First Structurally Characterized Tricyanomanganate(III) and its Magnetic ${Mn^m_{2}M^n_{2}}$ Complexes (M^{II} = Mn, Ni)

Minao Tang,[†] Dongfeng Li,^{†,‡} Uma Prasad Mallik,[#] Jeffrey R. Withers,[#] Shari Brauer,[#] Michael R. Rhodes,[#] Rodolphe Clérac,* \hat{s} ,^{\parallel} Gordon T. Yee, \perp Myung-Hwan Whangbo,^{\P} and Stephen M. Holmes*,^{†,#}

From Cyden transferior of the chemical Society Published on Web 05/03/2010 publi [†] Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506-0055, [‡]Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, China, $SCNRS$, UPR 8641, Centre de Recherche Paul Pascal (CRPP), 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, Université de Bordeaux, UPR 8641, Pessac, F-33600, France, $^{\perp}$ Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, and [¶]Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204. # Current address: Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121.

Received April 7, 2010

Treatment of tris(3-cyano-2,4-pentanedionato)manganese(III) with KTp^{*}, followed by $[Net_4]CN$ affords $[Net_4][(Tp^*)Mn^{\text{III}}(CN)_3]$ (1) ; subsequent treatment of 1 with divalent triflates (OTf) and 2,2'bipyridine (bpy) affords ${Mn^{\text{III}}_2M^{\text{II}}_2}$ complexes (M^{II} = Mn, 2; Ni, 3). Magnetic measurements show that $1-3$ exhibit $S_T = 1$, 3, and 4 spin ground states, respectively.

Cyanometalates find extensive use as reagents for the rational construction of polynuclear complexes that exhibit superparamagnetism like behavior,¹ spin crossover,^{2a} and optically responsive materials.^{2b,c} Using a synthetic strategy known as a building block approach, molecular precursors are allowed to self-assemble with intact structures into a common structural archetype. The most common units for constructing polynuclear cyanometalate complexes are those containing tripodal ligands, L, with generalized $[fac-LMⁿ (CN)_m$] stoichiometry.^{1,2a-c}

Over the last five years, we have systematically investigated the use of poly(pyrazolyl)borates as platforms for tuning the magnetic and optical behavior of several structurally related

tri-, tetra-, and octanuclear complexes. Tricyano- building blocks such as $[(Tp^R)Fe^{III}(CN)_3]$ ⁻ $(Tp^R = pzTp, Tp, Tp^*)$ exhibit substantial orbital contributions to their $S_T = \frac{1}{2}$ ground state that are crucial for engineering polynuclear complexes that exhibit slow relaxation of the magnetization $(i.e.,$ single-molecule magnets, SMMs).^{1d-i}

In oxo-carboxylate complex chemistry, high spin $(S = 2)$ manganese(III) ions are used extensively as a source of singleion magnetic anisotropy in the design of SMMs.^{2d} However, surprisingly few cyanomanganate analogues have been described with the best characterized example being a pentanuclear complex containing $[Mn^II(tmphen)]^{2+}$ (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) and hexacyanomanganate(III) ions in a 3:2 ratio;^{1b,2a} this trigonal bipyramidal complex exhibits slow dynamics below 1.8 K (for a time scale of 1 s). Surprisingly, however, no tricyano- analogues have been reported to date. In the present Communication, we describe the synthesis of the first tricyanomanganate(III) complex and its selfassembly into well-defined ${Mn^{III}^2M^{II}^2}$ complexes.

Treatment of tris(3-cyano-2,4-pentanedionato)manganese- (III) with KTp^* followed by three equivalents of $[Net_4]CN$ in methanol affords $[NEt_4] [(Tp*)Mn(CN)_3]$ (1) as yellow *To whom correspondence should be addressed. E-mail: holmesst@ crystals.³ The infrared spectrum of 1 contains intense \tilde{v}_{BH}

umsl.edu (S.M.H.); clerac@crpp-bordeaux.cnrs.fr (R.C.).

