

Square Coordinated MnO₂-Units in BiMn₇O₁₂

Hiroshi Okamoto,[†] Naoki Imamura,[‡] Maarit Karppinen,^{‡,§} Hisao Yamauchi,^{‡,§} and Helmer Fjellvåg*,[†]

[†]Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, NO-0315 Oslo, Norway, [‡]Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan, and [§]Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, FI-02015 TKK, Finland

Received March 16, 2010

Room temperature high-resolution synchrotron X-ray diffraction (HRSXRD) measurements were carried out on polycrystalline samples of BiMn₇O₁₂ and LaMn₇O₁₂. Rietveld refinements of HRSXRD data describe the crystal structures of both compounds in the monoclinic space group I2/m. The maximum entropy method-based pattern fitting (MPF) method inversion of HRSXRD data was utilized to obtain the spatial electron density (ED) distribution. Obtained results show clear differences in ED distributions around Mn-O bonds between isomorphic BiMn₇O₁₂ and LaMn₇O₁₂. The scheme of ED distributions in BiMn₇O₁₂ indicates the presence of orbital ordering in the MnO₂ planar arrangement that appears as prominent features in very distorted MnO₁₂ and MnO₆ polyhedrons in the perovskite related structure of [BiMn₃]_{A-site}[Mn₄]_{B-site}O₁₂.

Introduction

In perovskite-related transition metal oxides, the d-electrons play a crucial role with respect to emerging physical properties. The spatial distribution of metal-oxygen bonds and bond strengths, that is, the coordination polyhedra (planar, tetrahedral, octahedral, etc.) and their distortions, shows a large variation throughout different oxide systems, originating from electron correlations and involving spin, charge, orbital, and lattice degrees of freedom. An objective for extensive experimental and theoretical studies is indeed to understand the electronic and resulting physical properties on the basis of atomic descriptions of key structural elements. The 1:3 A-site ordered $AA'_{3}B_{4}O_{12}$ takes a 2 × 2 × 2 multiple unit-cell relative to the simple perovskite structure, ABO₃. Recently, investigations of $AA'_{3}B_{4}O_{12}$ have been highlighted since this structure has the very unusual feature of incorporating transition metals like Mn^{3+} and/or Cu^{2+} at the A'-site. This results in unique interactions between the A'- and B-site 3d metals via O 2p orbitals, see, for example, LaMn₇O₁₂ by Prodi et al.,¹ LaCu₃Fe₄O₁₂ by Long et al.,² CaCu₃B₄O₁₂ (B = Ti, Ge, and Sn) by Mizumaki et al.,³ LaMn₃B₄O₁₂ (B = Cr and Ti) by Long et al.,⁴ and YMn₃Al₄O₁₂ by Tohyama et al.⁵ Furthermore, the possibility of multiferroic behavior in BiMn₇O₁₂ similar to that of BiMnO₃ has been discussed.^{6–8} For LaMn₇O₁₂, a structural transition from monoclinic I2/m to cubic Im3 occurs around 380 °C, corresponding to the relaxation of a Jahn-Teller distortion for the MnO₆ octahedra.⁹ BiMn₇O₁₂ appears in two polymorphic structures at room temperature; monoclinic I2/m and cubic $Im\overline{3}$.^{7,10} Our results from high-resolution synchrotron X-ray diffraction (HRSXRD) data for BiMn₇O₁₂ show larger displacement parameters in the Rietveld analysis than for isomorphic LaMn₇O₁₂. Interestingly, the abnormal behavior with large displacement parameters was found primarily for O and Mn atoms, and not for Bi in BiMn₇O₁₂.¹⁰ In the current work, this abnormal behavior of BiMn₇O₁₂ is considered in more detail on the basis of HRSXRD data and in comparison with isomorphic LaMn₇O₁₂.

Experimental Section

Polycrystalline samples of BiMn₇O₁₂⁶ and LaMn₇O₁₂⁹ were prepared by high-pressure synthesis. Powder HRSXRD

^{*}To whom correspondence should be addressed. E-mail: helmer.fjellvag@ kjemi.uio.no.

⁽¹⁾ Prodi, A.; Gilioli, E.; Cabassi, R.; Bolzoni, F.; Licci, F.; Huang, Q.; Lynn, J. W.; Affronte, M.; Gauzzi, A.; Marezio, M. Phys. Rev. B. 2009, 79, 085105.

⁽²⁾ Long, Y. W.; Hayashi, N.; Saito, T.; Azuma, M.; Murakani, S.; Shimakawa, Y. Nature 2009, 458, 60.

⁽³⁾ Mizumaki, M.; Saito, T.; Shiraki, H.; Shimakawa., Y. Inorg. Chem. 2009, 48, 3499

⁽⁴⁾ Long, Y.; Saito, T.; Mizumaki, M.; Agui, A.; Shimakawa, Y. J. Am. Chem. Soc. 2009, 131, 16244.

