

Highly Emissive Cyclometalated Rhenium Metallacycles: Structure-Luminescence Relationship

Yi-Hsiu Tseng,^{†,‡} Dibyendu Bhattacharya,[†] Shih-Ming Lin,[†] P. Thanasekaran,[†] Jing-Yun Wu,[†] Li-Wei Lee,[†] M. Sathiyendiran,[†] Mei-Lin Ho,[§] Min-Wen Chung,[§] Kung-Chung Hsu,[‡] Pi-Tai Chou,*^{,§} and Kuang-Lieh Lu*^{,†}

[†] Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, [‡]Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan, and [§]Department of Chemistry, National Taiwan University, Taipei 107, Taiwan

Received May 6, 2010

We report on a series of new self-assembled cyclometalated dirhenium(I) metallacyclic complexes via an unprecedented rhenium-mediated $C-H$ bond activation and the relationship between their structures and luminescence properties.

Cyclometalated metallacycles, $\frac{1}{1}$ a special class of metallacyclic complexes in which a ligand undergoes intramolecular (or, more rarely, intermolecular) metalation² as a result of C-H bond activation, have been attracting great interest because of their potential applications in organic synthesis, catalysis, photonics, and the design of new materials with unique properties.³ Several families of cyclometalated ruthenium(II), osmium(II), and iridium(III) complexes, in which cyclometalating ligands have a beneficial effect on luminescence yields, have been reported.^{4,5} Although a number of

(3) (a) Sirous, J.; Nabavizadeh, S. M.; Rashidi, M. Inorg. Chem. 2008, ⁴⁷, 5441. (b) You, Y.; Park, S. Y. J. Am. Chem. Soc. 2005, ¹²⁷, 12438. (c) Periana, R. A.; Taube, J. D.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, ²⁸⁰, 560. (d) Mak, C. S. K.; Hayer, A.; Pascu, S. I.; Watkins, S. E.; Holmes, A. B.; Köhlerd, A.; Friend, R. H. Chem. Commun. 2005, 4708. (e) Liu, Z.; Zhang, T.; Shi, M. Organometallics 2008, ²⁷, 2668. (f) Espinet, P.; Esteruelas, M. A.; Oro, L. A.; Serrano, J. L.; Sola, E. Coord. Chem. Rev. 1992, ¹¹⁷, 215. (g) Albrecht, M.; Lutz, M.; Spek, A. L.; van Koten, G. *Nature* 2000, 406, 970. (h) Guillena, G.; Rodriguez, G.; Albrecht, M.; van Koten, G. Chem. - Eur. J. 2002, 8, 5368.

Rodriguez, G.; Albrecht, M.; van Koten, G. Chem. - Eur. J. 2002, 8, 5368.
(4) (a) Ryabov, A. D.; Soukharev, V. S.; Alexandrova, L.; Lagadec, R. L.; Pfeffer, M. Inorg. Chem. 2003, ⁴², 6598. (b) Bessho, T.; Yoneda, E.; Yum, J. H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Gratzel, M. J. Am. Chem. Soc. 2009, ¹³¹, 5930. (c) Wade, C. R.; Gabba, F. P. Inorg. Chem. 2010, ⁴⁹, 714. (d) Bomben, P. G.; Robson, K. C. D.; Sedach, P. A.; Berlinguette, C. P. Inorg. Chem. 2009, ⁴⁸, 9631. (e) Jager, M.; Smeigh, A.; Lombeck, F.; Gorls, H.; Collin, J. P.; Sauvage, J. P.; Hammarstrom, L.; Johansson, O. Inorg. Chem. 2010, ⁴⁹, 374.

Scheme 1. Self-Assembly of the Luminescent C-H Bond-Activated Metallacycles $1-4$

cyclometalated organometallic compounds containing $nd⁶$ or nd⁸ metal ions are known, only a few reports have appeared regarding rhenium(I) carbene complexes that contain cyclometalated ligands with carbon as the σ -donor atom.⁶ Herein we report on a series of new rhenium(I) metallacycles synthesized via an unprecedented C-H-activated process. Also, the fundamental importance for their structures versus luminescence properties is unveiled.

