

Triazacyclohexane (tach) Complexes of High-Valent Rhenium: Syntheses of $[(R_3 tach) ReO_3]^+$ (R = $-CH_3,$ $-CH_2C_6H_5)$ and Its Substitution Reactions

Henrik Braband, Sebastian Imstepf, Michael Felber, Bernhard Spingler, and Roger Alberto*

Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Received October 26, 2009

N-Alkylated derivatives of 1.3.5-triazacyclohexane (tach) are versatile, facially coordinating ligands. We present the syntheses and full characterization of two new complexes of the $[(R_3 tach)ReO_3]^+$ type. In these complexes, the tach ligand is readily substituted by bi- and tridentate ligands; hence, they can be considered as sources of the $[ReO_3]^+$ motif for Re^{VII} complexes.

The coordination chemistry of rhenium with 1,4,7-triazacyclononane (tacn) as a ligand is very well developed, and a variety of complexes containing rhenium in the formal oxidation states I+,¹III+,²⁻⁴IV+,^{4,5}V+,^{4,6-8} and VII+^{7,9-11} have been described and fully characterized. In contrast to tacn chemistry, complexes containing the smallest member of the triazacycloalkane family, 1,3,5-triazacyclohexane (tach) and N-alkylated derivatives (R₃tach) thereof, are rather rare and do not exist for rhenium and technetium in particular. For the neighboring elements molybdenum and tungsten. Baker et al. reported complexes with 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me₃tach) ligands in $[(Me_3tach)M^0(CO)_3]$ (M = Mo, W). The tach ligand in these complexes is substitution-labile and enables access to a variety of metal carbonyl complexes via displacement reactions of Me₃tach.¹² Furthermore, the low

- (6) Che, C.-M.; Cheng, J. Y. K.; Cheung, K.-K.; Wong, K.-Y. J. Chem. Soc., Dalton Trans. 1997, 2347.
- (7) Cheng, J. Y. K.; Cheung, K.-K.; Chan, M. C. W.; Wong, K.-Y.; Che, C.-M. Inorg. Chim. Acta 1998, 272, 176.
 (8) Fung, W. H.; Cheng, W. C.; Peng, S. M.; Che, C. M. Polyhedron 1995,
- 14.1791
- (9) Wieghardt, K.; Pomp, C.; Nuber, B.; Weiss, J. Inorg. Chem. 1986, 25, 1659.

steric demand of the R₃tach ligand is a key feature for the development of homogeneous models ([$(R_3tach)CrCl_3$]) for the Phillips catalyst (CrO_3/SiO_2).^{13–15} Similar to tacn, R₃tach can also stabilize high oxidation states. Holm et al. reported Mo^{VI} complexes with R₃tach in order to demonstrate the nucleophilic character of the [Mo^{VI}O₃]⁰ fragment but left tach untouched.16

High-valent rhenium complexes comprising the fac-[ReO₃]⁺ motif with monodentate ligands have been of interest for catalytic applications for a long time.¹⁷ More recently, a strategy for radiolabeling of biomolecules via [3 + 2]cycloadditions of $[^{99m}TcO_3]^+$ -based complexes with alkenes was reported.¹⁸ In this context, stable $[ReO_3]^+$ analogues with tridentate ligands are of interest as nonradioactive reference complexes.

Herein, we report the syntheses, structural characterizations, and substitution properties of the two Re^{VII} complexes $[(Me_3tach)ReO_3][ReO_4]$ (1[ReO_4]) and $[(Bn_3tach)ReO_3]$ - $[\text{ReO}_4]$ (2 $[\text{ReO}_4]$; Bn₃tach = 1,3,5-tribenzyl-1,3,5-triazacyclohexane; Chart 1) and their ligand replacement reactions.

Under inert conditions, the common starting material [Re₂O₇] reacts very rapidly with Me₃tach or Bn₃tach in tetrahydrofuran (THF) or a mixture of THF and Et₂O to yield $1[ReO_4]$ and $2[ReO_4]$. The two complexes were received as colorless powders in 76% and 86% yield, respectively. Recrystallization from CH₃CN or THF produced air-stable colorless plates, suitable for X-ray diffraction analysis. The crystal structure of 1^+ is shown in Figure 1, and that of 2^+ is given in the Supporting Information (SI).