^{(1) (}a) Sokol, J. J.; Hee, A. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 7656-7657. (b) Berlinguette, C. P.; Vaughn, D.; Cañada-Vilalta, C.; Galán-Mascarós, J. R.; Dunbar, K. R. Angew. Chem., Int. Ed. 2003, 43, 1606-1608. (c) Schelter, E. J.; Prosvirin, A. V.; Dunbar, K. R. J. Am. Chem. Soc. 2004, 126, 15004–15005. (d) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Clérac, R.; Wernsdorfer, W.; Holmes, S. M. J. Am. Chem. Soc. 2006, 128, 4214-4215. (e) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Prosvirin, A. V.; Holmes, S. M. Inorg. Chem. 2005, 44, 4903-4905. (f) Li, D.; Clérac, R.; Parkin, S.; Wang, G.; Yee, G. T.; Holmes, S. M. Inorg. Chem. 2006, 45, 4307–4309. (g) Kim, J.; Han, S.; Cho, I.-K.; Chi, K. Y.; Heu, M.; Yoon, S.; Suh, B. J. Polyhedron 2004, 23, 1333– 1339. (h) Wang, S.; Zuo, J.-L.; Zhou, H.-C.; Choi, H. J.; Ke, Y.; Long, J. R.; You, X.-Z. Angew. Chem., Int. Ed. 2002, 124, 7656–7657. (i) Wang, S.; Zuo, J.-L.; Zhou, H.-C.; Song, Y.; Gao, S.; You, X.-Z. Eur. J. Inorg. Chem. 2004, 3681-3687.

^{(2) (}a) Funck, K. E.; Hilfiger, M. G.; Berlinguette, C. P.; Shatruk, M.; Wernsdorfer, W.; Dunbar, K. R. Inorg. Chem. 2009, 48, 3438-3452 and references cited therein. (b) Sato, O.; Tao, J.; Zhang, Y.-Z. Angew. Chem., Int. Ed. 2007, 46, 2152-2187 and references cited therein. (c) Li, D.; Clérac, R.; Roubeau, O.; Harté, E.; Mathonière, C.; Le Bris, R.; Holmes, S. M. J. Am. Chem. Soc. 2008, 130, 252–258. (d) Sessoli, R.; Gatteschi, D. Angew. Chem., Int. Ed. 2003, 42, 268–297.

^{(3) (}a) See the Supporting Information. (b) Crystal data for 1: $C_{26}H_{42}$ -BMnN₁₀, $P3_2$, $Z = 3$, $a = 9.8102(1)$ Å, $b = 9.8102(1)$ Å, $c = 26.2483(4)$ Å, $V = 2187.70(5)$ \AA^3 , R1 = 0.0427, wR2 = 0.0800. Crystal data for 2. $C_{78}H_{78}B_2Mn_4N_26O_7S_2$, $P\overline{1}$, $Z = 2$, $a = 13.431(1)$ Å, $b = 18.332(2)$ Å, $c =$ 19.943(2) \mathring{A} , $\alpha = 88.878(5)^\circ$, $\beta = 89.742(5)^\circ$, $\gamma = 74.204(5)^\circ$, $V = 4724.1(8)$ \AA^3 , R1 = 0.0977, wR2 = 0.1886.

Figure 1. X-ray structures of 1 (left) and 2 (right). All cations, anions, lattice solvents, and hydrogen atoms are eliminated for clarity.

and \tilde{v}_{CN} stretches [2552 and 2113 cm⁻¹] that are shifted to higher energies relative to $KTp^*(2436 \text{ cm}^{-1})$ and [NEt₄]CN (2056 cm⁻¹), respectively.^{4a,b} For 1, the \tilde{v}_{CN} stretch is higher in energy than those seen for $[Mn^{II}(CN)_2(bpy)_2] \cdot 3H_2O$ (2114) cm⁻¹), [NEt₄]₂[Mn^{II}(CN)₄] (2120 and 2078 cm⁻¹), K₃[Mn^{III}- $(CN)_{0}$] \cdot H₂O (2112 and 2121 cm⁻¹), [NEt₄]₃[Mn^{III} $(CN)_{0}$] \cdot H₂O (2094 cm^{-1}) , and [PPN]₃[Mn^{III}(CN)₆] (2096 cm⁻¹), suggesting that charge delocalization (via π -back bonding) is less efficient.3a,4b-g,5a