When $\text{Bim-}C_5H_3N$ is incorporated as a new dianionic cyclometalating ligand and $N-N$ as a flexible exobidentate ligand (Scheme 1), a facile one-pot synthesis' of dinuclear rhenium(I)-cyclometalated complexes $\frac{8}{(Re(CO))_3}$ ₂ $(\mu$ -Bim- $C_5H_3N(\mu-N-N)(1-4)$ via an orthogonal bonding approach was achieved. These represent the first self-assembled cyclometalated dirhenium(I) metallacyclic complexes via rheniummediated C-H bond activation. Moreover, these C-H bondactivated metallacycles display highly intense phosphorescence that is red-shifted with respect to the corresponding

^{*}To whom correspondence should be addressed. E-mail: lu@chem.sinica.

edu.tw (K.-L.L), chop@ntu.edu.tw (P.-T.C.). (1) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;

Thompson, M. E.; Forrest, S. R. *Nature* **1998**, 395, 151.

(2) (a) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. *Nature* **2000**, 403,

750 (b) Trofimenko, S. *Inorg, Chem.* **1973**, 12, 1215 750. (b) Trofimenko, S. Inorg. Chem. 1973, ¹², 1215.

⁽⁵⁾ (a) Xie, L.-H.; Zhu, R.; Qian, Y.; Liu, R. -R.; Chen, S.-F.; Lin, J.; Huang, W. J. Phys. Chem. Lett. 2010, ¹, 272. (b) Huang, J.; Watanabe, T.; Ueno, K.; Yang, Y. Adv. Mater. 2007, ¹⁹, 739. (c) Chi, Y.; Chou, P. T. Chem. Soc. Rev. 2007, ³⁶, 1421. (d) Chen, B. S.; Chen, K.; Hong, Y. H.; Liu, W. H.; Li, T. H.; Lai, C. H.; Chou, P. T.; Chi, Y.; Lee, G. H. Chem. Commun. 2009, 5844.

^{(6) (}a) McKinney, R. J.; Firestein, G.; Kaesz, H. D.Inorg. Chem. 1975, ¹⁴, 2057. (b) Lu, K.-L.; Wang, C.-M.; Lee, H.-H.; Chen, L.-C.; Wen, Y.-S. J. Chem. Soc., Chem. Commun. 1993, 706. (c) Lu, K.-L.; Lee, H.-H.; Wang, C.-M.; Wen, Y.-S. Organometallics 1994, ¹³, 593. (d) Spellanet, P.; Watts, R. J.; Vogler, A. Inorg. Chem. 1993, 32, 5633. (e) Vanhelmont, F. W. M.; Güdel, H. U.; Förtsch, M.; Bürgi, H.-B. Inorg. Chem. 1997, 36, 5512. (f) Czerwieniec, R.; Kapturkie-

wicz, A.; Nowacki, J. *Inorg. Chem. Commun.* 2005, 8, 1101.

(7) (a) Lee, C.-C.; Hsu, S.-C.; Lai, L.-L.; Lu, K.-L. *Inorg. Chem.* 2009, 48,

6329 (b) Sathivendiran M : Wu, L-V: Velayudham M : Lee G. H : Peng. S.-M : 6329. (b) Sathiyendiran, M.; Wu, J.-Y.; Velayudham, M.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Chem. Commun. 2009, 3795.

Figure 1. ORTEP plot (50% probability) of the cyclometalated rhenium(I) complex 4. Hydrogen atoms and the disordered moieties of the $\text{Bim-}C_5H_3N$ ligand and the disordered central methylene group of the bppa ligand are omitted for clarity.

Figure 2. Absorption and emission spectra of $1-5$ in DMF at room temperature.

non-C-H bond-activated analogue, $[{Re(CO)_3}_2(\mu\text{-BiBzIm})$ - $(\mu$ -N-N)] [5, where BiBzIm = bis(benzoimidazolate)].

