Finite Magnetization Plateau from a Two-Dimensional Antiferromagnet: Density Functional Analysis of the Magnetic Structure of $Cu₃(P₂O₆OH)₂$

Hyun-Joo Koo*,[†] and Myung-Hwan Whangbo*,[‡]

† Department of Chemistry and Research Institute of Basic Science, Kyung Hee University, Seoul 130-701, Republic of Korea, and [‡]Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695

Received May 7, 2010

We evaluated the intrachain and interchain spin exchanges of Cu₃(P₂O₆OH) consisting of (Cu2-Cu2-Cu1)_∞ chains by density functional calculations to find that the magnetic properties of $Cu₃(P₂O₆OH)₂$ are not governed by the $J_1-J_2-J_2$ trimer chain along the c-direction, but by a two-dimensional (2D) antiferromagnetic lattice in which $J_1-J_3-J_3$ trimer chains along the $(a-a/2)$ -direction are interconnected by J_6 monomer chains along the a-direction. Despite its 2D character, $Cu_3(P_2O_6OH)_2$ shows a 1/3 magnetization plateau because it is a spin-1/2 trimer system with one dominant antiferromagnetic dimer exchange.

1. Introduction

From Commute Chemical Society Published on The Chemical Society Published on Chemical Society Published on The Chemical A magnetic system with an energy gap in the magnetic excitation spectrum has a magnetization plateau in the magnetization curve. Spin-gapped systems with spin-singlet ground state such as the Haldane system $Ni(C_2H_8N_2)_2NO_2(CIO_4)$, the spin-Peierls cuprate $Cu\ddot{GeO}_3$,² and the orthogonal-dimer compound $\text{SrCu}_2(\text{BO}_3)_2^3$ exhibit a zero-magnetization plateau. A finite-magnetization plateau is observed for a magnetic system possessing an energy gap within the magnetic excited states, as found for NH₄CuCl₃,⁴ Cu₃(OH)₂(CO₃)₂,⁵ and Cu₃- $(P_2O_6OH)_2$.^{6,7} A finite-magnetization plateau in such magnetic systems has been understood in terms of the Oshikawa-Yamanaka-Affleck theory developed for one-dimensional $(1D)$ magnetic chains, δ namely, the magnetization curve of a one-dimensional (1D) chain with spin S per site can have a plateau at the magnetization *m* per site if $n(S - m) =$ integer,

*Corresponding author.

where *n* is the period of the magnetic ground state. $Cu₃(OH)₂$ - (CO_3) had been considered to be a diamond-chain system, but a recent electronic structure study showed⁹ that $Cu₃(OH)₂$ - $(CO₃)₂$ is not a 1D but a two-dimensional (2D) magnetic system because it has substantial spin exchanges between adjacent diamond chains through the $CO₃$ bridges. The spinlattice needed to interpret the magnetic properties of a given system is often selected by the geometrical pattern of the magnetic ion arrangement. In this qualitative selection process, one includes spin exchanges of superexchange (SE) type (e.g., $Cu-O-Cu$)¹⁰ but often neglects spin exchanges of supersuperexchange (SSE) type (e.g., $Cu-O \cdot \cdot \cdot O-Cu$). Consequently, the properties of numerous magnetic systems^{9,11-19} have been explained using incorrect spin-lattices. Electronic structure consideration is crucial in identifying the correct

(15) Derakhshan, S.; Cuthbert, H. L.; Greedan, J. E.; Rahman, B.;

Saha-Dasgupta, T. Phy. Rev. B 2007, 76, 104403.
(16) Koo, H.-J.; Whangbo, M.-H. *Inorg. Chem.* 2008, 47, 128.

(17) Miura, Y.; Yasui, Y.; Moyoshi, T.; Sato, M.; Kakurai, K. J. Phys. Soc. Jpn. 2008, 77, 104789.

(18) Sakurai, H.; Yoshimura, K.; Kosuge, K.; Tsujii, N.; Abe, H.; Kitazawa, H.; Kido, G.; Michor, H.; Hilscher, G. J. Phys. Soc. Jpn. 2002, 71, 1161.

^{(1) (}a) Katsumata, K.; Hori, H.; Takeuchi, T.; Date, M.; Yamagishi, A.; Renard, J. P. Phys. Rev. Lett. 1989, 63, 86. (b) Ajiro, Y.; Goto, T.; Kikuchi, H.; Sakakibara, T.; Inami, T. Phys. Rev. Lett. 1989, 63, 1424.