In 1^+ and 2^+ , three oxygen and three nitrogen atoms are coordinated to the rhenium center, which is in a strongly distorted octahedral environment. Because of the formation of a four-membered ring (Re-N-C-N), the N-Re-N

^{*}To whom correspondence should be addressed. E-mail: ariel@aci.uzh.ch. (1) Pomp, C.; Drueke, S.; Kuppers, H. J.; Wieghardt, K.; Kruger, C.;

<sup>Nuber, B.; Weiss, J. Z. Naturforsch., B: Chem. Sci. 1988, 43, 299.
(2) Pomp, C.; Duddeck, H.; Wieghardt, K.; Nuber, B.; Weiss, J. Angew.</sup> Chem., Int. Ed. 1987, 26, 924.

⁽³⁾ Pomp, C.; Wieghardt, K.; Nuber, B.; Weiss, J. Inorg. Chem. 1988, 27, 3789.

⁽⁴⁾ Bohm, G.; Wieghardt, K.; Nuber, B.; Weiss, J. Angew. Chem., Int. Ed. 1990, 29, 787.

⁽⁵⁾ Bohm, G.; Wieghardt, K.; Nuber, B.; Weiss, J. Inorg. Chem. 1991, 30, 3464.

⁽¹⁰⁾ Herrmann, W. A.; Roesky, P. W.; Kühn, F. E.; Scherer, W.; Kleine, M. Angew. Chem., Int. Ed. 1993, 32, 1714. (11) Herrmann, W. A.; Roesky, P. W.; Kühn, F. E.; Elison, M.; Artus, G.;

Scherer, W.; Romao, C. C.; Lopes, A.; Basset, J.-M. Inorg. Chem. 1995, 34, 4701

⁽¹²⁾ Baker, M. V.; North, M. R. J. Organomet. Chem. 1998, 565, 225.

⁽¹³⁾ Kohn, R. D.; Haufe, M.; Mihan, S.; Lilge, D. Chem. Commun. 2000, 1927

⁽¹⁴⁾ Kohn, R. D.; Haufe, M.; Kociok-Kohn, G.; Grimm, S.; Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 4337

⁽¹⁵⁾ Kohn, R. D.; Smith, D.; Mahon, M. F.; Prinz, M.; Mihan, S.; Kociok-Kohn, G. J. Organomet. Chem. 2003, 683, 200.

⁽¹⁶⁾ Partyka, D. V.; Staples, R. J.; Holm, R. H. Inorg. Chem. 2003, 42, 7877

⁽¹⁷⁾ Romao, C. C.; Kühn, F. E.; Herrmann, W. A. Chem. Rev. 1997, 97, 3197

⁽¹⁸⁾ Braband, H.; Tooyama, Y.; Fox, T.; Alberto, R. Chem. Eur. J. 2009, 15, 633.

Figure 1. ORTEP representation¹⁹ of the 1^+ cation. Thermal ellipsoids represent 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Re–O1 1.707(5), Re–O2 1.708(5), Re–O3 1.709(5), Re–N1 2.262(6), Re–N2 2.276(6), Re–N3 2.264(6); O1–Re–O2 109.6(3), O1–Re–O3 108.7(3), O2–Re–O3 108.6(3), N1–Re–N2 59.9(2), N1–Re–N3 60.4(2), N2–Re–N3 60.5(2).

bond angles are substantially smaller $[1^+, 59.9(2)-60.5(2)^\circ;$ $2^+, 59.4(2)-60.9(2)^\circ]$ than that in the corresponding $[(tacn)ReO_3]^+$ complex $[76.4(2)^\circ].^9$ In both complexes, the O-Re-O angles are opened up to $109.6(3)-108.6(3)^\circ$ for 1^+ and to $108.8(2)-107.6(2)^\circ$ for 2^+ . Bond angles close to the ideal tetrahedral angle are a typical feature for *fac*-[ReO_3]^+ cores (d⁰ systems) and mirror the sterical demand of the Re=O double bonds. All relevant bond lengths and angles of all synthesized [ReO_3]^+ complexes in this report are summarized in Tables SI2 and SI3 in the SI.