The synthetic protocol incorporated $\text{Re}_2(\text{CO})_{10}$, flexible $(N-N)$, and rigid (Bim-C₅H₃N, PB) building blocks with a 1:1:1 stoichiometric ratio in toluene/acetone (6:1, v/v) at 160 °C to afford complexes $1-4$ (45-80%). Key steps involve C-H bond activation of the HPB ligand and the use of μ -N-N as a building block, permitting the preparation of unique dirhenium(I)-cyclometalated complexes.

Single-crystal X-ray diffraction analyses show that $1-4$ all possess similar dirhenium molecular structures [Figure 1 for 1 and Figures S1-S3 in the Supporting Information (SI) for 2-4], in which the flexible exobidentate ligand $(\mu$ -N-N) serves as a clip that binds two asymmetric octahedrally coordinated rhenium centers with C_3N_3 and C_4N_2 donors. The rhenium(I) centers are organized in pairs by a dianionic cyclometalating $\text{Bim-}C_5H_3N$ ligand with CN_3 tetradentate doubly chelating sites. This unique configuration requires deprotonation of the benzimidazole N-H hydrogen and C-H bond activation on the C3 position of the 2-pyridyl moiety (in HPB; see Scheme 1). HPB has not yet been evaluated as a cyclometalating ligand so far.

UV-vis absorption spectra of $1-4$ in dimethylformamide (DMF) at 298 K show similar spectral features. The intense absorption band at short wavelength (\lt ~305 nm) with a molar extinction coefficient of $>10^4$ M⁻¹ cm⁻¹ (Figure 2 and

Figure 3. Frontier orbitals that involve in the lowest-lying transitions for 4 and 5.

Table 1) is assigned to $\pi-\pi^*$ and intraligand charge-transfer transitions of Bim-C₅H₃N and μ -N-N because of their spectral similarity with respect to that of the free ligands.

The lower-lying transitions in the range of 360-400 nm, which show structureless, relatively weak absorptivity ($\varepsilon \sim$ $10^3 - 10^4$ M⁻¹ cm⁻¹), are attributed to a spin-allowed metalto-ligand charge transfer (MLCT; $\text{Re}^{\text{I}} \rightarrow \text{Bim-} \text{C}_5\text{H}_3\text{N}$) mixed with a certain extent of ligand-to-ligand charge transfer (LLCT; from Bim to a $N-N$ bridging chromophore). This assignment is based on the time-dependent density functional theory (TDDFT) approach (B3LYP/SDD/6-31G** under an effective core potential; see the SI), the results of which indicate that the lowest-lying state involves a highest occupied molecular orbital (HOMO) \rightarrow lowest unoccupied molecular (LUMO) transition $(>90\%)$, in which HOMO is attributed to a π -bonding interaction between d π Re^I and the C-H bond-activated part of the cyclometalating ligand, while LUMO mainly consists of a delocalized π^* orbital on both of the N-N ligands (Figure 3). 8

For all complexes $1-4$, an intense room temperature luminescence (Φ_{em} between 0.4 and 0.5; Table 1) with a peak wavelength in the range of 523-527 nm was resolved. The observed lifetimes ($\tau_{\rm obs}$) were measured to be 4–8 μ s for 1–4 in degassed DMF. Taking the radiative decay time constant, $\tau_r = \tau_{\rm obs}/\Phi_{\rm em}$; τ_r is then deduced to be 10-20 μ s for 1-4. The long radiative lifetime, together with significant quenching of both the luminescence intensity and lifetime by O_2 (vide infra), ensures the emission originating from the triplet manifold, i.e., the phosphorescence. The lowest excited state of 1-4 in the triplet manifold can be best described as an admixture of ³MLCT plus Bim (in PB) \rightarrow N-N ³LLCT.^{6d,9} Further quantitative analysis indicates that the contribution of ³MLCT is appreciable, being ∼30% for complex 4 (see
Table S2 in the SD. The spectral feature of 2 in butylnitrile at Table S2 in the SI). The spectral feature of 2 in butylnitrile at 77 K (Figure S4 in the SI) showed a certain vibronic progression, and the full width at half-maximum is relatively narrower than that in room temperature. The latter is mainly attributed to the lower thermal population at highly vibrational

⁽⁸⁾ Gaussian 03 (Revision E.01): Frisch, M. J.; , et al. (see Supporting Information); Gaussian, Inc.: Wallinford CT, 2008.

