Inorganic Chemistry

Synthesis and Structural Characterization of a Series of Dimeric Metal(II) Imido Complexes $\{M(\mu - NAr^{\#})\}_{2}$ [M = Ge, Sn, Pb; Ar[#] = C₆H₃-2,6-(C₆H₂-2,4,6-Me₃)₂] and the Related Monomeric Primary Amido Derivatives $M\{N(H)Ar^{\#}\}_{2}$ (M = Ge, Sn, Pb): Spectroscopic Manifestations of Secondary Metal-Ligand Interactions

William A. Merrill, Robert J. Wright, Corneliu S. Stanciu, Marilyn M. Olmstead, James C. Fettinger, and Philip P. Power*

Department of Chemistry, One Shields Avenue, University of California, Davis, California 95616

Received May 3, 2010

The solvent-free reaction of $M\{N(SiMe_3)_2\}_2$ (M = Ge, Sn, or Pb) with the sterically encumbered primary amine 2,6-dimesitylaniline Ar[#]NH₂ [Ar[#]=C₆H₃-2,6(C₆H₂-2,4,6-Me₃)₂] at ca. 165-175 °C afforded the highly colored imido dimers $\{M(\mu-NAr^{\#})\}_2$, where M = Ge (1), Sn (2), or Pb (3), with disilylamine elimination. The compounds were characterized by single-crystal X-ray crystallography and heteronuclear NMR spectroscopy. The structures of 1-3 were very similar and had nonplanar four-membered M₂N₂ ring cores that are folded along the M-M axis. The nitrogen atoms are planar-coordinated, and the M-N distances are consistent with single bonding. The reaction of M{N(SiMe₃₎₂}₂ with Ar[#]NH₂ in a 2:1 ratio in solution at lower temperature afforded the relatively stable monomeric primary amido species $M\{N(H)Ar^{\#}\}_{2}$, where M = Ge (4), Sn (5), or Pb (6). Complexes 4–6 displayed V-shaped MN₂ structures, and 5 and 6 revealed close approaches between the metal atom and ipso-carbon atoms of two flanking Mes groups of the terphenyl substituents [Sn^{II}—C (2.957 Å) and Pb^{II}—C (2.965 Å)]. The secondary metal-ligand interactions exerted large effects on their electronic and NMR spectra.

Introduction

The heavier group 14 elements Ge, Sn, and Pb form numerous oligomeric metal(II) imides of the formula $(MNR)_n$ (M = Ge, Sn, Pb; R = organic or silvl group; n generally = 4) that often display distorted cubane structures. $^{1-4}$ This behavior is in contrast to the congeneric carbon species (organic isocyanides), which generally remain in the form of $R - N \equiv C$: monomers and do not readily associate because of efficient hybridization, which promotes strong C-N multiple bonding. Stable heavier group 14 element analogues of isonitriles are currently unknown because the larger size of these elements, combined with weaker π bonds, readily permits association into σ -bonded oligomers, as shown in Scheme 1, for the dimerization "2RNGe" \rightarrow {Ge(NR)}₂. The most common heavier group 14 element imido structures are the tetrameric species $\{M(\mu_3-NR)\}_4$ (M = Ge, Sn, or Pb; R = organic or silyl group), which feature a heterocubane M_4N_4

Scheme 1. Depiction of Two Organoimidogermanium Fragments Undergoing Association To Form a Dimer

arrangement of group 14 element and nitrogen atoms (Scheme 2).¹⁻

There also exist heterocubane cores of the formula $\text{LiM}_3\text{N}_4^{10}$, fused double-cubane species of the formula Sn_7 -(NR)₈¹¹ as well as the chalcogenide derivative $M_4\text{N}_4\text{E}_n$ (E = S or Se; n = 1, 2, or 3).^{10,12} Very few lower aggregated species, which possess the potential for multiple bonding between the group 14 element p orbital and nitrogen lone pairs, are known. Rare examples, which are confined to germanium derivatives, $^{13-15}$ include the dimeric {Ge(μ -NR)}₂

^{*}To whom correspondence should be addressed. E-mail: pppower@ ucdavis.edu.

⁽¹⁾ Veith, M. Coord. Chem. Rev. 1990, 90, 1.

Veith, M. Coord. Chem. Rev. 1990, 50, 1.
 Veith, M. Angew. Chem., Int. Ed. Engl. 1987, 27.
 Beswick, M. A.; Wright, D. S. Coord. Chem. Rev. 1998, 176, 373.
 Lappert, M. F.; Power, P. P.; Protchenko, A.; Seeber, A. Metal Amide

Chemistry; Wiley: Chichester, U.K., 2009; Chapter 9. (5) Veith, M.; Sommer, M.-L.; Jäger, D. Chem. Ber. **1979**, *112*, 2581. (6) Veith, M.; Rechtenwald, O. Z. Naturforsch. **1983**, B38, 1054.

⁽⁷⁾ Chen, H.; Bartlett, R. A.; Dias, H. V. R.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 1991, 30, 3390.

⁽⁸⁾ Allan, R. E.; Beswick, M. A.; Edwards, A. J.; Paver, M. A.; Rennie, M.-A.; Raithby, P. R.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1995, 1991.

⁽⁹⁾ Grigsby, W. J.; Hascall, T.; Ellison, J. J.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 1996, 35, 3254.

Scheme 2. Aggregation of Heavier Group 14 Element Imides^{1–15}

 $[R = Mes^* = C_6H_2-2,4,6-Bu_3^{13} \text{ or } R = C_6H_2-2,4,6-(CF_3)_3^{15}]$ and the trimeric $\{Ge(\mu-NC_6H_3-2,6-Pr_2^i)\}_3$.¹⁴ Lower aggregates are unknown for either tin or lead. The larger sizes of these elements¹⁶ require exceptionally large substituents to stabilize low coordination and the lower degree of aggregation. Herein we report the reaction of the bulky amine Ar[#] NH₂ $[Ar^{\#} = C_6H_3$ -2,6- $(C_6H_2$ -2,4,6-Me₃)₂]¹⁷ with M{N-(SiMe_3)_2}_2 (M = Ge, ^{18,19} Sn, ¹⁸⁻²⁰ or Pb^{18,19}) at elevated temperature. The resulting dimeric imido species are essentially isostructural and possess nonplanar M2N2 core arrangements that are bent along their M---M axes and feature dihedral angles of ca. 173° for the germanium derivative (1) and ca. 149° for both the tin (2) and lead (3) derivatives. In addition, we show that the Ar[#] group is sufficiently large to stabilize rare examples of monomeric bis(primary amido) $M{N(H)Ar^{\#}}_{2}$ species, which are precedented only by the compounds $Ge\{N(H)Mes^*\}_2^{13}$ and $Sn\{N(H)Mes^*\}_2^{22}$

Experimental Section

General Procedures. All manipulations were performed with the use of modified Schlenk techniques under N2 or in a Vacuum Atmospheres drybox under N2. Solvents were distilled over Na/K and degassed immediately prior to use via freeze-pump-thaw cycles. Unless otherwise noted, all chemicals were obtained from commercial sources and used without

- E. A.; Hopkins, A. D.; McPartlin, M.; Moncrieff, D.; Sáez, D.; Quadrelli,
- E. A.; Woods, A. D.; Wright, D. A. Inorg. Chem. 2002, 41, 1492
- (12) Chivers, T.; Clark, T. J.; Krahn, M.; Parvez, M.; Schatte, G. Eur. J. Inorg. Chem. 2003, 1857
- (13) Hitchcock, P. B.; Lappert, M. F.; Thorne, A. J. J. Chem. Soc., Chem. Commun. 1990, 1587.
- (14) Bartlett, R. A.; Power, P. P. J. Am. Chem. Soc. 1990, 112, 3660.
- (15) Ahlemann, J.-T.; Roesky, H. W.; Murugavel, R.; Parisini, E.; Noltemeyer, M.; Schmidt, H.-G.; Muller, O.; Herbst-Irmer, R.; Markovskii,
- I. N.; Shermolovich, Y. G. Chem. Ber. 1997, 130, 1113.
 (16) Pyykkö, P.; Matsumi, S. Chem.—Eur. J. 2009, 15, 186.
 (17) Tilley, T. D.; Gavenonis, J. Organometallics 2000, 21, 5549.
 (18) Harris, D. H.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1974, 895
- (19) Gynane, M. J. S.; Harris, D. H.; Lappert, M. F.; Power, P. P.; Rivière, P.; Rivière-Baudet, M. J. Chem. Soc., Dalton Trans. 1977, 2004.
- (20) Schaeffer, C. D.; Zuckerman, J. J. J. Am. Chem. Soc. 1974, 98, 7160.
 (21) Çetinkaya, B.; Hitchcock, P. B.; Lappert, M. F.; Misra, M. C.;
- Thorne, A. J. J. Chem. Soc., Chem. Commun. 1984, 148.

further purification. Ar[#]NH₂⁸ and M{N(SiMe₃)₂}₂ (M=Ge, Sn, or Pb)¹⁹ were prepared according to literature procedures.

