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On the basis of magnetic susceptibility and heat capacity data, copper pyrazine dinitrate crystal [abbreviated
CuPz(NO3)2] has long been considered a good prototype for S = 1/2 antiferromagnetic (AFM) Heisenberg chain
behavior down to 0.05 K. However, a recent muon-spin rotation experiment indicated the presence of a previously
unnoticed 1D to 3Dmagnetic transition below 0.107 K. Our aim in this work is to perform a rigorous quantitative study of
the mechanism of this 1D-3D magnetic transformation, by doing a first-principles bottom-up study of the CuPz(NO3)2
crystal at 158 K, where the magnetic properties are clearly 1D, and at 2 K, at which the neutron structure (reported in
this work) is considered nearly identical with that below 0.1 K (due to small thermal effects). A change in the magnetic
topology is found between these two structures: at 158 K, there are isolated AFM spin chains (Jintra = -5.23 cm-1),
while at 2 K, the magnetic chains (Jintra = -5.96 cm-1) weakly interact (the largest of the Jinter parameters is -0.09
cm-1). This change is caused by thermal contraction upon cooling (no crystallographic phase transition is detected
down to 2 K, and one will not likely occur below that temperature). The computed and experimental magnetic
susceptibility χ(T) curves are nearly identical. The calculated heat capacity Cp(T) curve has a maximum at 6.92 K,
close to the 5.20 Kmaximum found in the experimental curve at zero external field. In spite of the 3Dmagnetic topology
of the crystal at low temperature, the magnetic susceptibility and heat capacity curves behave as a pure 1D AFM chain
in all regions because of the large Jintra/Jinter ratio (66.2 in absolute value) and the effect of including the Jinter
interactions will not be easily appreciated in any of these experiments. The impact of the presence of odd- and even-
membered regular AFM finite chains in the CuPz(NO3)2 crystal has also been evaluated. Odd-membered interacting
chains produce an increase in both χ(T) and Cp(T) curves when the temperature is very close to zero, in agreement
with the experimental observations, while even-membered chains produce a small shoulder in the Cp(T) curve
between 0.8 and 5 K. No changes are seen in the remaining regions. Concerning the spin gap, odd-membered chains
present a quasi-zero gap but the finite even-membered chains still have a sizable one. Finally, the effect of increasing
the magnitude of Jinter was investigated by fixing the value of Jintra to that found for the 2 K CuPz(NO3)2 crystal. The
magnetic susceptibility and heat capacity curves remain practically unchanged.

Introduction

Progress in molecular magnets over the past several
decades has allowed the systematic development of mole-
cule-based ferrimagnets with room temperature sponta-
neous moments,1 molecule-based ferromagnets that are

simultaneously conducting,2 organic spin ladders,3 and
other types of magnets. Understanding the magnetic ex-
change interactions in these systems and the magnetic
dimensionality that they generate in any given crystal is
essential for the development of new molecule-based mag-
nets with improved properties. The advances in computa-
tional quantum chemistry, in conjunction with the
revolution of computer technology, have enable ab initio
calculations to provide reliable quantitative estimates for
the magnetic interactions. These unprecedented advances
mean that ab initio calculations based only upon knowl-
edge of a crystal structure will be able to play a major role
in the engineering of new molecule-based magnets.
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A method capable of rationalizing the magnetism of
molecule-based crystals is the recently introduced first-
principles bottom-up procedure,4 previously shown to
describe properly the experimentally known magnetic
properties of a variety of molecule-based magnets show-
ing different magnetic dimensionalities, ranging from
0D to 3D.5 A first-principles bottom-up study of a crystal
requires the successive realization of four steps: (1)
analysis of the crystal, to find all unique radical-radical
pairs, (2) computation of the JAB magnetic exchange
interactions for all unique radical-radical pairs, (3)
definition of the magnetic topology of the crystal (i.e.,
the network of magnetic interactions that the non-neg-
ligible JAB magnetic interactions create among the radi-
cals of the crystal), and (4) rigorous calculation of the
macroscopic magnetic properties (magnetic susceptibil-
ity, heat capacity, etc.). Previous theoretical studies on
magnetism performed steps 1 and 2 using first-principles
calculations but not computing the macroscopic magnetic
properties6 (steps 3 and 4). Alternatively, other theoretical
works only compute the magnetic properties (step 4) using
assumed values of the magnetic interactions in the Heisen-
berg Hamiltonian.7 Our first-principles bottom-up procedure
brings together these two well-known approaches, using as
the connecting tool the minimal magnetic model space
(selected in step 3 after computing all JAB and looking at
the magnetic topology that they generate in the crystal) and
allows one to contrast the computed results obtained in step 4
with the macroscopic experimental magnetic data. Besides
reproducing well the experimental magnetic properties of
many molecule-based magnets, this procedure agrees with
the results of many analytical models whenever the studied
systemobeys themagnetic topology assumed in themodel. In
particular, the results reported by the Bonner-Fishermodel8

used for 1D systems are also obtained out of a first-principles
bottom-up study when the magnetic topology is a chain.

Finally, it is worth pointing out that the first-principles
bottom-up procedure allows the study of any kind of
magnetic topology. Thus, it enables one to investigate the
effects of a change in the magnetic topology of a crystal, by
applying the procedure to a structure determined above and
below the temperature where the change in topology takes
place.
As a demonstration of these advances, we examine in

this work the change in the magnetic dimensionality in
copper pyrazine dinitrate,9-12 henceforth abbreviated as
CuPz(NO3)2. This system was considered as an excellent
example of a 1D Heisenberg S = 1/2 antiferromagnet
down to 0.05 K9-11 until recent muon-rotation experiments
showed the presence of a previously unnoticed 1D-3D mag-
netic transition below 0.107 K.12 Ideal 1D Heisenberg anti-
ferromagnetic (AFM) systems are expected to be gapless (zero
spin gap) and also should present no long-range magnetic
order forT>0K.8 Furthermore, they are good candidates for
the studyof quantum fluctuations (i.e., zero-temperature phase
transitions at |B|= |2J/gB|

13). Thus, the lack of 1D dimension-
ality at low T is relevant. Such a change in dimensionality in
CuPz(NO3)2 will be analyzed in this work by comparing
the results of a first-principles bottom-up study of a structure
obtained at 158 K,11 a region where CuPz(NO3)2 is known
to behave as a 1D regularAFMchain, and a newly determined
2 K neutron diffraction structure (CCDC 761445), which also
can be taken as a good representation of CuPz(NO3)2 around
0.1 K given the small thermal contraction effects expected for
the crystal below 2 K.

