

The Elusive *closo*- Ge_{10}^{2-} Zintl Ion: Finally "Captured" as a Ligand in the Complex $[Ge_{10}Mn(CO)_4]^{3-}$

Daniel Rios and Slavi C. Sevov*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

Received May 4, 2010

Although often seen in mass spectra, the otherwise elusive *closo*- Ge_{10}^{2-} Zintl ion has been finally structurally characterized as coordinated to manganese in $[\text{Ge}_{10}\text{Mn}(\text{CO})_4]^{3-}$ made by the reaction of *nido*-Ge₉⁴⁻ with Mn₂(CO)₁₀ in ethylenediamine. The new cluster is a bicapped square antiprism, as expected for a *closo*-deltahedron of 10 atoms.

Fragmentation of the well-known nine-atom *nido*-deltahedral Zintl ions of group 14, Ge_9^{4-} , Sn_9^{4-} , and Pb_9^{4-} , is not an uncommon phenomenon, especially for the heavier congeners, and is manifested by the observed reassembly of the fragments into larger clusters. Thus, the reactions of Pb_9^{4-} clusters with [Pt(PPh_3)_4] and Ni(COD)_2 result in 12-atom icosahedra, [Pt@Pb_{12}]^{2-}, and 10-atom bicapped prisms, $[Ni@Pb_{10}]^{2-}$, respectively.^{1,2} Similarly, the reactions of nine-atom Sn_9^{-} clusters with Ni(COD)_2 and [(COD)IrCl]_2 lead to the 17-atom species $[Ni_2\text{Sn}_{17}]^{4-}$ with a complex structure and the icosahedral [Ir@Sn_{12}]^{3-} (after oxidation of the initially formed and structurally characterized $[\text{Sn}_9\text{Ir}(\text{COD})]^{3-}$), respectively.³⁻⁵ The recent synthesis of ferrocene-like $[\text{Fe}@Ge_{10}]^{3-}$ and $[\text{Co}@Ge_{10}]^{3-}$ from Ge_9^{4-} ions showed that germanium is not immune to such fragmentations either.^{6,7} What is common in all these reactions is that they all contain a central transition metal, and the product is not a nine-atom cluster or a multiple of it as in, for example, $[Ni_3\text{Ge}_{18}]^{4-}$ and $[Pd_2\text{Ge}_{18}]^{4-}$.^{8,9} The mechanisms for the formation of the species most likely involve some fragmentation of the species most likely involve some fragmentation of the nine-atom clusters, perhaps

driven by nucleation of the larger clusters around the central transition metals.¹⁰ However, the successful synthesis and characterization of *closo*-Pb₁₀²⁻ by soft oxidation of Pb₉⁴⁻ with Au(I) salt indicates that such a central atom is not always necessary.¹¹ This is further supported by the observed formation of heteroatomic nine-atom clusters Ge_{9-x}Sn_x⁴⁻ (x = 0-9) from the corresponding homoatomic Ge₉⁴⁻ and Sn₉⁴⁻, which presumably involves fragmentation and reassembly as well.¹²

The same mechanism is most likely responsible for the formation of the 10-atom germanium species often observed in our electrospray mass spectra. Thus, the reactions of Ge₉⁴⁻ clusters (derived from the intermetallic precursor K₄Ge₉) with aldehydes and ketones in dimethylformamide (DMF) exhibit almost exclusively a peak at m/z = 727 which corresponds to Ge₁₀⁻.¹³ Clearly, some oxidation and fragmentation of Ge₉⁴⁻ must take place in such reactions. However, our numerous attempts to crystallize and structurally characterize this elusive 10-atom cluster by employing different solvents and cation sequestering agents had been unsuccessful until now. Here, we report the isolation and structure of the deltahedral *closo*-Ge₁₀²⁻ Zintl ion as a ligand in the manganese tetracarbonyl complex [Ge₁₀Mn-(CO)₄]³⁻ (Figure 1).