All physical measurements were performed under strictly anaerobic and anhydrous conditions. ¹H and ¹³C NMR spectra were acquired on a Varian Mercury 300 MHz instrument and referenced internally to either residual protio benzene or trace silicone vacuum grease (δ 0.29 ppm in C₆D₆). ¹¹⁹Sn NMR spectra were acquired a Bruker 500 MHz (186 MHz) instrument and were referenced externally to SnBu_{4}^{n} in C_{6}D_{6} (δ – 11.7 ppm).^{22 207}Pb NMR spectra were recorded on a Bruker 500 MHz instrument (ca. 105 MHz) and were externally referenced to Pb(NO₃)₂ in D₂O (δ -2984.4 ppm).²³ IR spectra were recorded as Nujol mulls between CsI plates on a Perkin-Elmer 1430 spectrophotometer. UV-visible spectra were recorded as dilute hexane solutions in 3.5 mL quartz cuvettes using a HP 8452 diode-array spectrophotometer.¹² Melting points were determined on a Meltemp II apparatus using glass capillaries sealed with vacuum grease and are uncorrected.

X-ray Crystallography. Crystals of appropriate quality for X-ray diffraction studies were removed from a Schlenk tube under a stream of nitrogen and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was selected, attached to a glass fiber, and quickly placed in a lowtemperature stream of nitrogen [90(2) K].²² Data for all compounds were obtained on a Bruker SMART 1000 or SMART APEX instrument using Mo K α radiation ($\lambda = 0.71073$ Å) in conjunction with a CCD detector. The collected reflections were corrected for Lorentz and polarization effects by using Blessing's method as incorporated into the program *SADABS*.^{24,25} The structures were solved by direct methods and refined with the SHELXTL, version 6.1, software package.²⁶ Refinement was by full-matrix least-squares procedures, with all carbonbound hydrogen atoms included in calculated positions and treated as riding atoms. Nitrogen-bound hydrogen atoms were located in different Fourier maps and refined with N-H distance restraints of 0.90(2) Å in 4-6. A summary of the crystallographic and data collection parameters for 1-6 is given in Table 1.

(24) Hope, H. Prog. Inorg. Chem. 1995, 41, 1.

(26) (a) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.

⁽¹⁰⁾ Chivers, T.; Eisler, D. J. Angew. Chem., Int. Ed. 2004, 43, 6686. (11) Armstrong, D. R.; Benevelli, F.; Bond, A. D.; Feeder, N.; Harron,

⁽²²⁾ Wrackmeyer, B.; Horchler, K. Annu. Rep. NMR Spectrosc. 1989, 22, 249.

⁽²³⁾ Wrackmeyer, B.; Horchler, K.; Zhou, K.; Veith, M. Z. Naturforsch. 1989, 44b, 288.

^{(25) (}a) Blessing, R. H. Acta Crystallogr. 1995, A51, 33-38. (b) Sheldrick, G. M. SADABS Siemens Area Detector Absorption Correction; Universität Göttingen: Göttingen, Germany, 2008.