Computational Details

In this section, we will briefly describe the main steps and
underlying physics behind the first-principles bottom-up
procedure that we apply to the study of the CuPz(NO3)2
crystal. For the interested reader, a detailed mathematical
and physical account of the procedure is available in the
literature.4

The first-principles bottom-up procedure requires the suc-
cessive realization of the following four steps:

Step 1: Analysis of the crystal structure in order to find all
unique A-B radical-radical pairs that might be responsible
for themicroscopicmagnetic interactions. In practical terms,
such a selection is done by identifying each symmetry-unique
radical A and then choosing all A-B radical pairs, di, whose
interpair distance is smaller than a given threshold value.
Step 2: Computation of the microscopic JAB magnetic inter-
actions for all A-B radical-radical pairs selected in the
previous step. The CuPz(NO3)2 crystal consists of diamag-
netic Pz andNO3

- ligands coordinated to CuII, which has an
unpaired electron. Therefore, any radical-radical pair can
present either a singlet or triplet electronic state. The value of
JAB for each pair is then obtained from the energy difference
between the open-shell singlet (EBS

S) and triplet (ET) states,
both at the crystal geometry (158 and 2 K). We computed
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both energies using the B3LYP functional,14 the Ahlrichs-
pVDZ15 basis set for Cu, and a 6-31þG(d)16 basis set for the
remaining atoms. For a proper description of the open-shell
singlet, the broken-symmetry approximation was used.17

Within this approximation, the value of JAB is obtained as
2JAB= 2(EBS

S- ET),18 (the expression for JAB derives from
the original broken-symmetry equations17 when the SOMO
orbitals of the two radicals do not overlap). For magnetic
superexchange interactions, although its use has been con-
troversial, it provides results closer to the experimental
values in most cases.19 All of the B3LYP calculations on
the radical pairs were done using Gaussian-03.20

Step 3:Definition of themagnetic topology of the crystal and
corresponding minimal magnetic model using the non-neg-
ligible JAB values. Two neighboring A-B radical sites are
connected whenever its magnetic interaction presents a |JAB|
value larger than a given threshold. Themagnetic topology is
then defined in terms of how non-negligible JAB interactions
propagate along the crystal axes. Complementarily, the
minimal magnetic model is defined as the smallest set of
radicals that include all non-negligible JAB interactions in a
ratio as close as possible to that found in the infinite crystal.
The repetition of such a minimal model along the crystal-
lographic (a, b, and c) directions should regenerate the
magnetic topology of the full crystal (a useful test to check
the validity of the selected model spaces). The radical centers
constituting the minimal magnetic model define a spin space
that is used to compute the matrix representation of the
corresponding Heisenberg Hamiltonian.18

Step 4: The Heisenberg Hamiltonian matrix is diagonalized to
obtain the energy for all possible spin states. The size of the
corresponding basis set increases with the number of doublet
radical centers N of the minimal magnetic model as N!/[(N/2)!
(N/2)!]. Current computer limitations allow us up to 16 doublet
centers.Notice that the onlyparameters required to compute that
matrix representation of theHeisenbergHamiltonian are the JAB
parameters computed in step 2. The obtained energies are then
used to compute the magnetic susceptibility χ(T) and/or heat
capacityCp(T) using the appropriate expressionsobtained froma
statistical mechanics treatment.

2 K Neutron Study

Neutron diffraction at 2 K was carried out on the BER-II
reactor of Helmholtz ZentrumBerlin using the fine-resolution

powder diffractometer E9 (Table 1). The neutronwavelength
provided by the germanium monochromator was 1.7979 Å.
The sample was encapsulated in a vanadium can and cooled
in a 4He-flow cryostat. Rietveld analysis of the diffraction
data, taken at 2 and 298 K, was carried out using the
WinPLOTR/Fullprof package.21 The diffraction data
showed that the sample was a single phase. The refinement
indicated a degree of deuteration of 93%. The structural
parameters observed at 2 K, relevant for the present study,
are listed in aCIF file of the crystal structure,which is given in
the Supporting Information and can be downloaded from
Cambridge Structural Database (CCDC 761445).

Results and Discussion

In order to rationalize the magnetic properties of CuPz-
(NO3)2, weperformed two separate first-principles bottom-up
four-step theoretical studies based on the 158 and 2 K crystal
structures [the 2 K structure is taken in this work as a good
representation of CuPz(NO3)2 around 0.1 K given the small
thermal contraction effects expected below 2 K]. The 158 K
structure, whose main features are depicted in Figure 1, was
obtained from X-ray diffraction and was taken from the
literature.11 The 2 K structure was obtained from neutron
diffraction experiments as part of this study. The resulting
crystal structure observed at 2 K (the CIF file is given in the
Supporting Information) is essentially identical with that at
ambient temperature. Only slight variations of the lattice
parameters and fractional coordinates are found (Table 2
collects the cell parameters for both structures).

Table 1. Crystallographic Data for the 2 K Neutron Diffraction of CuPz(NO3)2
Crystals

empirical formula C4H4N4O6Cu
fw 229.6
radiation neutron, wavelength 1.7979
cryst syst orthorhombic
cryst habit blue powder
space group Pmna

Unit Cell Dimensions

a, Å 6.69166(6)
b, Å 5.10538(4)
c, Å 11.60022(9)
V, Å3 396.304(6)
Z 2
size, mm powder
F(000) 266

Data Collection

temperature, K 2
max., min transmn 0.7556, 0.3177
reflns collected 304
θ range, deg -0.927 to þ78.90
ranges of h, k, l 0 e h e 7

0 e k e 5
0 e l e 11

Refinement

data/restraints/param 304/0/32
Rietveldt R factors

Rp 0.123
Rwp 0.136
Rexp 0.0496
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where A and B indexes run over all non-

negligible different radical pairs in the minimal model space, ÎAB is the
identity operator, and ŜA and ŜB are the spin operators acting on radicals A
and B of the A-B radical pair. It is worth pointing out that the energy
spectrum computed using this Hamiltonian results in the same energy
differences between different eigenvalues as those obtained using the more

common expression: Ĥ ¼ -2
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JABŜA 3 ŜB.