⁽⁵⁾ Tohyama, T.; Saito, T.; Mizumaki, M.; Agui, A.; Shimakawa, Y. Inorg. Chem. 2010, 49, 2492.

⁽⁶⁾ Imamura, N.; Karppinen, M.; Motohashi, T.; Fu, D.; Itoh, M.; Yamauchi, H. J. Am. Chem. Soc. 2008, 130, 14948.

⁽⁷⁾ Imamura, N.; Karppinen, M.; Yamauchi, H. Chem. Mater. 2009, 21, 2179

⁽⁸⁾ Mezzadri, F.; Calestan, G.; Calicchio, M.; Gilioli, E.; Bolzoni, F.;

Cabassi, R.; Marezio, M.; Migliori, M. Phys. Rev. B. 2009, 79, 100106. (9) Okamoto, H.; Karppinen, M.; Yamauchi, H.; Fjellvåg, H. J. Solid State Sci. 2009, 11, 1211.

⁽¹⁰⁾ Okamoto, H.; Imamura, N.; Karppinen, M.; Yamauchi, H.; Fjellvåg, H. J. Solid State Chem. 2010, 183, 185.

Table 1. Atomic Coordinates (x, y, z) and Isotropic Displacement Parameters B for BiMn₇O₁₂ (Left Panel) and LaMn₇O₁₂ (Right Panel) at Room Temperature^a

atoms	sites	<i>x</i> , <i>y</i> , <i>z</i>	$B(\text{\AA}^2)$	atoms	sites	<i>x</i> , <i>y</i> , <i>z</i>	$B({\rm \AA}^2)$
Bi	2a	0, 0, 0	0.701(9)	La	2a	0, 0, 0	0.08(2)
Mnl	2b	0, 1/2, 0	1.38(5)	Mnl	2b	0, 1/2, 0	0.31(2)
Mn2	2c	0, 0, 1/2	2.21(9)	Mn2	2c	0, 0, 1/2	0.46(3)
Mn3	2d	0, 1/2, 1/2	1.62(9)	Mn3	2d	0, 1/2, 1/2	0.28(3)
Mn4	4e	1/4, 1/4, 3/4	1.91(4)	Mn4	4e	1/4, 1/4, 3/4	0.15(2)
Mn5	4f	1/4, 1/4, 1,4	0.76(3)	Mn5	4f	1/4, 1/4, 1,4	0.14(2)
01	4i	0.3050(9), 0, 0.1617(9)	3.1(2)	O1	4i	0.3065(4), 0, 0.1690(4)	0.05(2)
O2	4i	0.3186(9), 0, -0.1749(9)	2.9(2)	O2	4i	0.3155(5), 0, -0.1777(5)	0.05(2)
O3	8 <i>j</i>	-0.0157(9), 0.1838(9), 0.3191(9)	4.3(2)	O3	8j	-0.0142(3), 0.1760(3), 0.3129(3)	0.27(6)
O4	8 <i>j</i>	0.1778(9), 0.3132(9), 0.0181(9)	2.2(2)	O4	8j	0.1735(3), 0.3095(3), 0.0155(3)	0.06(2)

^a Space group I2/m. Calculated standard deviations in parentheses. BiMn₇O₁₂: a = 7.5199(1) Å, b = 7.3661(1) Å, c = 7.5293(1) Å, and $\beta = 91.225(1)^\circ$. LaMn₇O₁₂: a = 7.5167(1) Å, b = 7.3792(1) Å, c = 7.5245(1) Å, and $\beta = 91.283(1)^\circ$.

data at room temperature were collected with the highresolution diffractometer at the Swiss Norwegian Beamline, BM01B, European Synchrotron Radiation Facility (ESRF) with wavelengths $\lambda = 0.52019$ A and 0.49999 A for BiMn₇O₁₂ and LaMn₇O₁₂, respectively. Intensity data covered the ranges $5.0^{\circ} \le 2\theta \le 40.0^{\circ}$ [corresponding to 0.083781 Å⁻¹ \le $\sin \tilde{\theta}/\lambda \le 0.621780 \text{ Å}^{-1}$], and $5.0^{\circ} \le 2\theta \le 35.0^{\circ} [0.087157 \text{ Å}^{-1}]$ $\leq \sin \theta/\lambda \leq 0.57359 \text{ \AA}^{-1}$] for BiMn₇O₁₂ and LaMn₇O₁₂, respectively. The HRSXRD data were analyzed through combination of Rietveld¹¹ and method-based pattern fitting (MPF)¹² methods by using the program codes RIETAN-FP¹³ and PRIMA.14 The pseudo-Voigt function formulated by Thompson et al.¹⁵ was used in the Rietveld refinements, and MPF analysis was carried out by using $124 \times 124 \times 124$ pixels for the structure factors, derived by the Rietveld analysis. The crystal structure and the electron density (ED) were visualized by using the program VESTA.¹⁶ The main focus is attributed to $BiMn_7O_{12}$ for which the diffraction data fully covers the high angle region.