Table 1. Selected Crystallographic Data for Imido Compounds 1–3

compound	$\{Ge(\mu-NAr^{\#})\}_{2}(1)$	$\{Sn(\mu-NAr^{\#})\}_{2}(2)$	$\{Pb(\mu-NAr^{\#})\}_{2}$ (3)
formula	$Ge_2N_2C_{24}H_{25}$	$Sn_2N_2C_{24}H_{25}$	$Pb_2N_2C_{24}H_{25}$
fw	800.08	892.28	1069.28
color, habit	red-orange, block	red, rod	dark violet, block
cryst syst	triclinic	monoclinic	monoclinic
space group	$P\overline{1}$	$P2_1/n$	$P2_1/n$
a. Å	11.1086(12)	12.6268(11)	12.6502(5)
h. Å	11.9616(13)	21,1020(19)	21,1889(8)
c. Å	15.657(2)	16.2797(14)	16.3957(6)
α deg	93 649(2)	90	90
ß deg	91 118(2)	111 470(3)	112 2590(10)
v deg	95 606(2)	90	90
$V Å^3$	2065 6(4)	4036 7(6)	4067 3(3)
7	2005.0(4)	4050.7(0)	4007.5(5)
z arvst dimons mm	$2 0.45 \times 0.28 \times 0.26$	$\frac{1}{1000}$	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000000000000000000000000000000000$
	$0.43 \times 0.38 \times 0.20$	$0.07 \times 0.04 \times 0.02$	$0.28 \times 0.52 \times 0.19$
I, \mathbf{K}	1 286	90(2)	1 746
$a_{\text{calc}}, g/cm$	1.200	1.277	1.740
abs coeff μ , mm	1.489	1.273	8.303
le range, deg	1.30-27.48	1.05-27.48	1.65-27.54
R(int)	0.0176	0.0605	0.0388
obsdrefins $[I > 2\sigma(I)]$	8202	6355	8014
data/restraints/param	9471/0/481	9240/0/481	93/1/0/481
RI, obsd refins	0.0323	0.0449	0.0202
wR2, all	0.0920	0.1177	0.0501
compound	$Ge\{N(H)Ar^{\#}\}_{2}$ (4)	$Sn{N(H)Ar^{\#}}_{2}(5)$	$Pb\{N(H)Ar^{\#}\}_{2}(6)$
formula	GeN C H	SnN2C40Hea	PbN.C.H.
Tormula	00120481152	011170481157	101320481152
fw	729.51	775.61	864.11
fw color, habit	729.51 yellow, parallelepiped	775.61 orange, plate	864.11 yellow, plate
fw color, habit crvst syst	729.51 yellow, parallelepiped monoclinic	775.61 orange, plate triclinic	864.11 yellow, plate triclinic
fw color, habit cryst syst space group	729.51 yellow, parallelepiped monoclinic C2/c	775.61 orange, plate triclinic $P\overline{1}$	$P_{1} = \frac{1}{2} + \frac{1}{2$
fw color, habit cryst syst space group a Å	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8)	775.61 orange, plate triclinic $P\overline{1}$ 9 7754(9)	POT_{2C48}^{11} 864.11 yellow, plate triclinic $P\overline{1}$ 9.7905(6)
fw color, habit cryst syst space group a, \mathring{A} \mathring{A}	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6)	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11)	864.11 yellow, plate triclinic $P\overline{1}$ 9.7905(6) 11.8159(8)
fw color, habit cryst syst space group a, \mathring{A} b, \mathring{A} c, \mathring{A}	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7)	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17)	864.11 yellow, plate triclinic $P\overline{1}$ 9.7905(6) 11.8159(8) 17.9985(12)
fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ a, deg	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2)	$P_{2}C_{48}T_{52}$ 864.11 yellow, plate triclinic $P\overline{1}$ 9.7905(6) 11.8159(8) 17.9985(12) 72.9850(10)
for the formula formu	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10)	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2)	864.11 yellow, plate triclinic <i>P</i> T 9.7905(6) 11.8159(8) 17.9985(12) 72.9850(10) 88.1780(10)
for the formula formula formula formula for color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ a, deg β, deg μ deg	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2)	$\begin{array}{c} 864.11 \\ yellow, plate \\ triclinic \\ P\overline{1} \\ 9.7905(6) \\ 11.8159(8) \\ 17.9985(12) \\ 72.9850(10) \\ 88.1780(10) \\ 89.0400(10) \end{array}$
for the formula formula formula formula for color, habit cryst syst space group a, \mathring{A} b, \mathring{A} c, \mathring{A} c, \mathring{A} α, \deg β, \deg γ, \deg $V \mathring{A}^3$	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90 4039 3(3)	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984 8(3)	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ \end{array}$
formula fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ α, deg β, deg γ, deg $V, \text{\AA}^3$ Z	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90 4039.3(3) 4	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2	864.11 yellow, plate triclinic <i>P</i> T 9.7905(6) 11.8159(8) 17.9985(12) 72.9850(10) 88.1780(10) 89.0400(10) 1973.5(2) 2
formula fw color, habit cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg V, deg Z Z	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90 4039.3(3) 4 0.36 × 0.26 × 0.16	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 \times 0.36 \times 0.17	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17 \end{array}$
formula fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ $a, \text{\AA}$ $c, \text{\AA}$ $a, \text{\AA}$ α, deg β, deg γ, deg γ, deg $V, \text{\AA}^3$ Z cryst dimens, mm T, V	$\begin{array}{c} 60.19_{2}C_{48}11_{52} \\ 729.51 \\ yellow, parallelepiped \\ monoclinic \\ C2/c \\ 19.0482(8) \\ 15.1138(6) \\ 16.7892(7) \\ 90 \\ 123.3110(10) \\ 90 \\ 4039.3(3) \\ 4 \\ 0.36 \times 0.26 \times 0.16 \\ 90(2) \end{array}$	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2)	$\begin{array}{c} 864.11 \\ yellow, plate \\ triclinic \\ P\overline{1} \\ 9.7905(6) \\ 11.8159(8) \\ 17.9985(12) \\ 72.9850(10) \\ 88.1780(10) \\ 89.0400(10) \\ 1973.5(2) \\ 2 \\ 0.41 \times 0.35 \times 0.17 \\ 90(2) \end{array}$
formula fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ α, deg β, deg γ, deg $V, \text{\AA}^3$ Z cryst dimens, mm T, K $d = a(\text{cm}^3)$	$\begin{array}{c} C(12_{2}C_{48}11_{52}) \\ 729.51 \\ yellow, parallelepiped \\ monoclinic \\ C2/c \\ 19.0482(8) \\ 15.1138(6) \\ 16.7892(7) \\ 90 \\ 123.3110(10) \\ 90 \\ 4039.3(3) \\ 4 \\ 0.36 \times 0.26 \times 0.16 \\ 90(2) \\ 1.200 \end{array}$	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.208	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17\\ 90(2)\\ 1.454 \end{array}$
for mana fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ α, deg β, deg γ, deg γ, deg $V, \text{\AA}^{2}$ Z cryst dimens, mm T, K $d_{\text{calc}}, \text{g/cm}^{3}$ $abs coeff \mu \text{ mm}^{-1}$	$\begin{array}{c} CC1_{2}C4_{8}11_{52} \\ 729.51 \\ yellow, parallelepiped \\ monoclinic \\ C2/c \\ 19.0482(8) \\ 15.1138(6) \\ 16.7892(7) \\ 90 \\ 123.3110(10) \\ 90 \\ 4039.3(3) \\ 4 \\ 0.36 \times 0.26 \times 0.16 \\ 90(2) \\ 1.200 \\ 0.793 \end{array}$	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.670	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17\\ 90(2)\\ 1.454\\ 4.310\end{array}$
for mana fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ a, deg β, deg γ, deg γ, deg $V, \text{\AA}^3$ Z cryst dimens, mm T, K $d_{\text{calc}}, \text{g/cm}^3$ abs coeff μ , mm ⁻¹ θ renge deg	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90 4039.3(3) 4 0.36 × 0.26 × 0.16 90(2) 1.200 0.793 1.86 - 30.00	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.679 1.80-20.00	$\begin{array}{c} 864.11 \\ yellow, plate \\ triclinic \\ P\overline{1} \\ 9.7905(6) \\ 11.8159(8) \\ 17.9985(12) \\ 72.9850(10) \\ 88.1780(10) \\ 89.0400(10) \\ 1973.5(2) \\ 2 \\ 0.41 \times 0.35 \times 0.17 \\ 90(2) \\ 1.454 \\ 4.310 \\ 1.18 \ 27.50 \end{array}$
formula fw color, habit cryst syst space group a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^3$ Z cryst dimens, mm T, K $d_{calc}, g/cm^3$ abs coeff μ , mm ⁻¹ θ range, deg B(deg)	$\begin{array}{c} C(r_{2}C_{48}r_{152}) \\ 729.51 \\ yellow, parallelepiped \\ monoclinic \\ C2/c \\ 19.0482(8) \\ 15.1138(6) \\ 16.7892(7) \\ 90 \\ 123.3110(10) \\ 90 \\ 4039.3(3) \\ 4 \\ 0.36 \times 0.26 \times 0.16 \\ 90(2) \\ 1.200 \\ 0.793 \\ 1.86-30.00 \\ 0.9214 \\ \end{array}$	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.679 1.80-30.00	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17\\ 90(2)\\ 1.454\\ 4.310\\ 1.18-27.50\\ 0.0222\\ \end{array}$
formula fw color, habit cryst syst space group a, \mathring{A} b, \mathring{A} c, \mathring{A} a, \deg β, \deg γ, \deg γ, \deg V, \mathring{A}^3 Z cryst dimens, mm T, K $d_{calc}, g/cm^3$ abs coeff μ , mm ⁻¹ θ range, deg R(int)	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90 4039.3(3) 4 0.36 × 0.26 × 0.16 90(2) 1.200 0.793 1.86-30.00 0.0314 4027	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.679 1.80-30.00 0.0212	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17\\ 90(2)\\ 1.454\\ 4.310\\ 1.18-27.50\\ 0.0232\\ 0.115\\ \end{array}$
formula fw color, habit cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg $V, Å^3$ Z cryst dimens, mm T, K $d_{calc}, g/cm^3$ $abs coeff \mu, mm-1\theta range, degR(int)obsd reflns [I > 2\sigma(I)]$	$\begin{array}{c} 60.19_{2}C_{48}11_{52} \\ 729.51 \\ \text{yellow, parallelepiped} \\ \text{monoclinic} \\ C2/c \\ 19.0482(8) \\ 15.1138(6) \\ 16.7892(7) \\ 90 \\ 123.3110(10) \\ 90 \\ 4039.3(3) \\ 4 \\ 0.36 \times 0.26 \times 0.16 \\ 90(2) \\ 1.200 \\ 0.793 \\ 1.86-30.00 \\ 0.0314 \\ 4927 \\ 5097(2) \\ 5007 \\ 1.500 \\$	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.679 1.80-30.00 0.0212 9621	$\begin{array}{c} 864.11 \\ yellow, plate \\ triclinic \\ \hline P1 \\ 9.7905(6) \\ 11.8159(8) \\ 17.9985(12) \\ 72.9850(10) \\ 88.1780(10) \\ 89.0400(10) \\ 1973.5(2) \\ 2 \\ 0.41 \times 0.35 \times 0.17 \\ 90(2) \\ 1.454 \\ 4.310 \\ 1.18-27.50 \\ 0.0232 \\ 8115 \\ 9054 / 2 / 400 \end{array}$
formula fw color, habit cryst syst space group a, Å b, Å c, Å $\alpha, \text{ deg}$ $\beta, \text{ deg}$ $\gamma, \text{ deg}$ $V, \text{ Å}^3$ Z cryst dimens, mm T, K $d_{\text{calc}}, \text{ g/cm}^3$ $abs \operatorname{coeff} \mu, \text{ mm}^{-1}$ θ range, deg R(int) obsd reflns $[I > 2\sigma(I)]$ data/restraints/param	$\begin{array}{c} 60.19_{2}C_{48}11_{52} \\ 729.51 \\ yellow, parallelepiped \\ monoclinic \\ C2/c \\ 19.0482(8) \\ 15.1138(6) \\ 16.7892(7) \\ 90 \\ 123.3110(10) \\ 90 \\ 4039.3(3) \\ 4 \\ 0.36 \times 0.26 \times 0.16 \\ 90(2) \\ 1.200 \\ 0.793 \\ 1.86-30.00 \\ 0.0314 \\ 4927 \\ 5889/2/252 \\ 8.927 \\ 5889/2/252 \end{array}$	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.679 1.80-30.00 0.0212 9621 11448/2/489	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17\\ 90(2)\\ 1.454\\ 4.310\\ 1.18-27.50\\ 0.0232\\ 8115\\ 9054/2/480\\ 0.00232\\ \end{array}$
formula fw color, habit cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ a, deg β, deg γ, deg $V, \text{\AA}^3$ Z cryst dimens, mm T, K $d_{\text{calc}}, \text{g/cm}^3$ abs coeff μ , mm ⁻¹ θ range, deg R(int) obsd reflns $[I > 2\sigma(I)]$ data/restraints/param R1, obsd reflns	729.51 yellow, parallelepiped monoclinic C2/c 19.0482(8) 15.1138(6) 16.7892(7) 90 123.3110(10) 90 4039.3(3) 4 0.36 × 0.26 × 0.16 90(2) 1.200 0.793 1.86-30.00 0.0314 4927 5889/2/252 0.0350 0.0255	775.61 orange, plate triclinic $P\overline{1}$ 9.7754(9) 11.7530(11) 18.0055(17) 73.768(2) 87.967(2) 88.886(2) 1984.8(3) 2 0.47 × 0.36 × 0.17 90(2) 1.298 0.679 1.80-30.00 0.0212 9621 11448/2/489 0.0358	$\begin{array}{c} 864.11\\ yellow, plate\\ triclinic\\ P\overline{1}\\ 9.7905(6)\\ 11.8159(8)\\ 17.9985(12)\\ 72.9850(10)\\ 88.1780(10)\\ 89.0400(10)\\ 1973.5(2)\\ 2\\ 0.41 \times 0.35 \times 0.17\\ 90(2)\\ 1.454\\ 4.310\\ 1.18-27.50\\ 0.0232\\ 8115\\ 9054/2/480\\ 0.0227\\ 0.0256\end{array}$