(19) For instance, see:(a) Ribas-Ari~no, J.; Novoa, J. J.; Miller, J. S. J.
Mater. Chem. 2006, 16, 2600. (b) Ruiz, E.; Alvarez, S.; Cano, J.; Polo, V. J.
Chem. Phys. 2005, 123, 164110. (c) Adamo, C.; Barone, V.; Bencini, A.; Broer,
R.; Filatov, M.; Harrison, N. M.; Illas, F.; Malrieu, J. P.; Moreira, I. P. R. J. Chem.
Phys. 2006, 124, 107101.

(20) Frisch, M. J.; et al. Gaussian-03, revision C.02; Gaussian, Inc.: Wall-
ingford, CT, 2004.

(21) Roisnel, T.; Rodrı́guez-Carvajal, J. In Materials Science Forum,
Proceedings of the Seventh European Powder Diffraction Conference
(EPDIC 7), Barcelona, Spain, 2007; Delhez, R., Mittenmeijer, E. J., Eds.; Trans
Tech Publications: Zurich, Switzerland, 2000; pp 118-123.



Article Inorganic Chemistry, Vol. 49, No. 4, 2010 1753

Both crystal structures belong to the orthorhombic Pmna
crystallographic group with an average change in the crystal-
lographic cell lengths of only 0.012 Å (the maximum is 0.024
Å for the c axis, which defines the separation between the
planes of CuPz(NO3)2 chains; see Table2). The shortest
intermolecular Cu 3 3 3Cu, C-H 3 3 3π (measured as the short-
est H 3 3 3Ncontact), andO 3 3 3O contacts in the 158K crystal
are just slightly longer than those in the 2K crystal: at 158K,
the five unique radical-radical pairs (d1-d5; Table 3 and
Figure 2) have an average value for the shortest Cu 3 3 3Cu
distance of only 0.009 Å longer than that in the 2 K crystal,
with an equivalent increase for the H 3 3 3N(Pz) contact of
0.080 Å and a decrease of 0.003 Å for the O 3 3 3O contact. At
both temperatures, the CuPz(NO3)2 crystal is characterized
by the presence of parallel infinite 3 3 3Pz-Cu-Pz-Cu-
Pz 3 3 3 chains along the a axis. Nearby chains are linked by
attractive C-H 3 3 3OandC-H 3 3 3π interactions, whose sum
is expected to be stronger than the repulsions between the
NO3

- ligands because, otherwise, a stable crystal would not
be formed. The chains pack and form planes along the ab
axes, which then stack along the c axis to form the complete
crystal.
The magnetic properties of the CuPz(NO3)2 crystal

result from the interactions among doublet Cu2þ ions,
each of them tetracoordinated to two diamagnetic neutral
pyrazine (Pz) ligands along the a axis and two diamagnetic
nitrate (NO3

-) anions along the bc plane. The atomic
spin population of an isolated Cu(Pz)2(NO3)2 aggregate
(Figure 1a, obtained from UB3LYP calculations14 using
the Ahlrichs-pVDZ15 basis set for Cu and a 6-31þG(d)16

basis set for the remaining atoms) indicates that only
0.58 electrons are located on the Cu2þ atom, while 0.10
electrons are located on the two N atoms of the Pz ligand
coordinated to Cu and 0.11 electrons on two O atoms of
the NO3

- ligand coordinated to Cu (notice that these

values were computed for the 158 K structure but are
nearly identical with those obtained for the 2 K structure).
Such a spin distribution suggests that both Pz and NO3

-

ligands could play a role in transmitting the magnetic
interaction between nearby Cu2þ atoms.
The initial experimental magnetic studies9-11 on CuPz-

(NO3)2 concluded that it is almost an ideal 1D magnetic
system: although it exhibits a low value for intrachainmagnetic
exchange constant Jintra(exp) = -3.7 cm-1, its interchain
magnetic exchange constant is 4.4� 10-3 times smaller,12 that
is, Jinter(exp)=-0.016 cm-1.Neutron diffraction experiments
also confirmed that Jintra is the magnetic interaction along the
Cu2þ-Pz-Cu2þ axis.11However, recentmuon-spin relaxation
experiments12 demonstrated the presence of 3D long-range
order below 0.107 K. Note that this long-range order was not
detected in previous magnetic susceptibility and specific heat
experiments down to 0.070 K.9-11

1. Structure and Magnetic Topology of the 158 and 2 K
CuPz(NO3)2 Crystals. As yet mentioned, each radical is a
doublet and analysis of the spin density shows that the
unpaired electron is mainly localized on the Cu2þ atom,
although Pz and NO3

- ligands bear a non-negligible spin
contribution. Thus, the A-B pairs were selected by looking
at all radical pairs having aCu 3 3 3Cudistance smaller than a
cutoff of 10.0 Å (this cutoff includes all first-nearest neigh-
bors and the closest second-nearest neighbors). There are
only five unique radical-radical pairs, d1-d5 (see Figure 2).
The d1 pair is formed by two radicals of adjacent chains
along the b axis, with a Cu 3 3 3Cu distance of 5.112 Å in the
158Kcrystal.Thed2pair is formedby selecting twoadjacent

Figure 1. (a) Schematic view of the square-planar coordination of the Cu2þ atom (atom numbering is given) and of its spin distribution (the 0.002 au
isodensity surface is plotted). (b) Crystal packing of CuPz(NO3)2 (radical pairs d1-d5 along the a, b, and c axes are indicated). (c) Schematic view of the
packing in termsofCu2þ positions, indicating the networkof connections generated byall shortestCu2þ 3 3 3Cu

2þ contacts (drawnusing the same color code
as that employed in part b).

Table 2. Cell Parameters (in Å) for the 2 and 158 K Crystals of CuPz(NO3)2
a

temperature a b c

2 K 6.69166(6) 5.10538(4) 11.60022(9)
158 K 6.6970(10) 5.1129(10) 11.624(3)

contraction 0.005 0.007 0.024

aAll cell angles are 90� because both crystals belong to the ortho-
rhombic Pmna crystallographic group.

