

Monomeric and Dimeric Disulfide Complexes of Nickel(II)

Vlad M. Iluc, Carl A. Laskowski, Carl K. Brozek, Nicole D. Harrold, and Gregory L. Hillhouse*

Department of Chemistry, Gordon Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637

Received June 22, 2010

Elemental sulfur reacts with a bulky bis(phosphine)nickel(0) complex to give a monomeric nickel(II) η^2 -disulfido complex, oxidation of which results in the elimination of sulfur with dimerization to give an η^2 , η^2 -disulfidodinickel(II) derivative in which the S $-$ S bond can be reductively cleaved in a redox-reversible fashion.

INOTIFY These Chemical Society Published on Equation 1997 (Chemical Society Published on Chemical Society Published on The Chemical Society Published on The Chemical Society Published on The Chemical Society Published o Nickel complexes containing coordinated dichalcogens, especially sulfur and oxygen, are of interest because of their implication in catalytic oxidations, their intermediacy in desulfurization reactions of chemical feedstocks, and their biorelevance.¹ Disulfur derivatives of nickel can span a range of reduction and activation. Disulfide (S_2^2) ligands on nickel(II) have been crystallographically characterized in three distinct bonding modes: L_n Ni₂ (η^2, η^2, S_2) , 2 L_n Ni₂ $(\mu$ -1,2-S₂),³ and L_n Ni- $(\eta^2$ -S₂).⁴ Interesting nickel(II) supersulfido (S_2^2) complexes (nacnac)Ni(S₂) and {(nacnac)Ni(S₂)}₂ [nacnac = CH{(CMe)- $(2.6$ -Pr₂C₆H₃N₂⁻] have recently been reported and exhibit sulfur-ligand-centered radical character.⁵ While no terminal sulfido (S^{2-}) complexes of nickel are presently known, Jones has reported the in situ generation of a $L_nNi=S$ intermediate that subsequently dimerizes or can be trapped. 6 However,

Scheme 1. Synthesis of 1 and 2

bridging sulfido complexes $LNi_2(\mu-S)_2$, having no S-S bond (they can be considered as S_2^{4-} , in which the σ^* and both π^* valence molecular orbitals of S_2 are doubly populated), have been described by several groups.^{2,6,7} Here we report the synthesis of a monomeric nickel(II) η^2 -disulfide complex and its oxidation to a dimeric, bridging nickel(II) η^2 , η^2 -disulfide with loss of elemental sulfur.

The reaction of 1 equiv of 1,8-bis(diisopropylphosphino) naphthalene (dippnapht)⁸ with Ni(cod)₂ (cod = 1,5-cyclooctadiene) in a tetrahydrofuran (THF) solution results in the formation of (dippnapht)Ni(cod) (1) in 76% yield as yellowbrown crystals (Scheme 1). 1 has been characterized by standard spectroscopic and analytical methods and by single-crystal X-ray diffraction.⁹ The ¹H NMR spectrum of 1 indicates that a dynamic process involving the cod ligand occurs at room temperature, but its poor solubility at lower temperatures in common solvents has prevented elucidation of this process by variable-temperature (VT) NMR experiments.

The addition of 1 equiv of S_8 to a toluene solution of 1 results in the oxidation of nickel to give a monomeric η^2 -disulfide complex, (dippnapht)Ni(η^2 -S₂)(2), as analytically pure orange crystals in 76% isolated yield (Scheme 1). The solid-state structure of 2 (Figure 1) reveals a four-coordinate, planar nickel center with $S(1)-S(2)=2.059(2)$ Å and Ni-S distances of 2.204(3) and 2.185(3) \dot{A} . These are comparable to the S-S [2.038(5) \dot{A}] and $Ni-S$ [2.178(4) and 2.193(4) \AA] distances observed for the S_2^2 ligand in $[S_2W(\mu-S)_2Ni(\eta^2-S_2)][PPh_4]_2^4$, the only other structurally characterized complex containing a nonbridging Ni(η^2 -S₂) moiety. As expected, the S(1)–S(2) distance in 2 is $~\sim$ 0.1 Å longer than the corresponding distance in the supersulfido (S_2^-) complex $\{(\text{nacnac})\text{Ni}(S_2)\}_2$ [1.944(2) Å].⁵

^{*}To whom correspondence should be addressed. E-mail: g-hillhouse@ uchicago.edu.

^{(1) (}a) Kabe, T. Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering; Wiley-VCH: New York, 1999. (b) Transition Metal Sulfur Chemistry: Biological and Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.; American Chemical Society: Washington, DC, 1996. (c) Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M.; Thauer, R. K. Science 1997, 278, 1457. (d) Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580. (e) Fiedler, A. T.; Bryngelson, P. A.; Maroney, M. J.; Brunold, T. C. J. Am. Chem. Soc. 2005, 127, 5449. (f) Brunold, T. C. J. Biol. Inorg. Chem. 2004, 9, 533. (g) Craft, J. L.; Mandimutsira, B. S.; Fujita, K.; Riordan, C. G.; Brunold, T. C.Inorg. Chem. 2003, 42, 859. (h) Ragsdale, S. W.; Kumar, M. Chem. Rev. 1996, 96, 2515.