Treatment of 1 with a 1:2 ratio of $Mn(OTf)$ ₂ and bpy or $[Ni(bpy)_2(OH_2)_2(OTf)_2]$ in acetonitrile readily affords $[(Tp^*)Mn^{III}(CN)_3]_2[M^{II}(bpy)_2]_2(OTf)_2 \cdot nH_2O (M^{II} = Mn,$ 2; Ni, 3). The energies of the \tilde{v}_{CN} stretches in 2 and 3 are similar to those reported for ${Mn}^{III}$ ₂ ${Mn}^{II}$ ₃} [2068– 2138 cm⁻¹] and Ni^{II}₃[Mn^{III}(CN)₆] - 12H₂O [2164 cm⁻¹], while intense \tilde{v}_{BH} [2551 and 2552 cm⁻¹] absorptions are comparable to those found in infrared spectra of 1. We conclude that $Mn^{III}(\mu\text{-CN})M^{II}$ linkages are present in 2 and 3.^{3a,4c,5a}

Compound 1 crystallizes in the trigonal $P3₂$ space group.^{3b} The C_{3v} -symmetric anions have Mn-C and Mn-N distances that range between 1.976(3) and 1.985(3) A and 2.019(2) and $2.036(2)$ A, respectively, indicating that no Jahn-Teller distortions are present (Figure 1 and Supporting Information Figure S2). In 1, the average Mn–C distances [1.976(3) \AA] are comparable to those in $K_3[Mn^{III}(CN)_6]$ [1.978(2) A] and $[PPN]_3[Mn(CN)_6]$ [2.020(2) A], while the C-Mn-C angles are between $85.8(1)^\circ$ [C17-Mn1-C18] and $91.7(1)^\circ$ [C16-Mn1-C18]; the N-Mn-N angles are between $87.56(8)^\circ$ [N3-Mn1-N5] and $89.65(9)^\circ$ [N1-Mn1-N5].^{3a,5a,5b} Close Tp^* -Tp^{*} methyl [3.596(3) A] and cyanide-methyl contacts [3.452(3) \dot{A}] are also present in structures of 1 (Supporting Information Figures $S3-S4$).^{3a}

Figure 2. χT vs T plots for 1 (O), 2 (\Box), and 3 (Δ) at $H_{dc} = 1000$ Oe (χ being the magnetic susceptibility defined as M/H per complex). The solid black lines are the best fit and simulations obtained (see text).

 T/K

Figure 3. Shapes of the three lowest energy orbitals of 1 obtained from EHTB calculations: (left) $d(z^2)$, (middle) $d(xz)$, and (right) $d(yz)$ orbitals.

Crystals of 2 are found in the $P\bar{1}$ space group and its tetranuclear core consists of alternating di- and trivalent manganese ions linked by cyanides.^{3a,b} The Mn^{III} centers (Mn1 and Mn1A) contain terminal cyanides $(C18-N9)$ that are related via inversion centers and adopt an anti orientation relative to the ${Mn}^{III}$ ₂(μ -CN)₄Mn^{II}₂} plane (Figure 1 and Supporting Information Figures S5-S7). Complex 2 is structurally related to ${Fe^{III} {}_2M^{II}{}_2}$ and ${[{V^{IV}O}]_2Mn^{II}{}_2}$ analogues where a Tp* methyl projects toward the rectangular face that is opposite to the terminal cyanide.^{5c,d} The ${Mn^{III} \n₂ Mn^{II} \n₂}$ core is slightly larger than the corresponding Fe^{III} analogues due to longer average Mn1-C [1.970(6) A] and Mn2-N $[2.154(5)$ Å bonds; close bpy-Tp* ring contacts $[3.185(3)$ Å] are also present.^{3a}