The new compound, $[K(2,2,2\text{-crypt})]_3[Ge_{10}Mn(CO)_4]\cdot tol,$ was crystallized as dark purple blocks from the soft oxidation of Ge₉⁴⁻ in an ethylenediamine solution of K₄Ge₉ with Mn₂-(CO)₁₀ in the presence of 2,2,2-crypt. Some of the purple crystals were dissolved in DMF, and the resulting light purple solution was used for carrying out electrospray mass spectrometry in the negative-ion mode. The spectra (in the Supporting Information) showed not only the [Ge₁₀Mn(CO)₄] anion at m/z = 894 but also its derivatives after the loss of one or more carbon monoxide ligands in the process of solvent removal, i.e., [Ge₁₀Mn(CO)₃], [Ge₁₀Mn(CO)₂], [Ge₁₀Mn(CO)], and [Ge₁₀Mn] at m/z = 866, 838, 810, and 782, respectively.

^{*}To whom correspondence should be addressed. E-mail: ssevov@nd.edu. (1) Esenturk, N. E.; Fettinger, J.; Lam, Y.; Eichhorn, B. Angew. Chem., nt Ed 2004 43 2132

<sup>Int. Ed. 2004, 43, 2132.
(2) Esenturk, N. E.; Fettinger, J.; Eichhorn, B. Chem. Commun. 2005, 247.
(3) Esenturk, N. E.; Fettinger, J.; Eichhorn, B. J. Am. Chem. Soc. 2006, 128, 12.</sup>

⁽⁴⁾ Downing, D. O.; Zavalij, P.; Eichhorn, B. W. Eur. J. Inorg. Chem. 2010, 890.

⁽⁵⁾ Wang, J. Q.; Stegmaier, S.; Wahl, B.; Fässler, T. F. Chem.—Eur. J. 2010, 16, 1793.

⁽⁶⁾ Zhou, B.; Denning, S. M.; Kays, L. D.; Giocoechea, J. M. J. Am. Chem. Soc. 2009, 131, 2802.

⁽⁷⁾ Wang, J. Q.; Stegmaier, S. D.; Fässler, T. F. Angew. Chem., Int. Ed. 2009, 121, 2032.

 ⁽⁸⁾ Goicoechea, J. M.; Sevov, S. C. Angew. Chem., Int. Ed. 2005, 44, 4026.
 (9) Goicoechea, J. M.; Sevov, S. C. J. Am. Chem. Soc. 2005, 127, 7676.

⁽¹⁰⁾ Fässler, T. F.; Hoffmann, S. D. Angew. Chem., Int. Ed. 2004, 43, 6242.

⁽¹¹⁾ Spiekermann, A.; Hoffmann, S. D.; Fässler, T. F. Angew. Chem., Int. Ed. 2006, 45, 3459.

⁽¹²⁾ Gillett-Kunnath, M. M.; Petrov, I.; Sevov, S. C. Inorg. Chem. 2010, 49, 721.

⁽¹³⁾ Schneeberger, P. M. In Functionalization and Reactivity of Germanium Clusters, M.S. Thesis, University of Notre Dame, Notre Dame, IN, 2009.

Communication

Figure 1. The complex anion $[Ge_{10}Mn(CO)_4]^{3-}$ is composed of a deltahedral *closo*-Ge₁₀²⁻ Zintl ion coordinated as a ligand to a Mn(CO)₄ - fragment to form an 18-electron Mn complex ($d_{\text{Ge-Mn}} = 2.335 \text{ Å}$). The Ge_{10}^{2-} ion is a bicapped square antiprism with average Ge-Ge distances (Å) of 2.575 at the capping atoms, 2.547 between the staggered squares, and 2.812 within the squares.