^{(2) (}a) Mealli, C.; Midollini, S.Inorg. Chem. 1983, 22, 2785. (b) Pleus, R. J.; Waden, H.; Saak, W.; Haase, D.; Pohl, S. J. Chem. Soc., Dalton. Trans. 1999, 2601. (c) Cho, J.; Heuvelen, K. M. V.; Yap, G. P. A.; Brunold, T. C.; Riordan, C. G. Inorg. Chem. 2008, 47, 3931.

⁽³⁾ Kieber-Emmons, M. T.; Van Heuvelen, K. M.; Brunold, T. C.; Riordan, C. G. J. Am. Chem. Soc. 2009, 131, 440.

⁽⁴⁾ Xin, Q. X.; Wang, B. Y.; Jin, G. X. Z. Naturforsch. B 1996, 51b, 1197. (5) (a) Yao, S.; Milsmann, C.; Eckard, B.; Wieghardt, K.; Driess, M. J. Am. Chem. Soc. 2008, 130, 13536. (b) Yao, S.; Eckard, B.; Milsmann, C.;

Wieghardt, K.; Driess, M. *Angew. Chem., Int. Ed.* **2008**, 47, 7110.
(6) (a) Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. **1999**, 121, 4070. (b) Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 7606. Torres-Nieto, J.; Brennessel, W. W.; Jones, W. D.; Garcia, J. J. J. Am. Chem. Soc. 2009, 131, 4120.

⁽⁷⁾ Oster, S. S.; Lachicotte, R. J.; Jones, W. D. Inorg. Chim. Acta 2002, 330, 118.

⁽⁸⁾ Karacar, A.; Thonnessen, H.; Jones, P.; Bartsch, R.; Schmutzler, R. Heteroatom. Chem. 1997, 8(6), 539.

⁽⁹⁾ See the Supporting Information for crystallographic details for 1.

Figure 1. X-ray structure of 2 (50% probability). H atoms are omitted for clarity. Selected metrical parameters (distances in angstroms and angles in degrees): $S(1)-S(2) = 2.059(2)$, $Ni(1)-S(1) = 2.204(3)$, $Ni(1)-S(2) =$ 2.185(3); $S(1) - Ni(1) - S(2) = 55.97(6), P(1) - Ni(1) - P(2) = 98.89(5), P(1) Ni(1)-S(1) = 102.98(7), P(2)-Ni-S(2) = 102.23(8), Ni(1)-S(1)-S(2) =$ 61.56(14), Ni(1)-S(2)-S(1) = 62.47(13).

Scheme 2. Redox Processes That Interconvert Complexes ²-⁴ Involve the Sulfur Ligands, not the Nickel(II) Centers

The reaction of a THF solution of 2 with 1 equiv of $[Cp_2Fe]$ - $[BAr^{F}_4]$ $(BAr^{F}_4 = B[3,5-(CF_3)_2C_6H_3)]_4$) results in the formation of the dicationic dimer, $[\{(\text{dippnapht})\text{Ni}\}_2(\eta^2:\eta^2-\text{S}_2)]$ - $[BAr^{F}$ ₄ $]_{2}$ (3), as a dark-red, analytically pure solid in 82% yield (Scheme 2). Gas chromatography/mass spectrometry analysis of the reaction solution indicates that the fate of the second S_2 moiety is in the formation of S_8 (M $+$ 256). Thus, oxidation of 2 results in the two-electron oxidation of the S_2^2 subunit instead of nickel, formally giving sulfur and "(dippnapht) Ni^{2+} ", which reacts via dimerization with 2 to give 3. Attempts to trap the eliminated S_2 with 2,3-dimethyl-1,3-butadiene resulted in the detection of primarily S_8 , with only a minor component of the expected Diels-Alder product $(<2\%)$ observed.¹⁰

Complex 3 is diamagnetic and has been characterized by solution NMR spectroscopy, X-ray diffraction, and elemental analysis. The solid-state structure of 3 shows a puckered, butterfly-like geometry for the $Ni₂S₂$ kernel (the two $Ni₂S₂$ planes' torsion angle $= 112.2^{\circ}$ with planar, four-coordinate