At 300 K, the χT product of 1 is 1.1 cm³ K mol⁻¹, which is in good agreement with the expected value $(1.0 \text{ cm}^3 \text{ K mol}^{-1})$ for a complex containing a magnetically isolated Mn^{III} ion with two unpaired electrons (Figure 2). On the other hand, the experimental χT value is far from those seen for either $[PPN]_2[Mn^{11}(CN)_4]$ or $[PPN]_3[Mn^{111}(CN)_6]$ (4.49 and 1.98 cm^3 K mol⁻¹), suggesting that trivalent ions are present and that orbital contributions to the spin ground state are nearly absent in $1^{3a,4d-g}$ At low temperatures, the χT product follows Curie behavior down to 100 K and then decreases toward a minimum value of $0.15 \text{ cm}^3 \text{ K} \text{ mol}^{-1}$ at 1.8 K. To reproduce this thermal behavior, an anisotropic Heisenberg Hamiltonian ($H = DS_{Mn}^2$) was utilized; the calculated values for g and D/k_B are 2.09(2) and +9.4(2) K, respectively (Figure 2 and Supporting Information Figure S8).3a The surprisingly large value of D must be considered with caution as antiferromagnetic intercomplex interactions probably act to artificially enhance the estimated value. This assumption is qualitatively supported by the M versus H data (below $8 K$, Supporting Information Figure S9) in that the same D value was not reproduced using an anisotropic Heisenberg model.^{3a}

^{(4) (}a) Andreades, S.; Zahnow, E. W. J. Am. Chem. Soc. 1969, 91, 4181– 4190. (b) Trofimenko, S.; Long, J. R.; Nappier, T.; Shore, S. G. Inorg. Synth. 1970, 12, 99-107. (c) Smith, J. A.; Galán-Mascarós, J. R.; Clérac, R.; Sun, J.-S.; Ouyang, X.; Dunbar, K. R. Polyhedron 2001, 20, 1727–1734. (d) Buschmann, W. E.; Liable-Sands, L.; Rheingold, A. L.; Miller, J. S. Inorg. Chim. Acta 1999, 284, 175–179. (e) Manson, J. L.; Buschmann, W. E.; Miller, J. S. Inorg. Chem. 2001, 40, 1926–1935. (f) Qureshi, A. M.; Sharpe, A. G. J. Inorg. Nucl. Chem. 1968, 30, 2269–2270. (g) Buschmann, W. E.; Arif, A. M.; Miller, J. S. Angew.

Chem., Int. Ed. 1998, 37, 781–783.
(5) (a) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed., Part B; Wiley: New York, 1977. (b) Gupta, M. P.; Milledge, H. J.; McCarthy, A. E. Acta Crystallogr. 1974, B30, 656–661. (c) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Holmes, S. M. Inorg. Chem. 2006, 45, 5251–5253. (d) Li, D.; Clerac, R.; Wang, G.; Yee, G. T.; Holmes, S. M. Eur. J. Inorg. Chem. 2007, 1341–1346. (e) Kambe, K. J. Phys. Soc. Jpn. 1950, 5, 48– 51. (f) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Holmes, S. M. Inorg. Chem. 2006, 45, 1951–1959. (g) Borras-Alemenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S. J. Comput. Chem. 2001, 22, 985–991.

Extended Hückel tight-binding (EHTB) calculations⁶ for 1 suggest that it adopts an $S_T = 1$ spin ground state, because the $d(xz)$ and $d(yz)$ orbitals lie close to the $d(z^2)$ orbital (225) and 267 meV above, respectively). The shapes of these orbitals (Figure 3) show that significant π -type spin density is delocalized into the Tp* and cyanide ligands. Furthermore, short $H \cdots H$ and $H \cdots NC$ -Mn contacts (ca. 2.4 and 2.7 Å) are found between adjacent $[(Tp^*)Mn(CN)_3]$ ⁻ anions in 1. Below ca. 20 K these short contacts may allow for intercomplex antiferromagnetic interactions that are, as suspected (vide supra), partially responsible for the low temperature behavior of the γT data seen for 1.