Table 3. Values of the JAB Magnetic Exchange Interactions Computed for the
d1-d5 Radical Pairs of the CuPz(NO3)2 Crystal Found in the 158 K X-ray and
2 K Neutron Crystallographic Structuresa

Cu 3 3 3Cu/Å H 3 3 3N(Pz)/Å O 3 3 3O/Å JAB(di)/cm
-1

dimer di 2 K 158 K 2 K 158 K 2 K 158 K 2 K 158 K

d1 5.105 5.112 3.780 3.829 2.736 2.731 þ0.06 -0.02
d2 6.692 6.697 4.558 4.538 6.692 6.697 -5.96 -5.23
d3 6.696 6.708 4.733 4.881 3.520 3.509 -0.09 -0.01
d4 8.417 8.425 3.780 3.829 7.229 7.232 þ0.03 þ0.02
d5 8.420 8.434 5.722 5.894 4.848 4.843 -0.06 0.00

aAlso indicated are the Cu 3 3 3Cu, H 3 3 3N(Pz), and O 3 3 3O distances
for each pair.

http://pubs.acs.org/action/showImage?doi=10.1021/ic902139h&iName=master.img-000.jpg&w=401&h=152
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radicals of the same a-axis chain (they are connected by a
common Pzmolecule), at a Cu 3 3 3Cu distance of 6.697 Å in
the 158 K crystal. The d3 pair is formed by two radicals of
adjacent chains along the c axis, with aCu 3 3 3Cu distance of
6.708 Å in the 158 K crystal. Finally, d4 and d5 pairs are
formed by radicals of adjacent chains along the b and c axes
simultaneously, whose Cu 3 3 3Cu distance is larger than 8.4
Å in both crystals. Notice also that in d2 the magnetic
interaction is through-bond,mediatedby thepyrazine ligand
(that is, Cu2þ-Pz-Cu2þ), while all other magnetic interac-
tions are through-space of the Cu2þ-NO3

-
3 3 3NO3

--
Cu2þ, Cu2þ-Pz 3 3 3Pz-Cu2þ, and Cu2þ-Pz 3 3 3NO3

--
Cu2þ type.These interactions canbeproperlymodeledusing
the aggregates shown in Figure 2 because all CuPz(NO3)2
units are neutral and thus no long-range electrostatic Ma-
delung field is required.22 Figure 1c shows the potential
network of magnetic interactions that these five interactions
could generate if all were different from zero.
The values for the JAB interactions computed for each

nonequivalent radical pair found in the 158 and 2 K
crystal structures of CuPz(NO3)2 are collected in Table 3.
In the 158 K crystal, only one interaction is larger than
(0.05 cm-1,23 J(d2) = -5.23 cm-1, which is very close
to the experimental value for Jintra (-3.7 cm-1). This
result is consistent with the experimental observation that

superexchange through pyrazine Pz ligands varies between
∼0 and about |7| cm-1.24 The possible impact of co-
operative effects in the JAB calculations was evaluated by
recomputing the value of J(d2) using a trimermodel. Such
a trimer was built by selecting three adjacent radicals
of the 1D chains. The recomputed J(d2) value is now
-5.54 cm-1. Therefore, cooperative effects do not play a
relevant role in the magnetic interactions in this system.
At this point, one can safely conclude that in CuPz(NO3)2
the through-bond Cu2þ-Pz-Cu2þ magnetic interac-
tions, J(d2), are much stronger than the through-space
interactions, J(d1) and J(d3)-J(d5), which are of the
Cu2þ-NO3

-
3 3 3NO3

--Cu2þ, Cu2þ-Pz 3 3 3Pz-Cu2þ,
and Cu2þ-Pz 3 3 3NO3

--Cu2þ types. Notice also that
Cu2þ-NO3

-
3 3 3NO3

--Cu2þ magnetic interactions
found in CuPz(NO3)2 are much weaker than some
Cu2þ-Cl- 3 3 3Cl

--Cu2þ or Cu2þ-Br- 3 3 3Br
--Cu2þ

magnetic interactions observed in analogous solids.25

This fact may suggest that monatomic ligands are more

Figure 2. Geometrical dispositionof the fiveunique di radical-radical pairs found in theCuPz(NO3)2 crystal.The d2 radical pairmakes superexchange (or
through-bond) magnetic interactions, while all other pairs make direct (or through-space) magnetic interactions.

(22) Kittel, C. Introduction to Solid State Physics, 7th ed.; John Wiley &
Sons, Inc.: New York, 1996.

(23) DFT accuracy in energies is 10-8 au. Thus, we take (0.05 cm-1 as a
threshold value below which JAB are supposed to be negligible. The validity
of such a statement in CuPz(NO3)2 was checked by comparing the results of
the macroscopic properties computed when including J(d1) and J(d3) with
those obtained when only J(d2) was employed, and they were indistinguish-
able, as discussed in the main text.

(24) (a) Richardson, H. W.; Wasson, J. R.; Hatfield, W. E. Inorg. Chem.
1977, 16, 484. (b) Hong, D. M.; Wei, H. H.; Chang, K. H.; Lee, G. H.; Wang, Y.
Polyhedron 1998, 17, 3565. (c) Haynes, J. S.; Sams, J. R.; Thompson, R. C.Can.
J. Chem. 1988, 66, 2079. (d) Haynes, J. S.; Rettig, S. J.; Sams, J. R.; Thompson,
R. C.; Trotter, J.Can. J. Chem. 1987, 65, 420. (e) Belaiche, M.; Benhammou, M.;
Drillon, M.; Derory, A.; Soufiaoui, M. Chem. Phys. Lett. 2004, 395, 75. (f)
Awwadi, F. F.; Landee, C. P.; Turnbull, M. M.; Twamley, B.; Wells, B. M.
Polyhedron 2005, 24, 2153.