⁽⁹⁾ Sacksteder, L.; Zipp, A. P.; Brown, E. A.; Stricch, J.; Demas, J. N.; DeGraff, B. A. Inorg. Chem. 1990, ²⁹, 4335.

Table 1. Photophysical Data for Complexes $1-5$

compd	λ_{abs} [nm] $(\varepsilon)^a$	$\lambda_{\rm em}$ [nm] ^a	$\tau_{\rm obs}$ [μ s] ^{<i>a</i>}	$\Phi_{\text{em}}^{a,b}$	$\Phi_{\Lambda}{}^c$	$k_{q,\text{SV}}^d$	$k_q(^1O_2)^e$
	269 (1.4), 302 (1.0), 370 (0.6)	527	4.76	0.48	0.40	6.79	2.22
	267(1.8), 301(1.2), 369(0.7)	527	4.13	0.45	0.41	6.72	1.61
	272 (1.1), 304 (1.3), 371 (0.4)	524	8.17	0.47	0.55	6.99	2.19
	273(1.2), 301(1.3), 367(0.6)	523	5.76	0.45	0.55	6.19	1.40
	267 (3.4), 289 (3.2), 319 (3.6), 328 (4.0),	445, 467 (sh) 480, 504,	0.18	0.01			
	337 (4.3), 349 (4.7), 359 (3.9), 372 (4.1)	518 (sh), 549 (sh)					

^a Data were recorded in a degassed DMF solution (via three freeze-pump-thaw cycles) at room temperature; $\varepsilon = 10^4 \text{ M}^{-1} \text{ cm}^{-1}$. ^b Ru(bpy)₃²⁺ in deaerated CH₃CN, $\Phi_{\text{em}} = 0.062$. ^c With respect to perinaphthenone, which has a ¹O₂ quantum yield (Φ_{Δ}) of 1.0 in DMF at 355 nm. ^d 10⁹ M⁻¹ s⁻¹.
^e 10⁶ M⁻¹ s⁻¹ /Ne offect $10^6 \text{ M}^{-1} \text{ s}^{-1}$. *f* No effect.

states. The former may imply certain clues for the existence of LLCT character, supporting the above assignment.

With the aim of exploring the structural effects on the photophysical properties of $1-4$, a non-C-H bond-activated dirhenium analogue, 5, was also synthesized using a BiBzIm dianion instead of a dianionic cyclometalating PB ligand (Figure S5 in the SI). Complex 5 has a molecular structure similar to that of 4 except for the anionic BiBzIm ligand serving as an N_4 bischelator to bridge two fac-Re(CO)₃ cores. Each rhenium center exhibits a six-coordinated octahedral $\text{Re}C_3N_3$ geometry. In stark contrast, compound 5 showed a relatively weak ($\Phi_{\text{em}} = 0.01$), blue-shifted emission maximized at 480 nm (Figure 2), for which a lifetime was measured to be $\tau_{\rm obs} = 183 \text{ ns.}^{10}$ The radiative lifetime is then calculated to be 18.3 μ s. As depicted in Figure 3, the computational results indicate that phosphorescence of 5 is dominated by a ligand $\pi^*(\mu-N-N)$ to BiBzIm delocalized π transition, while the contribution from ³ MLCT is estimated to be as small as 3.7% (see Table S2 in the SI). The result is also consistent with phosphorescence of 5, revealing a dominant $\pi-\pi^*$ vibronic progressive feature (see Figure 2).

In theory, MLCT involves a Re¹ d_{π} orbital and should greatly enhance the spin-orbit coupling, resulting in a short radiative lifetime relative to the pure $\pi-\pi^*$ transition.¹¹ It is thus surprising that $1-4$, possessing much greater ³MLCT contributions ($>30\%$ for e.g. 4 vide supra) render similar contributions ($>30\%$ for, e.g., 4 vide supra), render similar magnitudes of radiative lifetime $(10-20 \,\mu s)$ with respect to 5. Careful analyses of frontier orbitals indicate that the distance (r) between chromophores involved in the lowest-lying transition may be responsible for this abnormity. For example, complex 4 mainly involves the transition from cyclometalated Re^I d_{π} to the N-N chromophore that attaches to the other Re^I ion (see Figure 3), such that the distance for the corresponding transition is relatively long (\sim 4.0 A). Because the spin-orbit coupling is also inversely proportional to the distance (r) to the 6 power (according to a qualitative approach for a hydrogen-like atom),¹² the spin-orbit coupling matrix is accordingly decreased, resulting in an increase of the radiative lifetime for $1-4$, despite their large MLCT percentage contribution.