Results and Discussion

Figures 1a and b show the fitted HRSXRD patterns at room temperature for BiMn₇O₁₂ and LaMn₇O₁₂, respectively. The best fit was obtained for space group I2/m. The refined atomic coordinates are listed in Table 1. The derived figure of merits, R_{wp} , were 15.13% and 9.16%, respectively, and reliability factors based on integrated intensities, $R_{\rm I}$ were 4.98% and 2.38%. The larger *R*-values for BiMn₇O₁₂ using same structural model, may at first sight suggest a symmetry reduction for BiMn₇O₁₂, for example, because of offcentering of Bi ions and/or local distortions of Mn-O polyhedra induced by hybridized 6s² lone-pair electrons of Bi³⁺. However, since the largest displacement parameter is found for O atoms, see Table 1, we anticipate that the discrepancies for BiMn₇O₁₂ are not caused by the Bi atoms. To reveal the hidden uniqueness of BiMn₇O₁₂, an MPF analysis based on the observed structure factors derived from the Rietveld analysis was performed. In the MPF analysis, the crystal structures are not expressed by parameters such as fractional coordinates and atomic displacement parameters, but by the ED in the unit cell. Therefore, MPF enables us to represent features mirrored by the observed data such as

Figure 1. Rietveld profile fitting of high resolution synchrotron radiation data for (a) $BiMn_7O_{12}$ and (b) $LaMn_7O_{12}$ at room temperature, monoclinic space group I2/m. Insets show high angle region.

Figure 2. (a) Schematic representation of the crystal structure of $(Bi/La)Mn_7O_{12}$. (b) 3D equi-contour of 1 Å⁻³ density map of the ED of BiMn₇O₁₂.

chemical bonding, non-localized electrons, and so forth. The $R_{\rm I}$ -factors were significantly lowered after two times MPF cycling and became 3.24% and 1.83%, respectively, for BiMn₇O₁₂ and LaMn₇O₁₂.

Figures 2a and b show schematically the crystal structure of (Bi/La)Mn₇O₁₂ and a corresponding 3D visualization of the calculated ED images for BiMn₇O₁₂, based on MPF analysis. As shown in Figure 2, the ED distribution suggests highly anisotropic bonding between the Mn and O atoms. For example, for the deformed $Mn4O_6$ octahedron, the ED shows four hybridized bonds between Mn4-O2 and

⁽¹¹⁾ Rietveld, H. J. Appl. Crystallogr. 1965, 2, 65.
(12) Izumi, F. Solid State Ionics 2004, 172, 1.

⁽¹³⁾ Izumi, F; Momma, K. Solid. State Phenom. 2007, 130, 15.

⁽¹⁴⁾ Izumi, F.; Dilanian, R. A. Recent Research Developments in Physics; Transworld Research Network: Trivandrum, Kerala, India, 2002; Vol. 3, Part II, pp 699-726.

⁽¹⁵⁾ Thompson, P.; Cox, D. E.; Hastings, J. B. J. Appl. Crystallogr. 1987, 20, 79

⁽¹⁶⁾ Momma, K.; Izumi, F. J. Appl. Crystallogr. 2008, 41, 653.

Figure 3. (0.2, 0, 0) section of 3D equi-contour of 1 Å⁻³ density map of the ED of (a) BiMn₇O₁₂ and (b) LaMn₇O₁₂, respectively, with contour lines of 0 to 4 \AA^{-3} with 0.25 \AA^{-3} intervals.

Figure 4. *B*-site MnO_6 connectivity for $BiMn_7O_{12}$ along *a*-axis; (a) schematic MnO_6 octahedra, (b) 3D equi-contour of 1 Å⁻³ density map of the ED of BiMn₇O₁₂, and (c) representation of $d_{x^2-y^2}$ -type orbital ordering within planes; longest Mn-O bonds not shown (Mn4-O4 = 2.153 Å and Mn5-O3 = 2.133 Å).

Mn4–O3, whereas no additional electron density prevails between Mn4-O4. The emphasized (0.2, 0, 0) section of the two-dimensional (2D) distribution is shown in Figures 3a and b for BiMn₇O₁₂ and LaMn₇O₁₂, respectively. For BiMn₇O₁₂, stronger hybridized bonds are present between Mn4-O2, whereas no such bonding features are seen between Mn4–O4. Since the MnO₆ octahedra are tilted for the I2/msymmetry these three-dimensional (3D) bonding features can not be easily identified by visual inspection of 2D cross section images such as Figures 3a and b.