(25) For Cu(2,5-dimethylpyrazine)Cl2, magnetic data are fitted to 2Jintra =
-20K=-13.9 cm-1, and 2J0 inter=-4K=-2.8 cm-1 with J0/J=0.20. See:
Awwadi, F. F.; Landee, C. P.; Turnbull, M. M.; Twamley, B.; Wells, B. M.
Polyhedron 2005, 24, 2153For Cu(2,5-dimethylpyrazine)Br2, larger values of J
exchange interaction are found. Turnbull, M. M. Private communication. Notice that,
because Cu2þ-Cl- 3 3 3Cl

--Cu2þ and Cu2þ-Br- 3 3 3Br
--Cu2þ magnetic inter-

actions depend on the distance and orientation of the interacting fragments, some of
them are strong and others can be very weak.

http://pubs.acs.org/action/showImage?doi=10.1021/ic902139h&iName=master.img-001.jpg&w=327&h=295
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effective in mediating through-space magnetic interac-
tions. Further studies on this subject are currently under-
way.
The previous results indicate that anisotropic thermal

contraction of theCuPz(NO3)2 crystal when cooling from
158 to 2 K induces an increase in the magnitude of the
J(d1-d5) parameters: J(d2) is still the strongest magnetic
interaction, preserving its AFM character, but now J(d1),
J(d3), and J(d5) are larger than (0.05 cm-1. As a con-
sequence, the magnetic topology of CuPz(NO3)2 at 158K
(Figure 3a) consists of isolated 1D chains, in good agree-
ment with the experimental facts. Contrarily, at 2 K the
magnetic topology presents a non-negligible 3D character
that could affect the magnetic properties at very low
temperature (Figure 3b).

2. Calculation of the Magnetic Susceptibility, Heat
Capacity, and Spin Gap for the 158 and 2 K CuPz(NO3)2
Crystal Structures. The energy spectrum was obtained by
diagonalizing thematrix representation of theHeisenberg
Hamiltonian within an appropriate magnetic model
space, as described above. Previous studies on 1D
chains5c have demonstrated that the macroscopic mag-
netic properties of an isolated chain can be described by
finite chains of n sites (ns model spaces; Figure S1 in the
Supporting Information) and that the simulated mag-
netic susceptibility χ(T) data agree better with the experi-
mental χ(T) values as the size of such a ns finite model is
increased. Such convergence is also observed to be valid
on the 158 K structure of CuPz(NO3)2 for finite magnetic
model spaces that include from 4 up to 12 spin centers (see
Figure 4a). Notice that formodels larger than 10s the χ(T)
results practically overlap and thus are not shown in
Figure 4a. Such a convergence can also be seen in the
χT(T) curves (see Figure S2 in the Supporting In-
formation). All model spaces reproduce themain features
of the experimental curve. However, there is a small
difference between the maximum of χ(T) using a 10s
magnetic model and the experimental data, which can
be attributed partially to the fact that the experimental
data were obtained from powder samples while the
computed results only account for single crystals aligned

along the z axis [note that χ(T) values from powder
samples are always an upper bound for χ||(T) from single
crystals9]. There are also possibleminor errors introduced
in the computed JAB values by the use of approximate
density functional theory (DFT) and truncated basis sets.
Finally, it should also be noted that our computed data
using the 10s model do not reproduce the strong increase
reported in the experimental magnetic susceptibility
curve below 0.5 K, which was attributed by the authors
to the presence of a mixture of finite chains with odd and
even numbers of sites.10 The impact of these finite frag-
ments on the magnetic susceptibility curve will be ad-
dressed further below.
The balanced description of all of the microscopic JAB

interactions found in an infinite CuPz(NO3)2 crystal
requires a 3D magnetic building block that includes four
adjacent chains with two sites (2s) per chain, a magnetic
model hereafter identified as the 4 � 2s model (the name
originates from the four chains it contains, each made of
two sites; Figure S1 in the Supporting Information). We
tested the convergence of the magnetic susceptibility with
an increase in the size of the chains by doing calculations
with the 4� 2s and 4� 4s magnetic models (Figure S1 in
the Supporting Information). A good agreement between
computed χ(T) curves was found (Figure 4b).
Looking at the χ(T) curves computed using 1D and 3D

models, it is possible to evaluate quantitatively the impact
of including the interchain magnetic interactions in the
computation. Figure 4c plots the χ(T) curves computed
using a 4 � 4s 3D model with a parent model where no
interchain interactions have been included (the 4s 1D
model, for which two different computations were done,
depending on J(d2) = -5.96 cm-1 at 2 K or -5.23 cm-1

at 158 K). It is shown that the χ(T) curve using the 4� 4s
model is practically identical with the χ(T) curve using the
4s model if computed with the same J(d2) parameter
(-5.96 cm-1). Notice that the same 4s 1D model with a
J(d2) parameter of -5.23 cm-1 shows a slight difference
in the χ(T) curve in the maximum region. In conclusion,
the interchain J(di) interactions make an almost negligi-
ble impact on the computed χ(T) curve. In another words,

Figure 3. Magnetic topology of theCuPz(NO3)2 crystal at (a) 158 and (b) 2K.Only the non-negligiblemagnetic interactions (JAB values larger than |0.05|
cm-1) define the magnetic topology (their values are also given, in cm-1).

http://pubs.acs.org/action/showImage?doi=10.1021/ic902139h&iName=master.img-002.jpg&w=344&h=206


1756 Inorganic Chemistry, Vol. 49, No. 4, 2010 Jornet-Somoza et al.

the 1D to 3D change in dimensionality in this crystal
cannot be visualized by magnetic susceptibility studies.
The heat capacity curve was also investigated, looking

at the change produced when the interchain J(di) inter-
actions were included. Figure 5a shows the heat capacity
curves computed using 1D models ranging from 4 to 16
radical sites. With all models, a maximum was found in
the heat capacity curve of around 6.92K, very close to the
5.20 Kmaximum found in the experimental curve at zero
external field11 and associated with the presence of AFM
order. However, it is worth pointing out here that recent
studies26 suggest that the presence of a maximum in the
heat capacity curves cannot always be taken as a signa-
ture of long-range magnetic order: the absence of a sharp
λ peak on thatmaximum suggests that we are dealingwith
a Schottky anomaly caused by short-range correlations
among the chains. Notice that our computations cannot

distinguish between long- and short-range order because
of the finite size of our models. It is also worth pointing
out that all computed Cp(T) curves using finite-size
models (N > 8s) present a small shoulder in the 1-2 K
region, in agreement with previous results obtained
by Bonner and Fisher.8 The height and temperature
of this shoulder decrease as the size of the magnetic chain
model is increased (note that the same effect is observed
in linear as well as ring models; see Figure S3 in
the Supporting Information). The presence of such a
shoulder appearsduring explorationof the low-temperature
region in the experimentally measured heat capacity data
(T< 2 K).10,11