 $\{Ge(\mu-NAr^{\#})\}_{2}$ (1). Ar[#]NH₂ (0.329 g, 1 mmol) and Ge(N- $(SiMe_3)_2$ (0.433 g, 1.1 mmol) were combined in a Schlenk flask and heated at 165 °C in an oil bath for ca. 10 min with stirring. A red melt resulted, and the evolution of vapor was observed. Heating was continued over ca. 5 min, and reduced pressure was applied to afford an orange-red solid. The volatile HN(SiMe₃)₂ byproduct and any excess Ge{N(SiMe₃)₂}₂ were removed by distillation. The residue was extracted with ca. 20 mL hexanes and filtered over a Celite-padded frit. The filtrate was concentrated under reduced pressure to ca. 10 mL, and storage at 7 °C afforded X-ray-quality crystals of 1 as orange-red blocks. Yield: 0.108 g, 14% based on Ge. Mp: 285 °C. UV–vis $[\lambda, nm (\epsilon, M^{-1})]$ cm⁻¹)]: 322 (9500), 356 sh (6300), 388 sh (4100), 490 (400). IR (cm⁻¹): ν (N–Ge) 440, 347, 328. ¹H NMR (300 MHz, 25 °C, C₆D₆): δ 1.99 (s, 24H, Mes *o*-CH₃), 2.23 (s, 12H, Mes *p*-CH₃), 6.81 (t, 2H, p-H), 6.85 (s, 8H, Mes-H), 6.91 (d, 4H, m-H). ¹³C{¹H} NMR (75 MHz, C₆D₆): δ 20.19 (*o*-CH₃), 20.50 (*p*-CH₃), 119.83, 128.45, 130.97, 136.05, 136.17, 137.85, 145.11 (ArC). ⁷³Ge NMR: no signal observed.

 ${Sn(\mu-NAr^{\#})}_{2}$ (2). Ar[#]NH₂ (0.329 g, 1.00 mmol) and Sn{N-(SiMe₃)₂}₂ (0.461 g, 1.05 mmol) were combined in a Schlenk flask, and reaction and product workup were performed in a manner similar to that described for **1**. This afforded the product

2 as deep-red rod-shaped crystals. Yield: 0.350 g, 38% based on Sn. Mp: 235–240 °C. UV–vis $[\lambda, nm (\varepsilon, M^{-1} cm^{-1})]$: 348 (8400), 410 (7800), 456 sh (4800). IR (cm⁻¹): ν (N–Sn) 410, 385, 335, 305. ¹H NMR (300 MHz, 25 °C, C₆D₆): δ 2.07 (s, 24H, Mes *o*-CH₃), 2.22 (s, 12H, Mes *p*-CH₃), 6.67 (t, 2H, *p*-H), 6.84 (s, 8H, Mes–H), 6.96 (d, 4H, *m*-H). ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆): δ 20.92 (*o*-CH₃), 21.80 (*p*-CH₃), 117.95, 129.39, 129.61, 131.09, 136.97, 137.05 (ArC). ¹¹⁹Sn{¹H} NMR (186.49 MHz, C₆D₆): δ 738.9.

{**Pb**(μ -**NAr**[#])}₂ (3). In a manner similar to that described for 1, Ar[#]NH₂ (0.165 g, 0.50 mmol) and Pb(N(SiMe₃)₂)₂ (0.290 g, 0.55 mmol) were combined in a Schlenk flask and heated to 175 °C in an oil bath with stirring to afford the crude product **3** as a dark-violet solid. Further heating and workup similar to that described for **1** afforded crystalline **3** as dark-violet blocks of sufficient quality for X-ray diffraction studies. Yield: 0.100 g (17% based on Pb). Mp: 261 °C. UV-vis [λ , nm (ε , M⁻¹ cm⁻¹)]: 352 (8400), 490 (14700). IR (cm⁻¹): ν (N-Pb) 460, 390. ¹H NMR (300 MHz, 25 °C, C₆D₆): δ 2.12 (s, 24H, Mes *o*-CH₃), 2.18 (s, 12H, Mes *p*-CH₃), 6.38 (t, 2H, *p*-H), 6.77 (s, 8H, Mes-H), 6.89 (d, 4H, *m*-H). ¹³C{¹H} NMR (75 MHz, C₆D₆): δ 21.34 (*o*-CH₃), 22.06 (*p*-CH₃), 118.03, 119.46, 129.72, 130.65, 130.86, 137.90, 138.90, 139.82 (ArC). ²⁰⁷Pb{¹H} NMR (105.15 MHz, C₆D₆): δ 5019.

 $Ge\{N(H)Ar^{\#}\}_{2}$ (4). To $Ar^{\#}NH_{2}$ (0.861 g, 2 mmol) in toluene (20 mL) was added dropwise Ge{N(SiMe₃)₂}₂ (0.393 g, 1 mmol) in toluene (15 mL) at ca. 0 °C. The mixture was stirred and allowed to warm to room temperature over the next 12 h to afford a pale-yellow solution, which was filtered over a Celite-padded frit. Concentration of the filtrate under reduced pressure to about half the original volume and storage at -13 °C afforded yellow diamond-shaped X-ray-quality crystals of 4. Yield: 0.153 g, 21% based on Ge. Mp: 198 °C (turns orange). UV–vis [λ , nm (ϵ , M⁻¹ cm^{-1}]: 380 (13 700). IR (cm^{-1}): ν (Ar[#]N-(H)₂) 3480, ν (GeN-H) 3380, 3350, 3320, v(N-Ge) 450, 395, 280. ¹H NMR (300 MHz, 25 °C, C₆D₆): δ 1.91 (s, 24H, Mes *o*-CH₃), 2.21 (s, 12H, Mes p-CH₃), 2.98 (s, Ar[#]NH₂), 5.46 (s, 2H, Ar[#]NH–Ge), 6.75 (t, 2H, *p*-H), 6.77 (s, 8H, Mes-H), 6.84 (d, 4H, m-H). ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, C₆D₆): δ 19.91 (*o*-CH₃), 21.19 (*p*-CH₃), 119.22, 128.81, 129.16, 130.97, 136.69, 136.91, 144.17 (ArC).

