

Monomeric and Dimeric Disulfide Complexes of Nickel(II)

Vlad M. Iluc, Carl A. Laskowski, Carl K. Brozek, Nicole D. Harrold, and Gregory L. Hillhouse*

Department of Chemistry, Gordon Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637

Received June 22, 2010

Elemental sulfur reacts with a bulky bis(phosphine)nickel(0) complex to give a monomeric nickel(II) η^2 -disulfido complex, oxidation of which results in the elimination of sulfur with dimerization to give an η^2 , η^2 -disulfidodinickel(II) derivative in which the S–S bond can be reductively cleaved in a redox-reversible fashion.

Nickel complexes containing coordinated dichalcogens, especially sulfur and oxygen, are of interest because of their implication in catalytic oxidations, their intermediacy in desul-furization reactions of chemical feedstocks, and their biorelevance.¹ Disulfur derivatives of nickel can span a range of reduction and activation. Disulfide $(S_2^{2^-})$ ligands on nickel(II) have been crystallographically characterized in three distinct bonding modes: $L_nNi_2(\eta^2,\eta^2-S_2)$, $^2L_nNi_2(\mu-1,2-S_2)$, 3 and $L_nNi-(\eta^2-S_2)$.⁴ Interesting nickel(II) supersulfido (S_2^-) complexes (nacnac)Ni(S₂) and {(nacnac)Ni(S₂)}₂ [nacnac = CH{(CMe)-(2,6-¹Pr₂C₆H₃N}₂⁻] have recently been reported and exhibit sulfur-ligand-centered radical character.⁵ While no terminal sulfido (S^{2^-}) complexes of nickel are presently known, Jones has reported the in situ generation of a $L_nNi=S$ intermediate that subsequently dimerizes or can be trapped.⁶ However,

Scheme 1. Synthesis of 1 and 2

bridging sulfido complexes LNi₂(μ -S)₂, having no S–S bond (they can be considered as S₂^{4–}, in which the σ^* and both π^* valence molecular orbitals of S₂ are doubly populated), have been described by several groups.^{2,6,7} Here we report the synthesis of a monomeric nickel(II) η^2 -disulfide complex and its oxidation to a dimeric, bridging nickel(II) η^2 , η^2 -disulfide with loss of elemental sulfur.

The reaction of 1 equiv of 1,8-bis(diisopropylphosphino)naphthalene (dippnapht)⁸ with Ni(cod)₂ (cod = 1,5-cyclooctadiene) in a tetrahydrofuran (THF) solution results in the formation of (dippnapht)Ni(cod) (1) in 76% yield as yellowbrown crystals (Scheme 1). 1 has been characterized by standard spectroscopic and analytical methods and by single-crystal X-ray diffraction.⁹ The ¹H NMR spectrum of 1 indicates that a dynamic process involving the cod ligand occurs at room temperature, but its poor solubility at lower temperatures in common solvents has prevented elucidation of this process by variable-temperature (VT) NMR experiments.

The addition of 1 equiv of S_8 to a toluene solution of 1 results in the oxidation of nickel to give a monomeric η^2 -disulfide complex, (dippnapht)Ni(η^2 -S₂) (**2**), as analytically pure orange crystals in 76% isolated yield (Scheme 1). The solid-state structure of **2** (Figure 1) reveals a four-coordinate, planar nickel center with S(1)-S(2) = 2.059(2) Å and Ni-S distances of 2.204(3) and 2.185(3) Å. These are comparable to the S-S [2.038(5) Å] and Ni-S [2.178(4) and 2.193(4) Å] distances observed for the S₂²⁻ ligand in [S₂W(μ -S)₂Ni(η^2 -S₂)][PPh₄]₂,⁴ the only other structurally characterized complex containing a nonbridging Ni(η^2 -S₂) moiety. As expected, the S(1)-S(2) distance in **2** is ~0.1 Å longer than the corresponding distance in the supersulfido (S₂⁻) complex {(nacnac)Ni(S₂)}₂ [1.944(2) Å].⁵

^{*}To whom correspondence should be addressed. E-mail: g-hillhouse @ uchicago.edu.

 ^{(1) (}a) Kabe, T. Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering; Wiley-VCH: New York, 1999. (b) Transition Metal Sulfur Chemistry: Biological and Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.; American Chemical Society: Washington, DC, 1996. (c) Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M.; Thauer, R. K. Science 1997, 278, 1457. (d) Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580. (e) Fiedler, A. T.; Bryngelson, P. A.; Maroney, M. J.; Brunold, T. C. J. Am. Chem. Soc. 2005, 127, 5449. (f) Brunold, T. C. J. Biol. Inorg. Chem. 2004, 9, 533. (g) Craft, J. L.; Mandimutsira, B. S.; Fujita, K.; Riordan, C. G.; Brunold, T. C. Inorg. Chem. 2003, 42, 859. (h) Ragsdale, S. W.; Kumar, M. Chem. Rev. 1996, 96. 2515.