The effect on the heat capacity curve of the inclusion of
the Jinter interactions was studied (see Figure 5b) by
comparing the curves computed using a 3D model
that includes these interactions (the 4 � 4s 3D magnetic
model space) and the corresponding 1D model (1D
4s model, with J(d2) being -5.96 cm-1 at 2 K and
-5.23 cm-1 at 158 K). The 4 � 4s 3D and 4s 1D curves

Figure 4. (a) Computed χ(T) curve for the CuPz(NO3)2 crystal using
the following 1D magnetic model spaces: 4s (blue 0), 6s (purple 4), 8s
(green �), 10s (orange[), and 12s (O). (b) Computed χ(T) curve for the
CuPz(NO3)2 crystal using 4� 2s (blue9) and 4� 4s (red2) 3Dmagnetic
model spaces. (c) Comparison between the χ(T) curve computed with
the 4� 4s 3Dmodel (red2) and the 4s model when J(d2) =-5.23 cm-1

(blue 0) and J(d2) = -5.96 cm-1 (]). In all cases, the experimental
curve (b) obtained from powder samples is also shown.

Figure 5. (a) Computed heat capacity,Cp(T), curve for the CuPz(NO3)2
crystal studiedwith crystallographic datadetermined at 158Kusing the 4s
(red þ), 10s (orange [), 12s (O), 14s (blue 0), and 16s (purple 4) 1D
magneticmodel spaces. (b)Heat capacity curve computed using the 4� 4s
3Dmagnetic model space (red2), the 1D isolated 4s chain when J(d2) =
-5.96 cm-1 (redþ; it is not seen because it overlaps the red triangles), and
the samemodel space when J(d2) =-5.23 cm-1 (blue0). In all cases, the
experimental curve (b) is also shown.

(26) Sengupta, P.; Sandvik, A. W.; Singh, R. R. P. Phys. Rev. B 2003, 68,
094423.

http://pubs.acs.org/action/showImage?doi=10.1021/ic902139h&iName=master.img-003.jpg&w=228&h=387
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are almost identical. Therefore, the interchain J(di) inter-
actions make an almost negligible impact on the heat
capacity curve. Consequently, the 1D to 3D change in
dimensionality in this crystal cannot be visualized by heat
capacity studies.
We will finally study the impact of the change of

dimensionality on one last macroscopic property: the
singlet-triplet spin gap. Although for a perfect 1D
magnetic system the singlet-triplet spin gap should be
equal to zero,27 Bonner and Fisher8 reported a nonzero
spin gap due to the finite size effects in the model. In good
agreement with Bonner and Fisher, our computations
(Figure S4 in the Supporting Information) do not predict
zero spin gaps between the ground-state singlet and the
lowest-energy excited state (a triplet in the CuPz(NO3)2
crystal).28 As is also pointed by Bonner and Fisher, the
computed spin gap decreases as the length of the finite
magnetic model space is increased. This convergence
behavior of the spin gap (ΔE) is usually illustrated by
plotting the variation of ΔE as a function of 1/L, with L
being the total length of the finite regular chain in the
magnetic model space. In the CuPz(NO3)2 crystal, theΔE
versus 1/L variation is shown in Figure 6 for open and
cyclic chains. By fitting theΔE versus 1/L variation to the
equation ΔE/J = aL-2 þ bL-1 þ c, one can extrapolate
the spin gap for an infinite chain: for linear chains, c =
0.0296, while for cyclic chains, c = 0.013. In both cases,
the spin gap ΔE is different from zero (0.176 and 0.077
cm-1, respectively). This fact can be taken as indicative of
an error in the estimation or that longer chain models

should be used as magnetic models in order to obtain a
proper estimate. It is also worth noting that the values of
the spin gap computedwith andwithout inclusion of Jinter
are very similar. This can be shown by comparing the spin
gap of an isolated 4s chain (4s 1D model), four noninter-
acting 4s chains (4[4s 1D] model), and four interacting
4s chains (4 � 4s 3D model) (see Figure 7). The ground
state for these three models is always nondegenerate (in
Figure 7, the ground states are taken as the origin on the x
axis), that is, presents a nonzero spin gap. In all three
models, the first excited state is a triplet. The energy of this
triplet in the 4[4s 1D] model is tetradegenerate and equal
to that for the 4s 1D model. Contrarily, in the 4 � 4s 3D
model, the energy of the triplet state is split, but the value
of this splitting is very small compared to the spin gap.
This splitting originates from the Jinter interactions. How-
ever, in CuPz(NO3)2, the J interactions are very small,
and their effect on the spin gap is unnoticeable.
In summary, the impact of including the Jinter interac-

tions on the computation of the magnetic susceptibility
curve, heat capacity curve, and spin gap of the CuPz-
(NO3)2 crystal is so small that it will not be easily
appreciated in any of these experiments. Because of the
large Jintra/Jinter ratio (66.2 in absolute value when using
the largest of the Jinter parameters -0.09 cm-1), the
magnetic susceptibility and heat capacity curves behave
as a pure 1D AFM chain in all regions, although the
magnetic topology of the crystal at low temperature is
that of a 3D system, as observed by techniques sensitive to
that topology (e.g., muon-spin rotation). Therefore, the-
oretical first-principles bottom-up studies provide a prop-
er analysis of the origin and known features of the
1D-3D magnetic transition found in the CuPz(NO3)2
crystal. The only experimental feature still remaining to
be accounted for is the impact of introducing the presence
of finite chains in these calculations. They were suggested
in the literature to exist on qualitative grounds,8,10

Figure 6. Dependenceof the spin gap (ΔE) over J as a functionof 1/L (L
being the length of the spin chain in the finite model employed) for ns
models ranging from 4s (L-1= 0.25) to 28s (L-1= 0.036). Cyclic chains
are indicated by blue [, while linear chains are identified by red 9.

Figure 7. Energy of the lowest-energy states (in cm-1) computed with
the four interacting 4s chains (4�4s3D)magneticmodel space, an isolated
4s 1D space, and four noninteracting 4s chains (4s[4s1D]) model. In all
cases, J(d2) =-5.96 cm-1. In eachmodel, the energy has beenmeasured
relative to the ground-state energy.