As solids, both complexes $1[\text{ReO}_4]$ and $2[\text{ReO}_4]$ are stable under dry conditions. They are soluble and stable in polar organic solvents but slowly hydrolyze to $[\text{ReO}_4]^-$ in the presence of water. The $\nu_{\text{Re}=0}$ stretching vibrations of 1^+ and 2^+ were observed at 934 and 940 cm⁻¹, respectively, and are in the same region as that in the comparable Re^{VII} complex [(tacn)ReO_3][ReO_4] (935 cm⁻¹).¹⁰

On the basis of the reports about substitutions of Me₃tach on $[(Me_3tach)M^0(CO)_3] (M = Mo, W)$,¹² a similar behavior was proposed for $[(Me_3tach)ReO_3]^+$ because of the isolobal relationship of the $[Re(CO)_3]^+$ and $[ReO_3]^+$ fragments. To assess the substitution lability of Me₃tach, 1[ReO₄] was reacted with a series of bi- and tridentate ligands. The reactions of 1[ReO₄] with 2,2'-bipyridine (bipy), 1,10-phenanthroline-5,6-dione (phd), and tetrapyrido[3,2- α :2',3'-c:3'',2'''-h:2''',3'''-j]phenazine (tpphz) lead under moderate conditions and in good yields to the corresponding complexes [(bipy)ReO₃Cl] (3), [(phd)ReO₃Cl] (4), and the binuclear compound [(tpphz)(ReO₃Br)₂] (5), respectively (Scheme 1).

Figure 2. ORTEP representation¹⁹ of **4** and one conformation of the ligand in **6**. Thermal ellipsoids represent 50% probability. Hydrogen atoms are omitted for clarity (except N–H of **6**). Selected bond lengths (Å) and angles (deg) in **4**: Re–O1 1.689(5), Re–O2 1.703(5), Re–O3 1.726(6), Re–N1 2.263(5), Re–N2 2.241(5), Re–C1 2.455(2); O1–Re–O2 103.8(2), O1–Re–O3 103.6(3), O2–Re–O3 107.5(3), N1–Re–N2 71.4(2), N1–Re–C1 78.0(2), N2–Re–C1 75.9(2). Selected bond lengths (Å) and angles (deg) in **6**: Re–O1 1.732(3), Re–O2 1.725(3), Re–O3 1.750(3), Re–N1b 2.32(2), Re–N2b 2.25(2), Re–N3b 2.02(2); O1–Re–O2 108.2(2), O1–Re–O3 103.9(2), O2–Re–O3 103.8(2), N1b–Re–N2b 74.5(4), N1b–Re–N3b 75.9(5), N2b–Re–N3b 76.2(5).

Scheme 1. Ligand Replacement Reactions of $1^+\ {\rm with}\ {\rm Bi-}\ {\rm or}\ {\rm Tridentate}\ {\rm Ligands}$

Whereas **3** is known and has been fully characterized,²⁰ complex **4** is new. It was possible to structurally characterize **4** and to confirm its authenticity (Figure 2).

However, because of the complete insolubility of **4** in common organic solvents, crystals were obtained along a different route. TBA[ReO₄] was dissolved in benzoyl chloride and layered with a solution of phd in dry MeCN. The slow diffusion of phd into the activated [ReO₄]⁻ (O₃ReOCO-C₆H₅) afforded X-ray-quality crystals. A comparison with the IR spectra of **4** received by a substitution reaction from **1**⁺ and elemental analysis confirmed the identity of the products prepared along the two routes.