For 2, the room temperature χT value, 10.9 cm³ K mol⁻¹, is close to that expected $(10.75 \text{ cm}^3 \text{ K } \text{mol}^{-1})$ for a ${Mn}$ ^{III}₂Mn^{II}₂} complex containing noninteracting Mn^{III} $[S = 1, C = 1.0 \text{ cm}^3 \text{ K} \text{ mol}^{-1}]$ and Mn^{II} $[S = \frac{5}{2}, C =$ 4.375 cm^3 K mol⁻¹] spins (Figure 2 and Supporting Information S10). At lower temperatures the γT values slowly decrease toward a minimum of 6.5 cm³ K mol⁻¹ at 14 K and below this temperature, χT increases, reaching a maximum of 6.9 cm³ K mol⁻¹ at 6 K. This thermal behavior indicates that antiferromagnetic interactions are dominant within the tetranuclear complex between adjacent $S = 1$ Mn^{III} and $S = \frac{5}{2}$ Mn^{II} spins. At lower temperatures, the χT value decreases and reaches 5.2 cm³ K mol⁻¹ at 1.85 K, suggesting the presence of magnetic anisotropy and/or intercomplex antiferromagnetic interactions. On the basis of the molecular structure of 2, the magnetic data were first modeled using an isotropic spin Hamiltonian $[H = -2J(S_1 \cdot S_2 +$ $S_2 \cdot S_3 + S_3 \cdot S_4 + S_4 \cdot S_1$ (eq 1), where *J* is the average exchange constant in the tetranuclear unit and S_i are the spin operators for the respective manganese ions $[S_1 = S_3 =$ $S_{\text{Mn(III)}} = 1; S_2 = \hat{S}_4 = S_{\text{Mn(II)}} = {}^5/2$.^{5e} MAGPACK^{5f} simulation of the experimental data above 6 K gave a rough estimation of J/k_B at $-4.8(1)$ K with $g(Mn^{II}) = 2.10(2)$ and $g(Mn$ ^{III}) = 1.98(2) (Figure 2 and Supporting Information Figure S10), and this simple model leads to an energy difference between the $S_T = 3$ ground and $S_T = 2$ first excited states of ca. 19.2 K. Attempts to model the magnetic data with more parameters such as magnetic anisotropic or/ and intercomplex interactions were not able to improve significantly the fit of the experimental data below 6 K. The M versus H data support an $S_T = 3$ ground state for 2 as the magnetization is almost saturated at 7 T and 1.8 K and reaches 6.3 μ _B (Supporting Information Figure S11).^{3a} Additionally, 2 does not exhibit slow relaxation of its magnetization above 1.8 K, as judged from the lack of hysteresis in the M versus H (Supporting Information Figure S10) and frequency-independent ac susceptibility data in stark contrast to many reports on $S = 2 \text{Mn}^{\text{III}}$ -based SMMs. We infer that the tricyanomanganate(III) ions do not bring enough magnetic anisotropy to complex 2 for the observation of SMM behavior.

The γT product at 300 K of 3 is equal to 5.4 cm³ K mol⁻¹ (Figure 2 and Supporting Information Figure S12). This value is greater than the value anticipated for isolated Mn^{III} and Ni^{II} spins (4 cm³ K mol⁻¹ with $g = 2.0$). With decreasing temperature, the experimental χT product increases monotonically approaching a maximum of $9.2 \text{ cm}^3 \text{ K mol}^{-1}$ at 14 K .

The large room temperature χT product and its thermal behavior indicate that ferromagnetic interactions are present in 3. Below 14 K, the χT values decrease toward a minimum of 7.4 cm³ K mol⁻¹ at 1.85 K (Figure 2),^{3a} suggesting that additional antiferromagnetic intercomplex interactions or/ and magnetic anisotropy are present.