Careful inspection of the 3D-like ED image of the connected MnO₆ octahedra in Figure 4 clearly reveals ED characteristic of hybridized bonding in the square coordinated Mn4O₂ and Mn5O₂ entities [i.e., between Mn4-O2 and Mn4-O3 atoms; and between Mn5-O1 and Mn5-O4 atoms]. No such features are, however, evident between the Mn4–O4 and between Mn5–O3 atoms.

Calculated geometric information of Mn4O₆ and Mn5O₆ octahedra for BiMn₇O₁₂ and LaMn₇O₁₂ is listed in Table 2.

Table 2. Geometric Information of Mn4O₆ and Mn5O₆ Octahedra; Octahedral Volume, Distortion Index, and Quadratic Elongation Index for BiMn₇O₁₂ and LaMn₇O₁₂

	BiMn ₇ O ₁₂		LaMn ₇ O ₁₂		
	Mn-site				
	Mn4	Mn5	Mn4	Mn5	
MnO ₆ volume, v (Å ³) distortion index, D^a quadratic elongation index, Λ^b	10.75 0.04699 1.009	10.65 0.04275 1.008	10.75 0.04299 1.005	10.68 0.04033 1.005	

^{*a*} A distortion index D, based on bond lengths; $D = (1/6) \sum_{i=1}^{6} |l_i - l_i|^2$ $l_{\text{averagel}}/|l_{\text{averagel}}|^{b}$ Quadratic elongation index Λ , based on bond lengths; $\Lambda = (1/6) \sum_{i=1}^{i=6} (l_i/l_0)^2$, where l_0 is the center-to-vertex distance of a regular octahedron of the same volume, calculated by VESTA.

Figure 5. Local $Mn_{B_c site}O_6$ and $Mn_{A-site}O_2$ connectivity for $BiMn_7O_{12}$. 3D equi-contour of 1 A⁻³ density map of the ED is shown together with schematic Mn-O bonds.

The distortion index D^{17} indicates that Jahn–Teller distortion appears in MnO₆ for both phases. Interestingly, the MnO₆ octahedra in BiMn₇O₁₂ show a larger degree of distortion than LaMn₇O₁₂ in terms of *D* as well as in the quadratic elongation index Λ .¹⁸ It is worth noting that the MnO_6 volume, v, is identical for $BiMn_7O_{12}$ and $LaMn_7O_{12}$. This is also observed for the unit-cell parameters. The calculated bond distances for the Mn4O₆ and Mn5O₆ octahedra [see Figure 4c; the longest bonds, that is, Mn4-O4 and Mn5-O3 not shown] suggest that these hybridized bonds reflect directly the four shorter bonds of the deformed octahedron, consistent with a $d_{x^2-y^2}$ -type of orbital ordering of trivalent Mn ions in MnO₂ planes of the MnO₆ octahedra. Because of I2/m symmetry, the scheme of the $d_{x^2-y^2}$ -type of orbital ordering in the MnO₂ plans is not parallel to the crystallographic axes. There are significant differences in the ED between $BiMn_7O_{12}$ and $LaMn_7O_{12}$ in terms of the Mn–O bonds in MnO₆ octahedra, see Figures 3a and b.

Furthermore, since trivalent Mn ions also occupy the A-site in BiMn₇O₁₂, the anisotropy with respect to chemical bonding within the B-site octahedra affects also the connectivity and interactions between A- and B-site Mn atoms via their common O atoms. For instance, Figure 5 shows the calculated ED distribution around the Mn2 site. There is strong hybridization governing (i) square coordinated MnO_2 entities between Mn2–O3 atoms and (ii) the Mn2–O3–Mn4 linkages,

(17) Baur, W. H. Acta Crystallogr. 1974, B30, 1195.
(18) Robinson, K; Gibbs, G. V.; Ribbe, P. H. Science 1971, 172, 567.

whereas no such localized electron densities for observed for the Mn2-O3-Mn5 connection. This results in complex interactions between the *A*- and *B*-site Mn atoms.

Conclusions

In conclusion, we have investigated the ED distribution of $BiMn_7O_{12}$ and $LaMn_7O_{12}$ on the basis of precise crystal structure analysis of high resolution synchrotron radiation diffraction data. Dominant in-plane covalent bonding for *A*-site MnO_4 and *B*-site distorted MnO_6 is evident for

 $BiMn_7O_{12}$. A clear difference in the degree of such covalent bonding between $BiMn_7O_{12}$ and $LaMn_7O_{12}$ could be the cause for the observed differences in physical properties,⁶⁻⁹ in particular with respect to magnetism.

Acknowledgment. This work has received support from the Research Council of Norway, Grant 158518/ 431 (NANOMAT). We highly acknowledge the assistance from the research team at the Swiss-Norwegian Beamlines, ESRF.