Sn{N(**H**)Ar[#]}₂ (**5**). To Ar[#]NH₂ (0.861 g, 2 mmol) in toluene (20 mL) was added dropwise Sn{N(SiMe₃)₂}₂ (0.439 g, 1 mmol) in 15 mL of toluene at ca. 0 °C. Reaction conditions and product workup similar to those described for **4** afforded orange plates of **5** that were suitable for X-ray diffraction studies. Yield: 0.295 g, 38% based on Sn. Mp: 241 °C (turns red). UV–vis [λ, nm (ε, M⁻¹ cm⁻¹)]: 420 (5000). IR (cm⁻¹): ν(Ar[#]N–(H)₂) 3480, ν(**5** N–H) 3380, 3325, ν(N–Sn) 445, 425, 390, 280. ¹H NMR (300 MHz, 25 °C, C₆D₆): δ 2.01 (s, 24H, Mes *o*-CH₃), 2.19 (s, 12H, Mes *p*-CH₃), 2.98 (s, Ar[#]NH₂), 4.88 (s, 2H, Ar[#]NH– Sn), 6.73 (t, 2H, *p*-H), 6.82 (s, 8H, Mes–*H*), 6.88 (d, 4H, *m*-H). ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆): δ 20.03 (*o*-CH₃), 21.08 (*p*-CH₃), 116.86, 127.16, 128.66, 129.61, 137.19 (ArC). ¹¹⁹Sn-{¹H} NMR (186.49 MHz, 25 °C, C₆D₆): δ 118.9.

Pb{**N(H)Ar[#]**}₂ (6). To Ar[#]NH₂ (0.861 g, 2 mmol) in toluene (20 mL) was added Pb{**N(SiMe₃)**₂} (0.528 g, 1 mmol) in 40 mL of toluene at ca. 0 °C. Reaction conditions and product workup similar to those described for **4** afforded yellow-orange plates of **6** that were suitable for X-ray diffraction studies. Yield: 0.100 g, 11% based on Pb. Mp: 205 °C (dec, turns deep red). UV–vis [λ, nm (ε, M⁻¹ cm⁻¹)]: 448 (3800). IR (cm⁻¹): ν (Ar[#]N–(H)₂) 3480, ν (N–H) 3430, 3390, 3350, ν (N–Pb) 395. ¹H NMR (300 MHz, 25 °C, C₆D₆): δ 2.05 (s, 24H, Mes *o*-CH₃), 2.16 (s, 12H, Mes *p*-CH₃), 2.98 (s, Ar[#]NH₂), 5.74 (s, 2H, Ar[#]NH–Pb), 6.64 (t, 2H, *p*-H), 6.81 (s, 8H, Mes–H), 6.92 (d, 4H, *m*-H). ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆): δ 20.75 (*o*-CH₃), 21.77 (*p*-CH₃), 115.75, 118.50, 129.20, 130.35,137.76, 138.05, 138.90, 152.55 (ArC). ²⁰⁷Pb{¹H} NMR (104.92 MHz, 25 °C, C₆D₆): δ 2871.

Results and Discussion

Synthesis. At room temperature, it was observed that both $Sn\{N(SiMe_3)_2\}_2$ and $Pb\{N(SiMe_3)_2\}_2$ cause rapid surface darkening of crystalline $H_2NAr^{\#}$ (the color resembled those later observed for the imidotin and -lead derivatives 2 and 3) when the two solids were placed together in a Schlenk flask. As a result, it was decided to prepare 1-3without a solvent by the reaction of $M\{N(SiMe_3)_2\}_2$ (M = Ge, Sn, or Pb) with 2,6-dimesitylaniline $H_2NAr^{\#}$, according to eq 1, while removing the $HN(SiMe_3)_2$ byproduct under reduced pressure. The products could be readily purified by crystallization from hexane. They were isolated as orangered (1), dark-red (2), or dark-purple (3) moderately air- and moisture-sensitive crystals.

$$ArNH_{2} + M\{N(SiMe_{3})_{2}\}_{2} \xrightarrow{165 - 175 \text{ °C}} \frac{1}{2}\{M(\mu \text{-}NAr)\}_{2}$$
$$+ 2HN(SiMe_{3})_{2} \qquad (1)$$

The bis(primary amide) compounds 4-6 were prepared by the 2:1 reaction of H₂NAr[#] and metal silylamides in a toluene solution. Attempts to synthesize 4-6 by an approach similar to that used for 1-3 but with a 2:1 H₂NAr[#]/ $M{N(SiMe_3)_2}_2$ ratio of reactants resulted in the formation of the corresponding imido products 1-3. Furthermore, attempts to synthesize 4-6 by the more traditional salt metathesis route, i.e., 2LiN(H)Ar[#] with GeCl₂(1,4dioxane), SnCl₂, or PbBr₂ in Et₂O, resulted in very low yields of impure products. Thus, the transamination approach was revisited, and it was found that imide formation could be suppressed by the slow addition of a solution of $M{N(SiMe_3)_2}_2$ to 2 equiv of $H_2NAr^{\#}$ in a toluene solution at ca. 0 °C. This afforded crystals of 4-6 from concentrated toluene solutions at ca. -13 °C. The temperature-related preference for an imido rather than a bisamido product was further supported by spectroscopic data. ¹H NMR spectroscopy of crude reaction mixtures of the bisamides 4-6 displayed a signal at δ 2.98, characteristic of H₂NAr[#]. ¹H NMR signals attributable to the imido products 1-3 were also observed in these reaction mixtures. Furthermore, ¹H NMR spectroscopy of solutions of freshly crystallized samples of 4-6 revealed the presence of small amounts of free $H_2NAr^{\#}$ (see the Experimental Section). The appearance of the ν (N–H) stretching absorption characteristic of the N-H hydrogen atoms of free $H_2NAr^{\#}$ at 3480 cm⁻¹ in the IR spectra of Nujol mulls of crystalline 4-6 also supported the existence of an equilibrium between the bisamido compounds 4-6 and the corresponding imido species 1-3 and $H_2NAr^{\#}$, as shown in eq 2.

$$2M\{N(H)Ar\}_2 \rightarrow \{M(\mu - NAr)\}_2 + 2H_2NAr \qquad (2)$$

In addition, it was observed that crystalline samples of 4-6 all darken to colors resembling those of the imido species 1-3, respectively, upon heating inside the Meltemp II apparatus. The facility of this conversion seems to follow the order Pb (6) > Sn (5) > Ge (4).

¹H NMR and IR spectroscopies of crude and "pure" crystalline samples of the bisamides **4**–**6** show clearly that both the imido- and bis(primary amido)metal(II) species are present in solutions of **4**–**6**. The coexistence of amido and imido species was also reported for Ge{N(H)Mes*}₂ and {Ge(μ -NMes*)}₂.¹³ Equations 3–5 illustrate an alternative pathway by which the bisamides **4**–**6** might transform to free H₂NAr[#] and **1**–**3** and show how this reaction might occur through the putative intermediate "{Ar[#](H)-N-M-N(SiMe_3)}₂?" during the synthetic route to the imides **1**–**3**. The existence of the heteroleptic

$$H_2 NAr + M \{N(SiMe_3)_2\}_2 \leftrightarrows$$

$$\frac{1}{2} \{Ar(H)N - M - N(SiMe_3)_2\}_2 + HN(SiMe_3)_2 \quad (3)$$

$$\{\operatorname{Ar}(\operatorname{H})\operatorname{N}-\operatorname{M}-\operatorname{N}(\operatorname{Si}\operatorname{Me}_3)_2\}_2 \leftrightarrows \frac{1}{2}(\operatorname{MNAr})_2 + \operatorname{HN}(\operatorname{Si}\operatorname{Me}_3)_2$$
(4)

$$\{\operatorname{Ar}(H)N - M - N(\operatorname{Si}Me_3)_2\}_2$$

+ H₂NAr \Rightarrow M{N(H)Ar}₂ + HN(SiMe_3)₂ (5)

1

2

3

Figure 1. Thermal ellipsoid (30%) drawings of 1–3. Hydrogen atoms and methyl groups are not shown. Ge(1)---Ge(2) 2.860 Å. Ge(1,2)–N(1,2) 1.885 Å (average); metal---centroid interactions range from Ge(1)---X(1) 3.127 Å to Ge(2)---X(3) 3.592 Å. Sn(1)---Sn(2) 3.193 Å. Sn(1,2)–N(1,2) 2.105 Å (average); metal---centroid interactions range from Sn(2)---X(4) 3.159 Å to Sn(1)---X(2) 3.286 Å. Pb(1)---Pb(2) 3.375 Å; N(1,2)–Pb(1,2) 2.211 Å (average); metal---centroid interactions range from Pb(2)---X(4) 3.115 Å to Pb(2)---X(3) 3.262 Å.