⁽²⁾ Hase, M.; Terasaki, I.; Uchinokura, K.; Tokunaga, M.; Miura, N.;

Obara, H. Phys. Rev. B 1993, 48, 9616. (3) Kageyama, H.; Yoshimura, K.; Stern, R.; Mushnikov, N. V.; Onizuka, K.; Kato, M.; Kosuge, K.; Slichter, C. P.; Goto, T.; Ueda, Y. Phys. Rev. Lett. 1999, 82, 3168.

⁽⁴⁾ Kurniawan, B.; Tanaka, H.; Takatsu, K.; Shiramura, W.; Fukuda, T.;

Nojiri, H.; Motokawa, M. *Phys. Rev. Lett.* **1999**, 82, 1281.
(5) Ohta, H.; Okubo, S.; Kamikawa, T.; Kunimoto, T.; Inagaki, Y.; Kikuchi, H.; Saito, T.; Azuma, M.; Takano, M. J. Phys. Soc. Jpn. 2003, 72, 2464.

⁽⁶⁾ Hase, M.; Kohno, M.; Kitazawa, H.; Tsujii, N.; Suzuki, O.; Ozawa, K.; Kido, G.; Imai, M.; Hu, X. Phys. Rev. B 2006, 73, 104419.

⁽⁷⁾ Hase, M.; Matsuda, M.; Kakurai, K.; Ozawa, K.; Kitazawa, H.;

Tsujii, N.; Dönni, A.; Kohno, M.; Hu, X. Phys. Rev. B 2007, 76, 064431.
(8) Oshikawa, M.; Yamanaka, M.; Affleck, I. Phys. Rev. Lett. 1997, 78, 1984.

⁽⁹⁾ Kang, J.; Lee, C.; Kremer, R. K.; Whangbo, M.-H. J. Phys.:Condens. Matter 2009, 21, 392201, and the references cited therein.

^{(10) (}a) Goodenough, J. B. Magnetism and Chemical Bond; Wiley: Cambridge, MA, 1963. (b) Anderson, P. W. Solid State Physics; Seitz, F.; Turnbull, D., Eds.; Academic Press: New York, 1963; Vol. 14.

⁽¹¹⁾ Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 417, 176.

⁽¹²⁾ Koo, H.-J.; Whangbo, M.-H.; VerNooy, P. D.; Torardi, C. C.;

Marshall, W. J. *Inorg. Chem.* **2002**, 41, 4664.

(13) Koo, H.-J.; Dai, D.; Whangbo, M.-H. *Inorg. Chem.* **2005**, 44, 4359.

(14) Garret, A. W.; Nagler, S. E.; Tennant, D. A.; Sales, B. C.; Barnes, T. Phys. Rev. Lett. 1997, 79, 745.

⁽¹⁹⁾ Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2008, 47, 4779.

Figure 1. (a) Isolated (Cu2-Cu2-Cu1). chain of Cu₃(P₂O₆OH)₂ made up of edge-sharing Cu2O₅ square pyramids and Cu1O₆ octahedra. The Cu2 and Cu1 atoms are denoted by blue and red circles, respectively, and the O atoms by small white circles. The Cu-O bonds contained in the magnetic orbitals of the Cu2O₅ and Cu1O₆ polyhedra are shown as cyan cylinders. The numbers 1 and 2 refer to J_1 and J_2 , respectively. (b) The magnetic orbital of a Cu²⁺ ion, in which the Cu 3d_{x²-y2} orbital makes *o*-antibonding interactions with the O 2p orbitals. (c) Two (Cu2-Cu2-Cu1)_∞ chains of Cu₃(P₂O₆OH)₂ interconnected by PO₄, where the P atoms are denoted by yellow circles and the P-O bonds by black cylinders. (d) The seven spin exchange paths $J_1 - J_7$ of Cu₃(P₂O₆OH)₂, where J_1 and J_2 are the Cu-O-Cu spin exchanges within each (Cu2-Cu2-Cu1)_∞ chain, and J_3 - J_7 are the Cu-O \cdots O-Cu spin exchanges between adjacent (Cu2-Cu2-Cu1). chains. The numbers 1-7 refer to J_1-J_7 , respectively.

spin-lattice of a magnetic solid, as will be shown below for $Cu₃(P₂O₆OH)₂$.