With its extensive π system, tpphz belongs to a class of ligands that are under intensive investigation because of their unique feature of forming stable metal complexes with

⁽²⁰⁾ Herrmann, W. A.; Kühn, F. E.; Romao, C. C.; Kleine, M.; Mink, J. Chem. Ber. 1994, 127, 47.

interesting excited-state reactivities and redox properties.^{21,22} The low solubility of tpphz renders the synthesis of complexes with this ligand difficult. The reactive complex 1^+ reacted in MeCN with suspended tpphz to form 5. The product 5 precipitated immediately from the reaction solution and formed an insoluble, yellow powder, which was characterized by IR spectroscopy and elemental analysis (see the SI).

The characteristic Re=O vibrations for 3-5 were all found between 947 and 943 cm⁻¹ (symmetric Re=O vibration), 923 and 919, and 914 and 902 cm⁻¹ (asymmetric Re=O vibration), respectively. These are the typical regions for [ReO₃]⁺ complexes with bidentate ligands.²⁰

The reaction of 1^+ with tacn did not directly yield the expected [(tacn)ReO₃][ReO₄]. The tacn ligand replaced Me₃-tach very rapidly; however, because of the strong basicity of the replaced Me₃tach, the zwitterionic species [(tacn-H)ReO₃] (6) precipitated as a green/yellow powder from the solution. Complex 6, described by Pomp and Wieghardt,²³ is insoluble in common organic solvents. If 6 is dissolved in water, an equilibrium between 6 and its protonated form 6^+ is established (p $K_a = 10.3$ for 6^+).²³ Evaporation of such an equilibrated solution leads to exclusive crystallization of 6 as yellow sticks of X-ray quality. The crystal structure of 6 is shown in Figure 2.

In **6**, the rhenium atom is in a distorted octahedral environment of three facially coordinated nitrogen atoms of the macrocyclic ligand and three oxygen atoms. The X-ray structure of **6** shows the deprotonated tacn ligand to be disordered in a ratio of 52:48. The two crystallographic species have very similar structural $(\lambda/\delta \text{ disorder of the tacn})$ features. Thus, only one will be discussed in detail. In contrast to the cationic compound [(tacn)ReO₃][ReO₄], the Re–N bond lengths in **6** are not equidistant.⁹ Whereas two bond lengths in **6** are longer [2.32(2) and 2.25(2) Å] than that in [(tacn)ReO₃][ReO₄] [2.197(5) Å], the bond length of the deprotonated nitrogen atom to the rhenium atom (Re–N3b) is significantly shorter [2.02(2) Å]. The short Re–N bond also influences the Re=O bond length in the trans position, which is slightly longer [1.750(3) Å] than the Re=O bond lengths trans to the protonated amines [1.732(3) and 1.725(3) Å]. The strongly distorted coordination sphere is mirrored in a complex splitting of the Re=O vibrations (917–845 cm⁻¹, multicomponent band) in the IR spectrum of **6**.²³

In conclusion, the two new complexes presented here, $1[\text{ReO}_4]$ and $2[\text{ReO}_4]$, can be considered as new sources of the $[\text{ReO}_3]^+$ motif and pave the way for syntheses of $[\text{Re}^{\text{VII}}\text{O}_3]^+$ complexes by ligand substitution. The synthesis of $[\text{Re}^{\text{VII}}\text{O}_3]^+$ complexes by ligand replacement reactions can complement today's established reaction pathways for the synthesis of $[\text{ReO}_3]^+$ complexes, which start directly either from $[\text{Re}_2\text{O}_7]$ or from complexes in lower oxidation states and subsequently oxidize to Re^{VII} . As a proof of principle, a series of $[\text{ReO}_3]^+$ complexes were synthesized following this new synthetic strategy.

Acknowledgment. H.B. acknowledges financial support from the Swiss National Science Foundation, Ambizione project PZ00P2_126414.

Supporting Information Available: Full synthetic and spectroscopic details for all compounds and crystallographic data for complexes 1[ReO₄], 2[ReO₄], 4, and 6. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽²¹⁾ Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759.

⁽²²⁾ Ortmans, I.; Moucheron, C.; Kirsch, A. Coord. Chem. Rev. 1998, 168, 233.

⁽²³⁾ Pomp, C.; Wieghardt, K. Polyhedron 1988, 7, 2537.