Figure 2. X-ray stuctures of the complex dications of 3 (top) and 4 (bottom) (50% probability), H atoms and BArF ⁴ counterions are omitted for clarity. Selected metrical parameters (distancesin angstroms and angles in degrees) for 3: $S(1) - S(2) = 2.054(2)$, $Ni(1) - S(1) = 2.197(2)$, $Ni(1) - S(2) =$ 2.202(2), Ni(1)-Ni(2) = 3.2326(4); Ni(1)-S(1)-Ni(2) = 94.35(6), Ni(1)- $S(2) - Ni(2) = 94.60(6), S(1) - Ni(1) - S(2) = 55.66(5), S(1) - Ni(2) - S(2) =$ 55.57(5). Those for 4: $S(1)-S(2)=2.839(4)$, $Ni(1)-S(1)=2.165(4)$, $Ni(1) S(2) = 2.176(4)$, $Ni(1) - Ni(2) = 3.284(2)$; $Ni(1) - S(1) - Ni(2) = 98.6(2)$, $Ni(1)-S(2)-Ni(2) = 98.0(2), S(1)-Ni(1)-S(2) = 81.7(2).$

 d^8 nickel centers flanking the central S_2^2 unit (Figure 2). The Ni atoms are well separated at $3.2326(4)$ Å. The Ni-S [2.197(2) and $2.202(2)$ Å] and $S(1) - S(2)$ [2.054(2) Å] distances in 3 are similar to those found in 2 and in the related neutral, butterfly-shaped complex $\{(\text{nacnac})\text{Ni}\}_2(\eta^2:\eta^2-S_2)$ [with S-S = 2.051(1) Å and $Ni₂S₂ = 133.9°$ ⁵.

The reduction of solutions of 3 with potassium graphite yields the neutral bis(μ -sulfido)nickel(II) dimer {(dippnapht)-Ni}₂(μ -S)₂ (4) as a diamagnetic brown solid in 72% isolated yield (Scheme 2). The reduction occurs at the S_2^2 ligand to give two μ -S²⁻ ligands, with nickel remaining in the 2+ oxidation state.

The solid-state structure of 4 is shown in Figure 2 and reveals a long $S(1) - S(2)$ separation [2.839(4) A] consistent with the reduction of the S_2^2 ligand to S_2^4 and cleavage of the remaining $S-S\sigma$ bond (Figure 2). Unlike in 3, the Ni and S atoms of 4 are rigorously coplanar. This reduction is reversible, and the reaction of 4 with $\text{[Cp}_2\text{Fe}][\text{BAT}^{\text{F}}_4]$ results in its oxidation to 3 in high yield (Scheme 2). Complex 4 can be independently synthesized by alternative methods (Scheme 2). The reaction of 1 and 2 in a 1:1 stoichiometry gives 4 in high yield. In this reaction, the nickel(0) reagent 1 reduces the S_2^2 unit in 2 by two electrons, giving the observed Ni^H-Ni^H product. Consistent with this finding, the reaction of carefully controlled, stoichiometric amounts of S_8 (Ni:S = 1:1) with 1 gives 4 directly, presumably via the intermediacy of 2. A third route to 4 involves thermolysis of 2 with an excess of $PMe₃$, resulting in the formation of $S=PMe_3$ and 4 in moderate yield.¹¹ We observed no spectroscopic evidence for a (dippnapht) $Ni=S$ intermediate,

⁽¹⁰⁾ Steliou, K.; Salama, P.; Brodeur, D.; Gareau, Y. J. Am. Chem. Soc. 1987, 109, 926.

⁽¹¹⁾ Fujita, K.; Schenker, R.; Gu, W.; Brunold, T. C.; Cramer, S. P.; Riordan, C. G. Inorg. Chem. 2004, 43, 3324.

although such a monomeric sulfido complex seems to be a logical precursor to 4 in this reaction.¹

In summary, the use of a bulky, naphthalene-based bis- (phosphine) has allowed for isolation of a monomeric nickel- (II) η^2 -disulfide complex (2), which can be cleanly oxidized with ferrocenium to generate a dicationic S_2^2 bridging disulfide dimer (3) with elimination of elemental sulfur. The dimer 3 undergoes clean and reversible reduction to a new neutral dimer (4) in which reduction takes place within the S_2 unit and results in cleavage of the S-S bond. The dimer 4 can be prepared from other routes, but no evidence is found for a stable terminal sulfido complex in this system.

Acknowledgment. This work was supported by the National Science Foundation through Grants CHE-0615274 and CHE-0957816 (to G.L.H.) and a Beckman Scholars Fellowship from the Arnold and Mabel Beckman Foundation (to C.K.B.).

Supporting Information Available: Experimental, spectroscopic, and analytical details and complete crystallographic details for 1-4 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹²⁾ Dimer 4 can also be prepared by the reaction of (dippnapht)NiCl with LiSPh₃. Gomberg's dimer was also observed as a product. The mechanism of this reaction, involving the elimination of Ph₃C^{*}, also implicates a (dippnahpt)Ni=S intermediate.