{Ar(H)N-M-N(SiMe₃)₂}₂ in eqs 3-5 is supported by ¹H NMR spectroscopy of an orange crystalline product, which was obtained from a solution reaction mixture of Ge{N(SiMe₃)₂}₂ and H₂NAr[#]. A ¹H NMR spectrum of a C₆D₆ solution of these crystals revealed a large silyl peak (δ -0.020), along with 2:1 (Mes-CH₃) singlets at δ 2.162 and 2.186, chemical shifts that are different from those of 1 or 4. The integrations of these alkyl and silyl peaks revealed ca. a 1:1 ratio, consistent with the formulation Ge{N(H)Ar[#]}N(SiMe₃)₂. X-ray diffraction studies revealed them to have a heteroleptic amido-bridged dimeric structure that was of insufficient quality for publication.

The tendency for an equilibrium to exist between an $-{N(H)R}$ -bearing heavier group 14 compound and its related imido derivative was also observed in the recently reported amido-bridged dimeric species $Sn_2{N(H)C_6H_3}-2,6-Pr^i_2}_4$, which was shown to convert spontaneously to

the known heterocubane $\{Sn(\mu-NC_6H_3-2,6-Pr_2)\}_4$ and free 2,6-diisopropylaniline under ambient conditions.^{27,28} In contrast, the bis(primary amide) compounds 4-6 are much more stable than $Sn_{2}\{N(H)Dipp\}_{4}$. It seems probable that the association reactions to afford dimeric structures occur prior to amine elimination and are inhibited by the bulkier Ar[#] substituent at nitrogen. The inhibition of reactions by the replacement of less bulky organic substituents with terphenyls was also demonstrated earlier by Protasiewicz and co-workers for chlorine-atomtransfer equilibria between aryldichlorophosphines and aryldiphosphenes.¹⁹ This influence of steric hindrance on the reaction rates is also evident from the comparison of the synthesis of the dimer 1 with that of the trimer{Ge(μ -NC₆H₃-2,6-Prⁱ₂)}₃.^{7,14} The latter species could be obtained at a much lower reaction temperature (ca. 60 °C) than that required for the dimer (ca. 165 °C), most likely

⁽²⁷⁾ Merrill, W. A.; Steiner, J.; Betzer, A.; Nowik, I.; Herber, R.; Power, P. P. *Dalton Trans.* **2008**, 5905.

⁽²⁸⁾ Smith, R. C.; Shah, S.; Urnezius, E.; Protasiewicz, J. D. J. Am. Chem. Soc. 2002, 125, 40.

Table 2. Selected Interatomic Distances (Å) and Angles (deg) for Compounds $1-3^a$

	${Ge(\mu-NAr^{\#})}_{2}(1)$	${Sn(\mu - NAr^{\#})}_{2}$ (2)	${Pb(\mu - NAr^{\#})}_{2}$ (3)
M(1) - N(1)	1.8869(15)	2.093(4)	2.199(3)
M(2) - N(1)	1.8795(15)	2.114(4)	2.222(2)
M(1) - N(2)	1.8906(15)	2.113(4)	2.219(2)
M(2) - N(2)	1.8860(15)	2.097(4)	2.204(3)
N(1) - C(1)	1.396(2)	1.390(6)	1.378(4)
N(1) - C(25)	1.394(2)	1.388(6)	1.377(4)
N(1)-M(1)-N(2)	81.01(6)	77.66(15)	76.9(4)
N(1)-M(2)-N(2)	81.32(6)	77.57(14)	76.8(4)
M(1)-N(1)-M(2)	99.10(7)	98.75(16)	98.50(10)
M(1) - N(2) - M(2)	98.39(7)	98.66(16)	99.47(10)
M(1)X(1)	3.127(2)	3.174(5)	3.168(2)
M(1)X(2)	3.243(2)	3.286(5)	3.250(4)
M(2) X(3)	3.592(2)	3.254(5)	3.262(4)
M(2)X(4)	3.310(2)	3.159(5)	3.115(4)
X(1)X(2)	128.5(2)	99.9(5)	101.9(4)
X(3) - M(2) - X(4)	131.8(2)	104.1(5)	105.5(4)
dihedral N-M(1)- N/XM(1)X	56.6(3)	58.5(5)	58.9 (4)
dihedral $N-M(2)-$ N/XM(2)X	49.8(3)	51.9(5)	52.9 (4)
fold angle along the MM axis	172.4	148.3	148.3

^aX represents the centroid of the flanking aryl ring.

because of the lower steric requirements of 2,6-diisopropylaniline in comparison to $Ar^{\#}NH_2$.

Structures. The structures of 1-3 are illustrated in Figure 1. Selected interatomic distances and angles are listed in Table 2. The compounds consist of dimeric units that feature rhomboid M2N2 cores with no imposed symmetry. Their M–N distances average 1.886(3) (1), 2.104 (2), and 2.21(1) Å (3), which lie within the range of M-Nsingle bonds reported for these elements;⁴ cf. 1.849 Å in {Ge(μ -NMes*)}₂,¹³ 1.875 Å in Ge{N(SiMe₃)₂}₂,²⁹ 2.03 Å (avg) in Sn{N(H)Mes*}₂,^{13,21} 2.09 Å in Sn{N(SiMe₃)₂}₂,²⁹ 2.23 Å (avg) in Sn{ μ -(NC₆H₃-2,6-Prⁱ₂)}₄,²⁷ and 2.24 Å in $Pb{N(SiMe_3)_2}_2$.²⁹ The internal ring angles at the metals average 81.2(2)° (1), 77.62(5)° (2), and 76.9(1)° (3), and those at the nitrogen are $99.25(14)^{\circ}(1)$, $98.71(16)^{\circ}(2)$, and $99.00(10)^{\circ}$ (3). The distances between the centroids of the flanking mesityl rings and the group 14 elements (shown as dashed lines in Figure 2) are all longer than 3.1 Å and indicate probable weak dipolar interactions. The nitrogen atoms have planar coordination, which is typical for amido groups bound to heavier group 14 elements⁴ but the M_2N_2 rings are characterized by significant folding (Figure 2) along the M---M axis. For the germanium compound 1, however, the folding is relatively small, with a dihedral angle of 172.4° between the two NM₂ planes. This is in contrast to the essentially planar cores in the less hindered dimeric { $Ge(\mu-NMes^*)$ }₂¹³ and trimeric { $Ge(\mu-NC_6H_3-2,6-Pr_2^i)$ }₃.^{7,14} For **2** and **3**, the folding is significantly greater at 148.3° and is almost equal for both the tin (2) and lead (3) derivatives (Figure 2). This folding trend correlates with that seen for the X---M---X (X =centroid of Mes groups) angles, which are ca. 130° for 1, ca. 102° for 2, and ca. 103° for 3 (Table 2). This unpre-

Figure 2. Views of the M_2N_2 cores in 1–3 (top to bottom) along their M---M axes, illustrating the ca. 7° (1) and ca. 31° (2 and 3) folds away from coplanar.