Copper hydroxydiphosphate $Cu₃(P₂O₆OH)₂$ has two kinds of copper atoms, Cu1 and Cu2, located respectively at the octahedral and square pyramidal pockets of oxygen atoms created by the $(P_2O_6OH)^{3-}$ ions.²⁰ The axially elongated $Cu1O₆$ octahedra and the Cu2O₅ square pyramids share their edges to form the $(Cu2-Cu2-Cu1)_{\infty}$ chains along the c-direction (Figure. 1a), so the magnetic properties of $Cu₃(P₂O₆OH)₂$ have been interpreted in terms of a spin-1/2 trimer chain model with $J_a - J_b - J_b$ spin exchanges.^{6,7} The magnetization curve of $Cu₃(P₂O₆OH)₂$ measured at 1.6 K exhibits a $1/3$ magnetization plateau above 12 T,⁶ which is consistent with the prediction by the Oshikawa-Yamanaka-Affleck theory for 1D magnetic chains.⁸ When analyzed in terms of a $J_a - J_b - J_b$ trimer chain model, the magnetic susceptibility and magnetization data of $Cu₃(P₂O₆OH)₂$ show that J_a and J_b are both antiferromagnetic (i.e., $J_a/k_B = -95$ K and $J_b/k_B = -28$ K),⁶ and so do the inelastic neutron scattering data of Cu₃(P₂O₆OH)₂ (i.e., $J_a/k_B = -111$ K and $J_{\rm b}/k_{\rm B} = -30$ K).⁷ In addition, the latter data confirmed that the 1/3 magnetization plateau originates from the energy gap associated with the singlet-to-triplet-like excitations of the antiferromagnetic dimers formed by the dominant J_a interaction. The $J_a-J_b-J_b$ trimer chain model for $Cu_3(P_2O_6OH)_2$ is a consequence of considering only the geometrical pattern of the SE interactions present in the (Cu^2-Cu^2-Cu) _∞ chains. Spin exchange interactions between Cu^{2+} ions depend on how their magnetic orbitals overlap.^{10,11} In Cu₃(P₂O₆OH)₂ the magnetic orbital of a Cu^{2+} ion (Figure 1b), commonly referred to as the " $x^2 - y^2$ " orbital, is contained in the basal plane of each Cu2O₅ square pyramid and in the equatorial plane of each axially elongated Cu1O₆ octahedron. Thus, only those Cu-O bonds contained in the magnetic orbital planes, which are highlighted as cyan cylinders in Figure 1a, can have magnetic orbital

character. Thus, the spin exchange of a SE path $Cu-O-Cu$ can be substantial only if both Cu-O bonds of the exchange path possess magnetic orbital character as in J_1 , but should be negligible if this is not the case as in J_2 . Consequently, the magnetic properties of $Cu₃(P₂O₆OH)₂$, though well-described by the $J_a-J_b-J_b$ chain model with antiferromagnetic J_a and J_b ,^{6,7} cannot be related to the $J_1-J_2-J_2$ chains running along the c-direction. As shown in Figure 1c, the $(Cu2-Cu2-Cu1)_{\infty}$ chains are interconnected by PO₄ units of the $(P_2O_6OH)^{3-}$ ions. Substantial interchain spin exchange can take place through the SSE paths Cu-O \cdots O-Cu if both Cu-O bonds of these paths possess magnetic orbital character.^{11,13} Therefore, to identify the spin-lattice responsible for its magnetic properties, one should evaluate the SE and SSE interactions of $Cu₃(P₂O₆OH)₂$ on the basis of electronic structure calculations.

2. Calculations

We carry out mapping analysis based on first principles density functional (DFT) calculations to determine the values of the seven spin exchange parameters J_1-J_7 of Cu₃- (P_2O_6OH) ₂ defined in Figure 1d, where J_1 and J_2 are intrachain SE's, while J_3-J_7 are interchain SSE's. Our DFT calculations employed the frozen-core projector augmented wave method encoded in the Vienna ab initio simulation packages, 21 and the generalized-gradient approximation $(GGA)^{22}$ with the plane-wave-cutoff energy of 400 eV and a set of $6 \times 4 \times 2$ k points for the irreducible Brillouin zone. To describe the strong electron correlation in the Cu 3d states, the GGA plus on-site repulsion method $(GGA+U)^{23}$ was used with the effective U values of 4, 5, and 6 eV.