The above structure-transition relationship between $1-4$ and 5 is of great fundamental interest and may lie in a virtual increase in the σ -donor strength when proceeding from N (in 5) to C^- (in 1-4). This consequently enriches the electron

Scheme 2. ^C-H Activation toward the Design of Highly Emissive Compound 4

density at the rhenium(I) center, resulting in an increase of the MLCT character for $1-4$. The increase of the σ -donor strength may also destabilize the metal center $d_{\pi}-d_{\sigma^*}$ transition and thus avoid the crossing between the T₁ and $d_{\pi}-d_{\sigma^*}$ potential energy surfaces. In comparison to $1-4$, the relatively weaker σ -donor strength (N) for 5 should oppositely reduce the MLCT character of the lowest-lying transition as well as decrease the $d_{\pi}-d_{\sigma^*}$ gap. The combination of these two factors should increase the nonradiative decay rate, giving a short observed lifetime and, hence, a low emission yield (Scheme 2).

In view of potential applications, the $C-H$ bond-activated complexes 1-4 are found to behave as very efficient singlet oxygen (${}^{1}O_{2}$) photosensitizers. The ${}^{1}O_{2}$ production yield was obtained by studying the ${}^{1}O_{2}$ chemical quenching¹² in the presence of 1,4-diazabicyclo[2.2.2]octane and 2,2,6,6-tetramethylpiperidine (TEMP) upon irradiation of $1-4$ in aerated solvents, in which dramatic bleaching of the 2,2,6,6-tetramethylpiperidinooxyl radical (TEMPO) intensity was observed (Figure S8 in the SI).¹³ Additional support for ${}^{1}O_{2}$ was obtained by an enhancement of the TEMPO signal in deuterated DMF under identical conditions, namely, an isotope effect in enhancing the ${}^{1}O_{2}$ lifetime.¹⁴ Pertinent O_{2} quenching data as well as yield ${}^{1}O_{2}$ production are listed in Table 1.

In summary, the syntheses of the first dinuclear rhenium- (I) -cyclometalated complexes, $1-4$, via an effective onepot assembly strategy are reported. The C-H bond-activated metallacycles are considerably more emissive than their non-C-H bond-activated analogue. This, in combination with the fundamentals of the structure-luminescence relationship, may pave a new route toward the design of highly luminescent rhenium(I)-based metallacyclic materials.

Supporting Information Available: Crystallographic data in CIF format, synthesis and characterization, and emission measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁰⁾ Complex 5 shows blue-shifted emission peak with no effect in Φ_{em}

and $\tau_{\rm em}$ (in *ns*) by dioxygen.
(11) Yang, C.-H.; Cheng, Y.-M.; Chi, Y.; Hsu, C.-J.; Fang, F.-C.; Wong, K.-T.; Chou, P.-T.; Chang, C.-H.; Tsai, M.-H.; Wu, C.-C. Angew. Chem., Int. Ed. 2007, 46, 2418.

Int. Ed. 2007, ⁴⁶, 2418. (12) McGlynn, S. P.; Azumi, T.; Kinoshita, M. Molecular Spectroscopy of the Triplet State, Prentice Hall, Inc.: Englewood Cliffs, New Jersey, USA, 1969.

⁽¹³⁾ Kearns, D. R.; Merkel, P. B.; Nilsson, R. J. J. Am. Chem. Soc. 1972, 94, 7244.

⁽¹⁴⁾ Kazakov, D. V.; Kazakov, V. P.; Maistrenko, G. Y.; Mal'zev, D. V.; Schmidt, R. J. Phys. Chem. A 2007, ¹¹¹, 4267.