Figure 3. Thermal ellipsoid (30%) drawing of **4.** Hydrogen atoms (except N–H) and disordered component atoms are not shown. Ge(1)–N(1)–N(1)' 1.896(2) Å; N(1)–Ge(1)–N(1)' 88.44°; Ge(1)---X(1)–X(1)' 3.106(2) Å; X(1)---Ge(1)---X(1)' 102.1°. Symmetry transformations used to generate equivalent atoms ('): -x + 1, y, $-z + \frac{1}{2}$.

cedented folding, with syn disposition of the aryl substituents relative to the imidometal core, seems likely to be due to the weak flanking aryl---M attraction not possible in the planar rings stabilized by Mes^{*13} or C_6H_3 -2,6- Pr_2^i groups^{7,13} and is probably increased by the larger size of tin and lead atoms.

The structures of **4**–**6** are shown in Figures 3–5, and selected structural data are given in Table 3. The compounds are monomers with V-shaped MN₂ coordination. The N(H)–M–N(H) angles are each less than 90° and have the values 88.6(2)° (**4**), 87.07(8)° (**5**), and 87.47(9)° (**6**.) An acute interligand angle is rare for germanium, tin, or lead two-coordinate derivatives of monodentate alkyl, silyl, or amido ligands, with the only example being the 89.6(6)° N–Sn–N angle in Sn{N(H)Mes*}₂ (the standard deviation is large enough to encompass a 90° bending angle, however).^{13,21} In contrast, several two-coordinate

⁽²⁹⁾ Fjeldberg, T.; Hope, H.; Lappert, M. F.; Power, P. P.; Thorne, A. J. J. Chem. Soc., Chem. Commun. 1983, 639.

Figure 4. Thermal ellipsoid (30%) drawing of **5**, illustrating the coordination of the tin atom by the nitrogen atoms and centroids X(1) and X(2) of two flanking mesityl groups. Hydrogen atoms (except N–H) are not shown, and the positions of the two noninteracting flanking Mes groups (lower) are indicated only by their ipso C(7) and C(31) atoms. Sn(1)–N(1) 2.096 Å; Sn(1)–N(2) 2.103 Å; Sn(1)---X(1) 3.039 Å; Sn(1)---X(2) 2.976 Å; N(1)–Sn(1)–N(2) 87.1°; X(1)---Sn(1)---X(2) 160.0°.

Figure 5. Thermal ellipsoid (30%) drawing of **6**, illustrating the coordination of the lead atom by the nitrogen atoms and centroids X(1) and X(2) of two flanking arenes. Hydrogen atoms (except N–H) are not shown, and the positions of the two noninteracting flanking arenes (lower) are indicated only by their ipso C(7) and C(31) atoms. Pb(1)–N(1) 2.193 Å; Pb(1)–N(2) 2.205 Å; Pb(1)---X(1) 2.989 Å; Pb(1)---X(2) 2.943 Å; N(1)– Pb(1)–N(2) 87.5°; X(1)---Pb(1)---X(2) 164.9°.

alkoxo and aryloxo group 14 element derivatives with acute interligand angles at M have been reported.^{30–34} Seemingly, for these more electronegative ligands, the electron density in the bond is concentrated close to the coordinating ligand atom (i.e., oxygen), thereby reducing the repulsion between the metal–ligand bonding pairs. By the same token, the lone pair on metal(II) expands, which causes closure of the interligand angle below 90° as a result of electrostatic repulsion. For derivatives of primary amido ligands, angular closure below 90° is possible because of the small size of the hydrogen substituent. Compound 4 is unique in this series in that N(H)Ar[#] substituents are approximately syn with respect to the GeN₂ plane, whereas 5 and 6 demonstrate an anti configuration of the N–H

Table 3. Selected Distances (Å) and Angles (deg) for Compounds $4-6^{a}$

	$\begin{array}{c} Ge\{H(N)Ar^{\#}\}_{2} \\ (4) \end{array}$	${Sn}{H(N)Ar^{\#}}_{2}$ (5)	$Pb{H(N)Ar^{\#}}_{2}$ (6)
M-N	1.896(2)	2.103(2)	2.205(2)
		2.096(2)	2.193(2)
N-C	1.384(3)	1.380(3)	1.375(3)
		1.381(3)	1.367(3)
MX	3.106(2)	3.039(2)	2.989(2)
		2.976(2)	2.943(2)
N-M-N	88.6(2)	87.07(8)	87.47(9)
XX	102.1(2)	160.0(2)	164.9(2)
dihedral N-M-	47.9(3)	82.4(2)	83.6(2)
N/XX			

^{*a*}X refers to the centroid of the flanking aryl ring. A prime denotes atoms generated by the two-fold symmetry (1 - x) operation for the M = Ge compound 4.

bonds. The structures of 4-6 may be contrasted with the bridged dimeric structure of the unstable primary amide $Sn_2{N(H)C_6H_3-2,6-Pr_2}_{4;27}$ 4 is characterized by a 2-fold axis of rotation that bisects the N(1)-Ge(1)-N(1A) bond angle, whereas the structures of 5 and 6 have no crystallographically required symmetry. The M–N bond lengths are 1.896(2) (4), 2.103(2) (5), and 2.205(2) A (6), which are similar to those observed in 1-3. Compounds 4-6also exhibit M---X interactions to centroids of two of the flanking mesityl rings, ranging from 2.943(2) (6) to 3.106(2) A (4). These distances are shorter than those in 1-3 and decrease as the group is descended, indicating that the metal-ring dipolar interactions increase in strength with increasing atomic number, possibly as a result of the increasing electropositive character of the metals. The stronger dipolar (δ^{-})aryl---(δ^{+})M interactions, combined with the larger sizes of tin and lead (1.41 and 1.45 Å),¹⁶ result in a closer approach of the flanking rings to the metal, and a wider angle between the two M---X vectors results. The larger sizes of the tin and lead atoms also permit these interactions to occur on either side of the MN₂ plane such that the resulting X---M angles are $164.9(2)^{\circ}$ (6) and $160.0(2)^{\circ}$ (5), whereas the smaller size of germanium imposes a much narrower angle of $95.0(2)^{\circ}$ in 4 (Figures 3–5). The dihedral angles between the X---M---X and N-M-N planes, 83.6(2)° (6), 82.4(2)° (5), and $47.9(3)^{\circ}$ (3), show a similar trend (Table 3). These angular differences also suggest a greater tendency for π -electron density on the flanking arenes to interact with the empty p orbital on metal(II) for the heavier, more electropositive members of the group (Sn or Pb). Aryl---M interactions have been seen in a variety of other terphenyl-supported low-coordinate metal or metal-metal-bonded complexes and most frequently in low-coordinate transition-metal derivatives.35,36

Electronic Spectra. The large size of the Ar[#] substituent stabilizes the two-coordinate, V-shaped geometries at the metal atom(s) in compounds 1-6. UV-visible spectra reveal metal lone pair to empty p orbital (n \rightarrow p) transitions typical for monomeric amidogermylenes, -stannylenes, and -plumbylenes, respectively.⁴ The energy of this HOMO \rightarrow LUMO transition decreases in the sequence

⁽³⁰⁾ Cetinkaya, B.; Gumrukcu, I.; Lappert, M. F.; Atwood, J. L.; Rogers, R. D.; Zaworotko, M. J. J. Am. Chem. Soc. **1980**, 102, 2088.

⁽³¹⁾ Fjeldberg, T.; Hitchcock, P. B.; Lappert, M. F.; Smith, S. J.; Thorne, A. J. J. Chem. Soc., Chem. Commun. 1985, 923.

⁽³²⁾ Weinert, C. S.; Fanwick, P. E.; Rothwell, I. P. *Dalton Trans.* 2002, 2948.

⁽³³⁾ Dickie, D. A.; MacIntosh, I. S.; Ino, D. A.; Hi, Q.; Labeodan, O. A.; Jennings, M. C.; Schatte, G.; Walsby, C. J.; Clyburne, J. A. C. *Can. J. Chem.* **2008**, 20.