⁽²⁰⁾ Baies, R.; Caignaert, V.; Pralong, V.; Raveau, B. Inorg. Chem. 2005, 44, 2376.

^{(21) (}a) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. (b) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. (c) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.

⁽²²⁾ Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

⁽²³⁾ Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505.

Figure 2. Eight ordered spin states of $Cu₃(P₂O₆OH)₂$ employed to extract the values of the seven exchanges $J_1 - J_7$. The gray and white circles represent the up- and down-spin Cu²⁺ sites, respectively. The three numbers in each parentheses, from left to right, refer to the relative energies in meV per eight formula units obtained from the $GGA+U$ calculations with $U = 4, 5,$ and 6 eV, respectively.

3. Results and Discussion

To extract the values of J_1-J_7 , we first define eight ordered spin states (Figure 2) using a (2a, 2b, 2c) supercell, which contains eight formula units (FUs), and then determine their relative energies on the basis of $GGA+U$ calculations. The relative energies of these states determined by $GGA+U$ calculations are summarized in Figure 2. (The calculated Cu spin moments in these states are given in Table S1 of the Supporting Information.) In terms of the spin Hamiltonian

$$
\hat{H} = -\sum_{i < j} J_{ij} \hat{S}_i \hat{S}_j \tag{1}
$$

defined in terms of the exchanges $J_{ij} = J_1 - J_7$ to be determined, the total spin exchange energies of the eight states (per eight FUs) are expressed as in eq 2.24

$$
FM: (-8J1 - 16J2 - 16J3 - 16J4 - 8J5 - 8J6 - 16J7)/4
$$

AF1 : $(-8J_1 + 16J_2 + 16J_3 + 16J_4 + 8J_5 - 8J_6 - 16J_7)/4$

$$
AF2: (+8J_1 - 16J_2 + 16J_3 - 16J_4 + 8J_5 + 8J_6 + 16J_7)/4
$$

AF3:
$$
(-8J_1+16J_2-16J_3-16J_4-8J_5+8J_6+16J_7)/4
$$

$$
AF4: (+8J1 + 16J2 - 16J3 + 16J48 - J5 + 8J6 + 16J7)/4
$$

$$
AF5: (-8J_1 - 16J_2 + 16J_3 + 16J_4 - 8J_5 + 8J_6 + 16J_7)/4
$$

AF6: (+8J_1 + 16J_3 - 16J_4 + 8J_5 - 8J_6 - 16J_7)/4

$$
AF7: (+8J_1 + 16J_2 + 16J_3 - 16J_4 + 8J_5 - 8J_6 - 16J_7)/4
$$

 (2)

Table 1. Values of the Spin Exchange Parameters $J_1 - J_7$ in $k_B K$ of Cu₃(P₂O₆OH₂) Obtained from GGA+U Calculations As a Function of U^{α}

	$U = 4$ eV	$U = 5$ eV	$U = 6$ eV
J_1	$-479(1.00)$	$-376(1.00)$	$-291(1.00)$
J_2	$-3(0.01)$	$-3(0.01)$	$-3(0.01)$
J_3	$-69(0.14)$	$-56(0.15)$	$-45(0.15)$
J_4	$15(-0.03)$	$12(-0.03)$	$10(-0.03)$
J_5	$34(-0.07)$	$28(-0.07)$	$23(-0.08)$
J_6	$-90(0.19)$	$-71(0.19)$	$-55(0.19)$
J_7	$36(-0.08)$	$29(-0.08)$	$23(-0.08)$

^aThe numbers in parentheses are relative values. ^bThe Cu \cdots Cu distances of the spin exchange paths are 3.059 Å for J_1 , 3.281 Å for J_2 , 5.625 Å for J_3 , 5.975 Å for J_4 , 4.432 Å for J_5 , and 4.782 Å for J_6 and J_7 .

Thus, by mapping the relative energies of the eight ordered states determined from the $GGA+U$ calculations onto the corresponding energies derived from the total spin exchange energies, we obtain the values of J_1-J_7 listed in Table 1.