Although a much earlier report claims the synthesis of $\operatorname{Ge_{10}}^{2-,14}$ the structure reported there is so greatly disordered that even the nuclearity of the cluster is uncertain, and the cluster has been widely viewed to be the nine-atom closo-Ge₉²⁻¹⁵

 $\operatorname{Ge}_{10}^{2-}$ is a 10-atom deltahedron with 42 electrons (four from each germanium and two from the charge), and as such it satisfies Wade-Mingos' rule for a closo-deltahedron, which prescribes 4n + 2 electrons for *closo*-deltahedra with *n* vertices. Its geometry, as expected for a 10-atom closo-deltahedron, is that of a bicapped square antiprism with pseudo- D_{4d} symmetry. The distances with the cluster are very similar to other analogous species with 10 vertices and the same electron count, e.g., [Ge₉Zn-Ph]³⁻ with the same geometry (Zn is one of the capping atoms) and 42 cluster electrons (9 \times 4 from Ge + 2 from Zn + 1 from Ph + 3 from charge).¹⁶ Three types of distances can be defined depending on the types of atoms they connect, and their averages in Ge_{10}^{2-} are as follows: 2.575 Å at the capping atoms, 2.547 Å between the staggered squares, and 2.812 Å within the squares. For comparison, the corresponding distances in $[Ge_9Zn-Ph]^{3-}$ are 2.564 (at the only one Ge capping atom), 2.551, and 2.804 Å. In $[Ge_{10}Mn(CO)_4]^{3-}$, the *closo*-Ge₁₀²⁻ cluster coordinates

to the Mn center via the lone pair of one of the capping atoms of the bicapped square antiprism and thus acts as a normal two-electron ligand. From an organometallic point of view, the Mn center itself achieves an 18-electron configuration by combining the electrons from five ligands (four CO and one cluster), the metal center with seven electrons, and one negative charge, i.e., $[(\text{Ge}_{10}^{2-})\text{Mn}(\text{CO})_4]^-$ (HOMOs are d_{xy} and $d_{x^2-y^2}$ on Mn, nearly degenerate). Thus, the -3 charge of the complex can be viewed as distributed between the cluster and the Mn center. The Mn–Ge distance of 2.3347(8) Å cannot be compared with that in a similar anionic complex because there are none available. The only available related compound is the 19-electron complex $(CF_3)_3$ GeMn $(CO)_5$, and its Ge-Mn distance of 2.4132(9) Å is understandably quite longer.¹⁷

The infrared spectrum of the new compound (crystals in Nujol) showed the C-O stretching modes at very low frequencies of 1892, 1789, and 1775 cm^{-1} . As expected, they are lower than those in neutral species such as HMn(CO)₅ (2094, 2001, and 1970 cm⁻¹) and $Mn_2(CO)_{10}$ (2044, 2013, and 1983 cm⁻¹),^{18,19} but they are also lower than the frequencies of even the anionic $[Mn(CO)_5]^-$ (1893 and 1860 cm⁻¹) and [(Ph₃P)Mn(CO)₄]⁻ (1940, 1846, and 1815 cm⁻¹).²⁰ This suggests very strong electron donation from the negatively charged cluster to the Mn center and subsequently to the carbonyls' π^* orbitals. This is supported further by the much shorter Mn-C and much longer C-O distances in [Ge₉-Mn(CO)₄]³⁻, 1.784 and 1.161 Å (averaged), respectively, when compared with both the neutral and the anionic species: $d_{\text{Mn-C}/d_{\text{C}-O}}(\text{av.}) = 1.847/1.123, 1.846/1.130, 1.798/1.156, and 1.796/159 Å in HMn(CO)₅,²¹ Mn₂(CO)₁₀,²² [Mn-(CO)₅]⁻,²³ and [(Ph₃P)Mn(CO)₄]^{-,24} respectively.$