⁽³⁴⁾ Barnhart, D. M.; Clark, D. L.; Watkin, J. G. Acta Crystallogr. 1994, C50, 702.

⁽³⁵⁾ Nguyen, T.; Panda, A.; Olmstead, M. M.; Richards, A. F.; Stender, M.; Brynda, M.; Power, P. P. *J. Am. Chem. Soc.* **2005**, *127*, 8545.

⁽³⁶⁾ Merrill, W. A.; Brynda, M.; Yeagle, G. J.; Stich, T. A.; De Hont, R.; Fettinger, J. C.; Reiff, W. M.; Schulz, C. E.; Britt, R. D.; Power, P. P. J. Am. Chem. Soc. **2009**, 131, 12693–12702.

Figure 6. Electronic absorption spectra of ca. 0.1 mM hexane solutions of 1-3.

Ge > Sn > Pb for both the imido series 1-3 (Figure 6) and the amides 4-6. However, the imido derivatives are more intensely colored, and their spectra are more complex than those of the amido counterparts. For example, the molar absorptivity ε calculated for the principal absorption observed for the deep-red imidotin compound **2** ($\lambda = 410 \text{ nm}$) is around 7800 M⁻¹ cm⁻¹, whereas the analogous absorption seen in the bisamidotin 5 ($\lambda = 420$ nm) gives an ε value of 5000 M⁻¹ cm⁻¹. A more dramatic difference is observed in the electronic spectra of the deeppurple imide 3 ($\lambda = 490$ nm, $\varepsilon = 14700$ M^{-1} cm⁻¹) and the pale-yellow amide 6 ($\lambda = 448 \text{ nm}, \epsilon = 3800 \text{ M}^{-1} \text{ cm}^{-1}$). The less intense absorptions in 5 and 6 in comparison to 2 and 3 may also be due to the partial quenching of the $n \rightarrow p$ transition by the stronger metal---arene interactions. As shown in Figure 6, the centroids of the flanking arenes interact with M above and below the N-M-N plane and thus interact directly with the valence 5p or 6p orbitals involved in the $n \rightarrow p$ transition.

The pair of germanium compounds 1 and 4 displays a different intensity pattern from their tin and lead counterparts. The intensely red-colored imide 1 features a maximum at 322 nm ($\tilde{\epsilon} = 9500 \text{ M}^{-1} \text{ cm}^{-1}$), with less intense shoulder absorptions at 356 and 388 nm. The yellow amide 4 shows an almost 50% greater ε value of 13750 M⁻¹ cm⁻¹ for its transition at 380 nm. It is worth noting that the Ge---flanking ring interactions in 4 are not oriented

directly above and below the MN₂ coordination plane (dihedral N-M-N/X---X angle 47.9(3)°, canted ca. 45° from perpendicular) unlike in 5 and 6 (canted ca. $15-20^{\circ}$ from perpendicular; Table 2) and so do not strongly interact with the Ge 4p orbital. This is also refelected in the longer M---X distances in 4 in comparison to those in 5 and 6. Thus, the $n \rightarrow p$ transition in 4 may not be quenched to the same extent as the corresponding transitions in **5** and **6**.

Heteronuclear NMR Spectroscopy. The ¹¹⁹Sn NMR spectrum of 2 displays a downfield signal at δ 738.9, which is consistent with its formulation as a two-coordinate monomer.^{22,37} The shift is similar to 776 ppm found for the well-known monomeric tin(II) amide starting material $Sn{N(SiMe_3)_2}_2$.³⁸ The chemical shifts are over 400 ppm downfield of the δ 315 signal reported for the tetrame-ric {Sn(μ -NC₆H₃-2,6-Prⁱ₂)}₄.²⁷ The latter species features three-coordinate tin atoms, which causes the upfield shift relative to 2. However, the shifts of the tetramers are quite sensitive to the nitrogen substituents so that chemical shifts in the range 742–797 ppm have been observed for $\{Sn(NSiBu^{t}Me_{2})\}_{4}^{39}$ and $\{Sn(NEMe_{3})\}_{4}$ (E=Si,⁴⁰ Ge,⁴¹ or Sn⁴¹). In contrast to these data, the 118.9 ppm shift found for the bisamide 4 is ca. 620 ppm downfield of that for 2. This suggests a more shielded environment for the tin nucleus and is consistent with the ca. 0.13 A closer aryl---Sn approaches (Figure 4 and Table 2) such that the tin may be regarded as quasi-four-coordinate with consequent greater electronic shielding. The ²⁰⁷Pb NMR signals found for the lead derivatives 3 and 6 also appear in a region typical for divalent amides of that metal⁴² and displayed a trend similar to that of their tin counterparts, with chemical shifts of +5019(3) and +2871(6) ppm, respectively. Like its tin counterpart 4, the chemical shift of 6 lies well upfield of that of 3 most likely because of the greater shielding at the metal by the flanking aryl rings, where the closest aryl---Pb distance in 6 (2.943 A; Figure 5) is ca. 0.15 A shorter than that in the amide 3(3.115 A). The chemical shift observed for 4 is similar to the +2956 ppm reported for the dimeric

compound $[Pb{N(Pr^{i})(SiMe_{2})_{2}N(Pr^{i})}]_{2}^{43}$ which probably dissociates in solution to monomers featuring two-coordinate lead. No chemical shifts for imidolead dimers have been reported, but the +5019 ppm found for **3** is close to those observed for monomeric amides of lead.⁴² For example, a signal at +4916 ppm was found for the monomeric Pb{N- $(SiMe_3)_2$ starting material used in this work, and a signal

at +4900 ppm was observed for $Pb\{N(Bu')(SiMe_2)_2 N-(Bu')\}]_2$.⁴⁴ It seems clear that both the tin and lead NMR chemical shifts are very sensitive to relatively weak metal-ligand interactions, and the significant structural differences (especially the different secondary metal-ligand

- (41) Eichler, J. F.; Just, O.; Rees, W. S. *Inorg. Chem.* **2006**, *45*, 6700.
- (42) Wrackmeyer, B. Annu. Rep. NMR Spectrosc. 2002, 47, 1.
 (43) Wrackmeyer, B.; Stader, C.; Horchler, K.; Zhou, H. Inorg. Chim.
- Acta 1990, 176, 205.

⁽³⁷⁾ Wrackmeyer, B. Annu. Rep. NMR Spectrosc. 1999, 38, 203.

 ⁽³⁸⁾ Wrackmeyer, B. J. Magn. Reson. 1985, 61, 536.
 (39) Veith, M.; Opsölder, M.; Zimmer, M.; Huch, V. Eur. J. Inorg. Chem. 2000 1143

⁽⁴⁰⁾ Eichler, J. F.; Just, O.; Rees, W. S. Phophorus, Sulfur, Silicon Relat. Elem. 2004, 179, 715.

⁽⁴⁴⁾ Wrackmeyer, B.; Horchler, K.; Stader, C. J. Magn. Reson. 1989, 83, 601.

Article

interactions) between the dimeric imido compounds 1-3 and their monomeric amido counterparts 4-6 are strongly manifested in their ¹¹⁹Sn and ²⁰⁷Pb NMR experiments, as well as in their UV-visible spectra.

Conclusions

The imido compounds 1-3 comprise the first homologous series of dimeric heavier group 14 element imides. They display a folded M₂N₂ core not seen in the previously reported planar {Ge(μ -NAr)}₂ structures.^{13,15} The monomeric amides 4-6 also represent an isoleptic series of heavier group 14 element nitrogen derivatives. Like the series 1-3, they display notable structural and spectroscopic trends that vary as the group is descended, in large part because of an increasing attraction (Ge < Sn < Pb) of the flanking aryl π -electron density on the ligands to the metal. The electron-rich flanking aryl rings on the ligands are drawn closer to the coordinatively unsaturated metal atoms in these compounds in the order Ge < Sn < Pb, and these interactions have a major effect on their spectral properties.

Acknowledgment. We thank the National Science Foundation (Grant CHE-0948417) for financial support.

Supporting Information Available: Crystallographic information files (CIFs) for **1–6**. This material is available free of charge via the Internet at http://pubs.acs.org.