(27) (a) Frischmuth, B.; Ammon, B.; Troyer, M. Phys. Rev. B 1996, 54,
R3714. (b) Greven, M.; Birgeneau, R. J.; Wiese, U.-J. Phys. Rev. Lett. 1996, 77,
1865. (c) Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E. S.Phys. Rev. B 1993, 47,
3196. (d) Dagotto, E.; Riera, J.; Scalapino, D. Phys. Rev. B 1992, 45, 5744. (e)
White, S. R.; Noack, R. M.; Scalapino, D. J. Phys. Rev. Lett. 1994, 73, 886. (f)
Troyer, M.; Tsunetsugu, H.; W€urtz, D. Phys. Rev. B 1994, 50, 13515. (g) Barnes,
T.; Riera, J. Phys. Rev. B 1994, 50, 6817. (h) Dagotto, E. D.; Rice, T. M. Science
1996, 271, 618.

(28) The energy spectra obey the following general trends: (a) The relative
stability between the lowest-energy states of a given multiplicity increases as
S is increased; that is, ELS(S=0) < ELS(S=1)< .... (b) Some of the lowest-
energy states of any givenmultiplicity are discrete and do not form part of the
energy band formed by most of the remaining states. (c) The formation of
bands (states separated by energy gaps smaller than the thermal energy) is
observed when large enough chains are used in the computations.

http://pubs.acs.org/action/showImage?doi=10.1021/ic902139h&iName=master.img-005.jpg&w=225&h=158
http://pubs.acs.org/action/showImage?doi=10.1021/ic902139h&iName=master.img-006.jpg&w=157&h=218
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although no previous quantitative work has ever studied
their effect on the magnetic susceptibility and heat capa-
city curves of the CuPz(NO3)2 crystal.

3. Impact of the Presence of Finite Chains on the
Macroscopic Magnetic Properties. As mentioned before,
the magnetic susceptibility and heat capacity curves ob-
served at very low temperatures (T < 1 K) show some
effects that have been qualitatively explained by assuming
the presence of odd- and even-membered finite chains.10,29

Notice that, up to now, all simulations have been done
using even-membered finite chains. In this section, using
the first-principles bottom-up results, we will address how
the coexistence of odd- and even-membered finite AFM
chains affects the previously computed results.
Ideal 1D molecule-based magnets consist of infinite

noninteracting spin chains arranged parallel to each
other. However, real 1Dmolecule-based magnets present
a small number of defects that truncate the ideal infinite
spin chains in either odd- or even-membered finite chains.
In the CuPz(NO3)2 crystal, the ground state of an even-
membered finite chain with AFM Jintra is an open-shell
singlet (i.e., each spin-carrying unit of the chain has a spin
pointing in the opposite direction than its two adjacent
units). Accordingly, for an odd-membered finite chain,
the ground state is a doublet. The macroscopic properties
of either collinear or parallel even-membered units have
been treated before (see Figure 4). Therefore, we only
have to address the magnetic properties of odd-mem-
bered units from now on. Because the geometry of the
defect is not known, we will use a qualitative model in
order to understand their interaction.
The study of two interacting odd-membered units ar-

ranged parallel was done by selecting two 7s chains, as

shown in Figure 8a (hereafter called the 2 � 7s model;
among many possibilities, this one was selected because
the interchain interactions were the largest ones that also
showed an opposite nature to the intrachain interactions).
Figure 8b compares the lowest-energy states for the 2� 7s
model with those for the 2� 8s level, with the latter taken
as a prototype of a finite even-membered chain of length
similar to that of the 7s chain. The distribution of the
energy levels in the 2� 8s model is similar to that already
described for ns (n = even) models (see Figure S4 in the
Supporting Information): there is a ground-state singlet
followed by a triplet state. However, in the 2� 7s model,
the lowest-energy singlet state is nearly degenerate to the
triplet state, which is slightly more stable because the
interaction Jinter between the two odd-membered finite
AFM chains is ferromagnetic. As shown in Figure 9, such
quasi-degeneration has an important impact in the
macroscopic magnetic properties because now the triply
degenerate triplet state contributes to the magnetic mo-
ment even at 0 K. While the magnetic susceptibility curve
for the 2 � 8s chain model goes to zero at T = 0 K (as
corresponds to a singlet ground state), for the 2� 7s chain
model χ(T) increases as T approaches zero because of a
triplet ground state (Figure 9a). As a consequence, the
coexistence of odd-membered (7s) and even-membered
(8s) chains in the crystal results in the total magnetic
susceptibility curve increasing as the temperature goes to
zero (see Figure 9a). Notice that the ratio of 50% odd-
membered versus 50% even-membered chains has been
statistically chosen in order to exemplify the coexistence
of both finite-membered chains and the global effect on

Figure 8. (a) Magnetic topology employed to compute the interaction
between two 7s spin chains arranged parallel to each other (2� 7smodel).
(b) Energy of the lowest-energy states (in cm-1) computed for the 2 � 7s
and 2� 8s models (for eachmodel, the states ofmultiplicityS=0, 1, and
2 are represented, ordered from left to right).Note that in the 2� 7smodel
the triplet state is the ground state by 0.12 cm-1, while in the 2� 8smodel,
the singlet state is the ground state by 4.61 cm-1.

Figure 9. (a)Magnetic susceptibility curves and (b) heat capacity curves
computed for the 2 � 7s (in blue) and 2 � 8s (in green) models (the inset
shows an expanded view of the heat capacity curve at low temperature).
The total curve resulting from the addition of the 2� 7s and 2� 8s curves
in a 50%/50% ratio is also shown (in red).

(29) de Jongh, L. J.; Miedema, A. R. Adv. Phys. 1974, 23, 1.
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themacroscopic properties (see Figure S5 in the Supporting
Information for different odd/even ratio distributions).
Therefore, we have quantitatively demonstrated that the
increase in the magnetic susceptibility curve at very low
temperature (<2 K) is due to the presence of magnetically
interactingodd- and even-membered finite chainswithin the
crystal.
At this point, it is also worth looking at the effect of