<sup>96, 2515.
(2) (</sup>a) Mealli, C.; Midollini, S. *Inorg. Chem.* 1983, 22, 2785. (b) Pleus, R. J.;
Waden, H.; Saak, W.; Haase, D.; Pohl, S. *J. Chem. Soc., Dalton. Trans.* 1999, 2601. (c) Cho, J.; Heuvelen, K. M. V.; Yap, G. P. A.; Brunold, T. C.; Riordan, C. G. *Inorg. Chem.* 2008, 47, 3931.

⁽³⁾ Kieber-Emmons, M. T.; Van Heuvelen, K. M.; Brunold, T. C.; Riordan, C. G. J. Am. Chem. Soc. 2009, 131, 440.

 ⁽⁴⁾ Xin, Q. X.; Wang, B. Y.; Jin, G. X. Z. Naturforsch. B 1996, 51b, 1197.
 (5) (a) Yao, S.; Milsmann, C.; Eckard, B.; Wieghardt, K.; Driess, M.
 J. Am. Chem. Soc. 2008, 130, 13536. (b) Yao, S.; Eckard, B.; Milsmann, C.;
 Wieghardt K. Driess M. Angew. Chem. Int. Ed. 2008, 47, 7110.

<sup>Wieghardt, K.; Driess, M. Angew. Chem., Int. Ed. 2008, 47, 7110.
(6) (a) Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 4070. (b)
Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 7606. Torres-Nieto, J.;
Brennessel, W. W.; Jones, W. D.; Garcia, J. J. J. Am. Chem. Soc. 2009, 131, 4120.</sup>

⁽⁷⁾ Oster, S. S.; Lachicotte, R. J.; Jones, W. D. Inorg. Chim. Acta 2002, 330, 118.

⁽⁸⁾ Karacar, A.; Thonnessen, H.; Jones, P.; Bartsch, R.; Schmutzler, R. *Heteroatom. Chem.* **1997**, 8(6), 539.

⁽⁹⁾ See the Supporting Information for crystallographic details for 1.

Figure 1. X-ray structure of **2** (50% probability). H atoms are omitted for clarity. Selected metrical parameters (distances in angstroms and angles in degrees): S(1)-S(2) = 2.059(2), Ni(1)-S(1) = 2.204(3), Ni(1)-S(2) = 2.185(3); S(1)-Ni(1)-S(2) = 55.97(6), P(1)-Ni(1)-P(2) = 98.89(5), P(1)-Ni(1)-S(1) = 102.98(7), P(2)-Ni-S(2) = 102.23(8), Ni(1)-S(1)-S(2) = 61.56(14), Ni(1)-S(2)-S(1) = 62.47(13).

Scheme 2. Redox Processes That Interconvert Complexes 2–4 Involve the Sulfur Ligands, not the Nickel(II) Centers

The reaction of a THF solution of **2** with 1 equiv of $[Cp_2Fe]$ -[BAr^F₄] (BAr^F₄ = B[3,5-(CF₃)₂C₆H₃)]₄) results in the formation of the dicationic dimer, [{(dippnapht)Ni}₂($\eta^2:\eta^2$ -S₂)]-[BAr^F₄]₂ (**3**), as a dark-red, analytically pure solid in 82% yield (Scheme 2). Gas chromatography/mass spectrometry analysis of the reaction solution indicates that the fate of the second S₂ moiety is in the formation of S₈ (M + 256). Thus, oxidation of **2** results in the two-electron oxidation of the S₂²⁻ subunit instead of nickel, formally giving sulfur and "(dippnapht)Ni²⁺", which reacts via dimerization with **2** to give **3**. Attempts to trap the eliminated S₂ with 2,3-dimethyl-1,3-butadiene resulted in the detection of primarily S₈, with only a minor component of the expected Diels–Alder product (<2%) observed.¹⁰

Complex 3 is diamagnetic and has been characterized by solution NMR spectroscopy, X-ray diffraction, and elemental analysis. The solid-state structure of 3 shows a puckered, butterfly-like geometry for the Ni_2S_2 kernel (the two NiS_2 planes' torsion angle = 112.2°) with planar, four-coordinate