The magnetic data for 3 were also modeled using the Heisenberg Hamiltonian given in eq 1 with $S_i = S_{Mn(III)}$ = $S_{\text{Ni(II)}} = 1$. The susceptibility was derived from application of the van Vleck equation to the Kambe vector coupling method.^{5e,f} The data fitted well to ca. 25 K with J/k_B = +6.8(5) K, and $g = 2.3(1)$. Alternative models have been tried and additional intercomplex interactions treated in terms of the mean field theory were added to the Heisenberg tetranuclear model. Above 12 K, a good fit of the data is obtained and values of $J/k_B = +9.0(2)$ K, $zJ'/k_B = -0.38(5)$ K and $g = 2.3(1)$ are found (Figure 2 and Supporting Information $S12$ ^{3a} introduction of an anisotropic term, $2D(S^2_z(Ni) + S^2_z(Mn))$, into the Heisenberg Hamiltonian (eq 1) was also tried and the susceptibility was calculated using the MAGPACK program.^{5g} Simulations of the χT versus T data between 1.8 and 300 K have been unsuccessful, suggesting that magnetic anisotropy and intercomplex antiferromagnetic interactions are likely present in 3. Nevertheless, the χT versus T data demonstrate the presence of ferromagnetic interactions between $S = 1$ Mn^{III} and $S = 1$ Ni^{II} spins suggesting that 3 exhibits an $S_T = 4$ ground state. At 1.8 K and $H_{\text{dc}} = 7$ T, the magnetization value (7.1 μ_{B}) approaches that expected for an $S_T = 4$ ground state (8 μ_B) (Supporting Information Figure S13). Evidence for slow relaxation of the magnetization in 3 was absent in the M versus H and ac susceptibility data above 1.8 K, suggesting misalignment of anisotropy tensors is operative in 3^{3a}

In summary we have described the preparation, crystal structures, and magnetic properties of a new paramagnetic tricyanomanganate(III) and two of its tetranuclear { Mn^{III} ₂M^{II}₂} complexes. We have shown that the $[(Tp^*)Mn^{\text{III}}(CN)_3]$ ⁻ unit possesses an $S_T = 1$ spin state that antiferromagnetically and ferromagnetically interacts with $S = \frac{5}{2}$ Mn^{II} and $S = 1$ N_III spin centers, respectively. While slow dynamics are seen for Fe^{III} analogues of 3, $[(Tp^*)Fe^{III}(CN)_3]_2[Ni^{II}(bpy)_2]_2[OTf]_2^3$, $2H_2O$, $5d$ the weaker magnetic anisotropy of the $[(Tp^*)Mn^{III}(CN)_3]$ unit leads to $S_T = 3$ and $S_T = 4$ complexes without SMM properties.

Acknowledgment. S.M.H. gratefully acknowledges the NSF (CAREER, CHE-0914935) and the University of Missouri-St. Louis for financial support. G.T.Y. acknowledges Virginia Tech and the NSF (CHE-023488) for partial support for the purchase of a Quantum Design magnetometer. M.H.W. acknowledges the U.S. DOE (DE-FG02-86ER45259). R.C. thanks the University of Bordeaux, the ANR (NT09_469563, AC-MAGnets), the Region Aquitaine, the GIS Advanced Materials in Aquitaine (COMET Project), MAGMANet (NMP3-CT-2005- 515767), and the CNRS (PICS No. 4659) for support.

Supporting Information Available: Synthetic details $(NEt₄]$ ₃- $[Mn(CN)₆]$, 1–3) and X-ray crystallographic (CIF format, 1,2) and additional magnetic data (Figures $S1-S6$). This material is available free of charge via the Internet at http://pubs.acs.org.

^{(6) (}a) Calculations were carried out using the SAMOA package (http:// chvamw.chem.ncsu.edu/). (b) Hoffman, R. J. Chem. Phys. 1963, 39, 1397.