 J_1 is most strongly antiferromagnetic, and its magnitude decreases with increasing U as has been observed for other magnetic systems.16,19,25 This comes about because, to a first approximation, an antiferromagnetic spin exchange is inversely proportional to U.¹¹ The calculated J_1 is identified as J_a found experimentally, so that the calculated exchange values are overestimated by a factor of approximately $3-5$, as typically found for $GGA+U$ calculations. However, the relative values of J_1-J_7 are not very much affected by the values of U.

As anticipated, the intrachain exchange J_2 is negligible and the interchain exchanges J_3 and J_6 are substantially antiferromagnetic $(J_3/J_1 \approx 0.15$, and $J_6/J_1 \approx 0.19$) with nearly comparable strength (For the spin dimer analysis for J_2 , J_3 , and J_6 , see Table S2 and Figures S1 and S2 in the Supporting Information). The remaining exchanges are weak (Table1). Therefore, the magnetic properties of $Cu₃(P₂O₆OH)$ ₂ are best described by the three antiferromagnetic exchanges J_1 , J_3 , and J_6 , which lead to the 2D spin-lattice shown in Figure 3. The spin exchanges J_1 and J_3 form $J_1-J_3-J_3$ trimer chains along the $(a - c/2)$ -direction, and these chains are interconnected by J_6 monomer chains along the *a*-direction. Consequently, it is not the $J_1-J_2-J_2$ trimer chains along the c-direction but the $J_1-J_3-J_3$ trimer chains along the (a $c/2$)-direction that are responsible for the $J_a-J_b-J_b$ trimer chain behavior observed for $Cu₃(P₂O₆OH)₂$. Thus, the spin wave dispersions of $Cu₃(P₂O₆OH)₂$ will be flat along the *c*-direction, but dispersive along the $(a - c/2)$ - and *a*-directions. This prediction can be verified by inelastic neutron scattering experiments.

It should be noted that the 1/3 magnetization plateau of $Cu₃(P₂O₆OH)₂$, though interpreted in terms of a $J_a-J_b-J_b$ trimer chain model and found consistent with the Oshikawa-Yamanaka $-A$ ffleck theory for 1D magnetic chains, δ arises actually from a 2D antiferromagnet. A similar situation has been observed for $Cu_3(OH)_2(CO_3)_2$,⁵ in which there occur substantial spin exchanges between diamond chains. \degree Cu₃- $(P_2O_6OH)_2$ and $Cu_3(OH)_2(CO_3)_2$ have a common feature in that both are a spin-1/2 trimer system with one dominant antiferromagnetic dimer exchange, which is connected to considerably weaker antiferromagnetic exchanges to form a 2D spin-lattice.

^{(24) (}a) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2001, 114, 2887. (b) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2003, 118, 29.

⁽²⁵⁾ Xiang, H. J.; Lee, C.; Whangbo, M.-H. Phys. Rev. B 2007, 76, 220411(R).

Figure 3. Spin-lattice model for $Cu₃(P₂O₆OH₂)$ predicted by the three antiferromagnetic exchanges J_1 , J_3 , and J_6 determined from the GGA+U calculations. The numbers 1, 2, 3, and 6 refer to J_1 , J_2 , J_3 , and J_6 , respectively. The up-spin and down-spin Cu sites in the lowest-energy spin arrangement AF2 are represented by filled and empty circles, respectively.

4. Concluding Remarks

In summary, the $J_a-J_b-J_b$ chain behavior of Cu₃- $(P_2O_6OH)_2$ is not caused by the $J_1-J_2-J_2$ trimer chains along the *c*-direction, but by the $J_1-J_3-J_3$ trimer chains running along the $(a - c/2)$ -direction. Cu₃(P₂O₆OH)₂ has a

2D spin-lattice in which the $J_1-J_3-J_3$ chains are interconnected by J_6 monomer chains along the a-direction. Despite its 2D character, $Cu₃(P₂O₆OH)₂$ shows a 1/3 magnetization plateau because it is a spin-1/2 trimer system with one dominant antiferromagnetic dimer exchange, which is connected to considerably weaker antiferromagnetic exchanges.

Acknowledgment. Work at KHU was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2007-531-C00028), and at NCSU by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259, and also by the computing resources of the NERSC center and the HPC center of NCSU.

Supporting Information Available: The calculated Cu spin moments in the eight ordered spin states (Table S1), and results of the spin dimer analysis for J_2 , J_3 , and J_6 (Table S2, Figures S1 and S2) (PDF).This material is available free of charge via the Internet at http://pubs.acs.org.