Figure 2. X-ray stuctures of the complex dications of **3** (top) and **4** (bottom) (50% probability), H atoms and $BArF_4$ counterions are omitted for clarity. Selected metrical parameters (distances in angstroms and angles in degrees) for **3**: S(1)-S(2) = 2.054(2), Ni(1)-S(1) = 2.197(2), Ni(1)-S(2) = 2.202(2), Ni(1)-Ni(2) = 3.2326(4); Ni(1)-S(1)-Ni(2) = 94.35(6), Ni(1)-S(2) = 75.57(5). Those for **4**: S(1)-S(2) = 2.839(4), Ni(1)-S(1) = 2.165(4), Ni(1)-S(2) = 55.57(5), Ni(1)-Ni(2) = 3.284(2); Ni(1)-S(1) = Ni(2) = 98.6(2), Ni(1)-S(2) = Ni(2) = 98.0(2), S(1)-Ni(1)-S(2) = 81.7(2).

d⁸ nickel centers flanking the central S_2^{2-} unit (Figure 2). The Ni atoms are well separated at 3.2326(4) Å. The Ni–S [2.197(2) and 2.202(2) Å] and S(1)–S(2) [2.054(2) Å] distances in **3** are similar to those found in **2** and in the related neutral, butterfly-shaped complex {(nacnac)Ni}₂(η^2 : η^2 -S₂) [with S–S = 2.051(1) Å and Ni₂S₂ = 133.9°].⁵

The reduction of solutions of **3** with potassium graphite yields the neutral bis(μ -sulfido)nickel(II) dimer {(dippnapht)-Ni}₂(μ -S)₂ (**4**) as a diamagnetic brown solid in 72% isolated yield (Scheme 2). The reduction occurs at the S₂²⁻ ligand to give two μ -S²⁻ ligands, with nickel remaining in the 2+ oxidation state.

The solid-state structure of 4 is shown in Figure 2 and reveals a long S(1)-S(2) separation [2.839(4) Å] consistent with the reduction of the $S_2^{2^{-1}}$ ligand to $S_2^{4^{-1}}$ and cleavage of the remaining $S-S\sigma$ bond (Figure 2). Unlike in 3, the Ni and S atoms of 4 are rigorously coplanar. This reduction is reversible, and the reaction of 4 with $[Cp_2Fe][BAr^F_4]$ results in its oxidation to 3 in high yield (Scheme 2). Complex 4 can be independently synthesized by alternative methods (Scheme 2). The reaction of 1 and 2 in a 1:1 stoichiometry gives 4 in high yield. In this reaction, the nickel(0) reagent **1** reduces the S_2^{2-} unit in **2** by two electrons, giving the observed Ni^{II}-Ni^{II} product. Consistent with this finding, the reaction of carefully controlled, stoichiometric amounts of S_8 (Ni:S = 1:1) with 1 gives 4 directly, presumably via the intermediacy of **2**. A third route to **4** involves thermolysis of 2 with an excess of PMe₃, resulting in the formation of S=PMe₃ and 4 in moderate yield.¹¹ We observed no spectroscopic evidence for a (dippnapht)Ni=S intermediate,

⁽¹⁰⁾ Steliou, K.; Salama, P.; Brodeur, D.; Gareau, Y. J. Am. Chem. Soc. 1987, 109, 926.

⁽¹¹⁾ Fujita, K.; Schenker, R.; Gu, W.; Brunold, T. C.; Cramer, S. P.; Riordan, C. G. *Inorg. Chem.* **2004**, *43*, 3324.

although such a monomeric sulfido complex seems to be a logical precursor to 4 in this reaction.¹²

In summary, the use of a bulky, naphthalene-based bis-(phosphine) has allowed for isolation of a monomeric nickel-(II) η^2 -disulfide complex (2), which can be cleanly oxidized with ferrocenium to generate a dicationic $S_2^{2^-}$ bridging disulfide dimer (3) with elimination of elemental sulfur. The dimer 3 undergoes clean and reversible reduction to a new neutral dimer (4) in which reduction takes place within the S_2 unit and results in cleavage of the S-S bond. The dimer 4 can be prepared from other routes, but no evidence is found for a stable terminal sulfido complex in this system.

Acknowledgment. This work was supported by the National Science Foundation through Grants CHE-0615274 and CHE-0957816 (to G.L.H.) and a Beckman Scholars Fellowship from the Arnold and Mabel Beckman Foundation (to C.K.B.).

Supporting Information Available: Experimental, spectroscopic, and analytical details and complete crystallographic details for 1-4 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹²⁾ Dimer 4 can also be prepared by the reaction of (dippnapht)NiCl with LiSPh₃. Gomberg's dimer was also observed as a product. The mechanism of this reaction, involving the elimination of Ph_3C^* , also implicates a (dippnahpt)Ni=S intermediate.