All operations were carried out under an inert atmosphere or vacuum using standard Schlenk-line or glovebox techniques. Ethylenediamine (Alfa-Aesar, 99%) was distilled over sodium metal and stored in a gastight ampule under nitrogen in the glovebox. Dried toluene was stored over molecular sieves in the glovebox. 2,2,2-Crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8]-hexacosane, Acros, 98%) and Mn₂- $(CO)_{10}$ (Aldrich, 99%) were used as received after carefully drying them under a vacuum. K_4Ge_9 was synthesized by heating a stoichiometric mixture of the elements (K: 99+%, Strem; Ge: 99.999%, Alfa Aesar) at 900 °C for 2 days in sealed niobium containers jacketed in evacuated fused silica ampules. K₄Ge₉ (70 mg, 0.086 mmol) and 2,2,2-crypt (129 mg, 0.344 mmol) were dissolved in 2 mL of ethylenediamine (red solution) in a test tube inside a glovebox. $Mn_2(CO)_{10}$ (130 mg, 0.112 mmol) was added, and the reaction mixture was stirred for an additional 3 h. The resulting dark purple solution was filtered from the substantial amount of precipitate (most likely clusters oxidized to neutral Ge) and layered with toluene. It yielded nicely shaped black-purple block crystals of $[K(2,2,2-crypt)]_3[Ge_{10}Mn(CO)_4] \cdot tol after 2 weeks (ca. 46\%)$ crystalline yield).

Single-crystal X-ray diffraction data of [K(2,2,2-crypt)]₃-[Ge₁₀Mn(CO)₄] · tol were collected on a Bruker APEX diffractometer with a CCD area detector and Mo K α radiation at 100 K. The structure was solved by direct methods and was refined on F^2 using the SHELXTL V5.1 package. Crystal data: monoclinic, $P2_1/n$, a = 15.3123(6), b = 20.9401(8), and

- (18) Rest, A. J.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1969, 375.
 (19) Flitcroft, N.; Huggins, D. K.; Kaesz, H. D. Inorg. Chem. 1964, 3,
- 1123.
- (20) Faltynek, R. A.; Wrighton, M. S. J. Am. Chem. Soc. 1978, 2701.
 (21) La Placa, S. J.; Hamilton, W. C.; Ibers, J. A.; Davison, A. Inorg. Chem. 1969, 8, 1928.

- (23) Corraine, M. S.; Lai, C. K.; Zhen, Y.; Churchill, M. R.; Buttrey,
- L. A.; Ziller, J. W.; Atwood, J. D. Organometallics 1992, 11, 35.
 (24) Riley, O. E.; Davis, R. E. Inorg. Chem. 1980, 19, 159.

⁽¹⁴⁾ Belin, C.; Mercier, H.; Angilella, V. New J. Chem. 1991, 15, 931.

⁽¹⁵⁾ Fässler, T. F.; Hunzkiker, M.; Spahr, M.; Lueken, H. Z. Anorg. Allg. Chem. 2000, 626, 692

⁽¹⁶⁾ Goicoechea, J. M.; Sevov, S. C. Organometallics 2006, 25, 4530.

⁽¹⁷⁾ Brauer, J. D.; Eujen, R. Organometallics 1983, 2, 263.

⁽²²⁾ Churchill, M. R.; Amoh, K. N.; Wasserman, H. J. Inorg. Chem. 1981, 20, 1609.

c = 28.0514(11) Å, $\beta = 92.818(2)^{\circ}$, V = 8983.6(6) Å³, Z = 4, R1/wR2 = 4.12/9.51% for the observed data ($I > 2\sigma(I)$), R1/ wR2 = 6.56/10.53% for all data.

Acknowledgment. This material is based upon work supported by the Department of Energy, Office of Basic Energy Sciences, under Award Number DE-FG0207ER46476. We thank M. M. Gillett-Kunnath for helping with the IR spectra.

Supporting Information Available: X-ray crystallographic file in CIF format and electrospray mass spectrum in negative ion mode of $[K(2,2,2-crypt)]_3[Ge_{10}Mn(CO)_4] \cdot tol are available free$ of charge via the Internet at http://pubs.acs.org.