sulfenate has been suggested as a nucleophile for nitrile hydrolysis.¹⁸ Previously, Chottard et al. reported the slow, catalytic (18 turnovers after 17 h) hydrolysis of acetonitrile by a coordinately saturated, exchange-inert cobalt(III) sulfenate.²² Attempts to hydrolyze acetonitrile with 2 following the same protocol yielded no quantifiable acetamide. This may be attributed to steric influences of the PPh₃ ligand or the reduced Lewis acidity of ruthenium(II) in 2 as compared to cobalt(III) in the Chottard system.

Table 1. Selected Bond Distances (A) for 1 and 2

		2
$Ru1-S1$	2.2900(10)	2.3622(9)
$Ru1-S2$	2.4057(9)	2.2548(9)
$Ru1-S3$	2.3754(10)	2.3493(9)
$Ru1-P1$	2.2911(10)	2.3790(9)
$Ru1-N1$	2.198(2)	2.178(3)
$Ru1-N2$	2.178(2)	2.192(3)
$S2-O1$		1.489(3)
$S2 - O2$		1.471(3)
$S3 - O3$		1.556(3)

The present work offers insight into the controlled sulfur oxygenation of metal thiolates and the resulting changes in the electronic structure. Our previous hypothesis that " t_{2g} -rich" low-spin complexes favor sulfur oxygenation is supported by the reactivity of 1 with O_2 . Further, partial sulfur oxygenation is achievable using limited O_2 conditions, as demonstrated by 2 and other reported sulfenato/sulfinato complexes. In 1, the steric bulk of $PPh₃$ slows oxygenation beyond 2 but does not prevent it, as demonstrated under excess O_2 conditions. These results suggest that asymmetric oxygenation of nitrile hydratase and thiocyanate hydrolase may also be facilitated by limited O_2 at the active site without the necessity for single O-atom-transfer reagents. Finally, sulfur oxygenation shortens the $M-S$ bond while lengthening the metal-ligand bonds to π acceptors. In combination with the previously documented labilizing effect of the $trans\text{-thiolate},$ ^{23,24} sulfur oxygenation may promote ligand exchange. As demonstrated by Mascharak, sulfur oxygenation facilitates photodissociation of NO.25 It is also expected to enhance coordination of π donors, such as HO⁻, and may help to discriminate substrate coordination. Further studies to exchange the triphenylphosphine of 2 with more biologically significant donors are underway.

Acknowledgment is made to the National Science Foundation (Grant CHE-0749965) for funding. CCD X-ray equipment was purchased through funds provided by the Department of Energy (Grant DE-FG02- 08CH11538) and the Kentucky Research Challenge Trust Fund.

Supporting Information Available: X-ray structural data in CIF format (CCDC 767263 and 767264), experimental procedures, crystallographic details, FT-IR and mass spectra of 1 and 2, ORTEP of 1, and a space filling diagram of 2. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁷⁾ Grapperhaus, C. A.; Mullins, C. S.; Kozlowski, P. M.; Mashuta, M. S. *Inorg. Chem.* **2004**, 43, 2859-2866. M. S. *Inorg. Chem.* **2004**, 43, 2859–2866.
(18) Lugo-Mas, P.; Dey, A.; Xu, L.; Davin, S. D.; Benedict, J.; Kaminsky,

W.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Kovacs, J. A. J. Am. Chem. Soc. ²⁰⁰⁶, 128, 11211–11221.

⁽¹⁹⁾ Kumar, M.; Colpas, G. J.; Day, R. O.; Maroney, M. J. J. Am. Chem. Soc. 1989, 111, 8323-8325.

⁽²⁰⁾ Adzamli, I. K.; Libson, K.; Lydon, J. D.; Elder, R. C.; Deutsch, E. Inorg. Chem. ¹⁹⁷⁹, 18, 303–311.

⁽²¹⁾ Cornman, C. R.; Stauffer, T. C.; Boyle, P. D. J. Am. Chem. Soc. ¹⁹⁹⁷, 119, 5986–5987.

⁽²²⁾ Heinrich, L.; Mary-Verla, A.; Li, Y.; Vaissermann, J.; Chottard, J. C. Eur. J. Inorg. Chem. ²⁰⁰¹, 2203–2206.

⁽²³⁾ Brines, L. M.; Kovacs, J. A. Eur. J. Inorg. Chem. ²⁰⁰⁷, 29–38.

⁽²⁴⁾ Brines, L. M.; Shearer, J.; Fender, J. K.; Schweitzer, D.; Shoner, S. C.; Barnhart, D.; Kaminsky, W.; Lovell, S.; Kovacs, J. A. Inorg. Chem. ²⁰⁰⁷, 46, 9267–9277.

⁽²⁵⁾ Rose, M. J.; Betterley, N. M.; Oliver, A. G.; Mascharak, P. K. Inorg. Chem. ²⁰¹⁰, 49, 1854–1864.