these finite chains on the heat capacity Cp(T) curves and
the spin gap. As shown in Figure 9b, the presence of
finite chains generates two effects in the heat capacity
curves: (a) magnetically interacting odd-membered chains
(represented by two 7s chains arranged in parallel) produce
an increase in the Cp(T) curve when the temperature is very
close to zero, and (b) magnetically interacting even-mem-
bered chains (two interacting 8s chains arranged in parallel)
produce a shoulder in the Cp(T) curve between 0.8 and 5 K
(note that this shoulder is also observed using isolated chain
models).When even- andodd-membered finiteAFMchains
coexist, the two effects are generated. At this point, it is
important to highlight that the increase inCp(T) phenomena
only appears if there is a small spin gap between the ground
state and the first excited state; i.e., Jinter is different fromzero
(see Figure 8b) because otherwise for purely isolated odd-
membered chains the ground-state degeneracy cannot pro-
duce this effect.Thepresenceof this shoulder, also seen in the
experimental curve (Figure 5), went unnoticed up to now
and is a direct consequence of the existence of even-mem-
bered finite AFM chains within the crystal.
Finally, the effect of having finite chains on the spin gap

is depicted in Figure 8b for odd- and even-membered
finite AFM chains: in the CuPz(NO3)2 crystal, odd-
membered chains always have a negligible singlet-triplet
gap for the two lowest states of this multiplicity (0.12
cm-1 for the 2 � 7s model), while for even-membered
finite chains, the spin gap is nonzero (4.61 cm-1 for the
2� 8s model). Therefore, whenever odd-membered finite
chains are present, the net spin gap will be zero.
In summary, the presence of even- and odd-membered

finite regular AFM chains induces changes in the macro-
scopic properties and allows one to explain all regions of
themagnetic susceptibility and heat capacity curves of the
CuPz(NO3)2 crystal: magnetically interacting odd-mem-
bered chains produce an increase in both χ(T) and Cp(T)
curves when the temperature is very close to zero, and
even-membered chains produce a shoulder in the curve
between 0.8 and 5 K. No changes are seen in the remain-
ing regions. Concerning the spin gap, odd-membered
chains present a negligible gap but finite even-membered
chains still have a sizable one.

4. Impact of the Variation of the Jintra/Jinter Ratio on the
1D to 3D Transition. The large Jintra/Jinter ratio in the
CuPz(NO3)2 crystal (66.2 in absolute value when using
the largest Jinter = -0.09 cm-1) is the reason why in this
crystal the magnetic susceptibility and heat capacity
curves can be computed using a pure 1D regular AFM
chain model in all regions, although at low temperature
the crystal has 3D magnetic topology, as techniques
sensitive to that topology observe (e.g., muon-spin
rotation). The first-principles bottom-up calculations per-
formed in this work indicate that such behavior is caused
by the large separation between the singlet ground state
and the first triplet excited state compared to the thermal

energy at the region of temperatures where the 1D-3D
magnetic transition occurs. However, as shown in Fig-
ure 7, such an energy difference can be changed by
increasing the splitting of the triplet states, which is
determined by the value of Jinter. Therefore, as the final
step in our study of the 1D to 3D transition in low-
dimensional materials, we simulated the behavior of the
magnetic susceptibility and heat capacity curves for a
hypothetical CuPz(NO3)2 crystal in which all Jinter para-
meters would be increased by a multiplying factor. The
changes in themacroscopic properties will be rationalized
by looking at the changes in the energy spectra of the spin
states of the crystal (which are the magnetic states in the
magnetic model space).
Two initial cases were studied: (1) the Jintra/Jinter ratio is

5 times smaller, 13.24 obtained by multiplying all Jinter by
5 without changing their sign, and (2) the Jintra/Jinter ratio
is 10 times smaller, 6.62, once again obtained by multi-
plying all Jinter by 10 without changing their sign (note
that we have preserved the 1D character of the magnetic
topology). Other variations such as changing the sign of
Jinter in various ways are possible, but they were not
included in this initial study. The magnetic susceptibility
and heat capacity curves of these two cases are shown in
Figure 10, while the energies of the lowest-energy states
are shown in Figure 11.
The results in Figure 10 indicate that as the Jintra/Jinter

ratio is changed from 66.2 to 13.24 and 6.62 the magnetic
susceptibility and heat capacity curves remain practically
unchanged. This can be explained by looking at Figure 11

Figure 10. (a) Magnetic susceptibility and (b) heat capacity curves for a
hypothetical CuPz(NO3)2 crystal using the 4 � 4s 3D model in which all
Jinter parameters are increased 5 (blue[) and 10 times (green0). In both
cases, Jintra is kept equal to -5.96 cm-1. The curve obtained using the
magnetic model with the computed Jinter is also represented for compar-
ison (purple 2).
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for 4s and 6s magnetic models: although the singlet-
triplet gap becomes smaller as Jintra/Jinter decreases, the
variation is small compared to the size of the gap (e.g.,
when Jinter is multiplied by 10, the gap, whose value is
7 cm-1, decreases by 1 cm-1).

Conclusions

Using a first-principles bottom-up procedure, we have
computed the nature of the JAB magnetic interactions and,
from them, the macroscopic properties of the CuPz(NO3)2
magnet using its 158 and 2K crystal structures. This system is
a prototypeof 1D isolatedAFMchains that recently has been
demonstrated to undergo a transition to 3D long-range order
at 0.107 K.12 Our calculations, using the crystal structure
determined at 158 K, indicate that there is a dominant
intrachain magnetic interaction, Jintra = -5.23 cm-1, and
three interchainmagnetic interactions, Jinter=-0.02,þ0.02,
and-0.01 cm-1, which are numerically negligible for simula-
tion purposes. At 2 K, these values are enhanced (Jintra =
-5.96 cm-1 and Jinter=-0.06,-0.09,þ0.03, and0.06 cm-1)
and the magnetic topology becomes 3D. These values
agree well with the experimental estimates12 (Jintra = -3.7
cm-1 and Jinter = -0.016 cm-1). The Jinter values related to
Cu2þ-NO3

-
3 3 3NO3

--Cu2þ magnetic interactions found
in CuPz(NO3)2 are much weaker than some Cu2þ-Cl- 3 3 3
Cl--Cu2þ or Cu2þ-Br- 3 3 3Br

--Cu2þ magnetic interac-
tions found in analogous solids.25

Using the computed Jintra and Jinter magnetic interactions,
we calculated both magnetic susceptibility and heat capacity
curves that reproduce the experimental data. The heat
capacity curve presents a maximum at 6.92 K, very close to
the 5.20 K maximum found in the experimental curve at
zero external field. An analysis of the shape of the heat
capacity maximum suggested that it is a Schottky anomaly,
which cannot be associated with the presence of long-range
order. These macroscopic properties are not affected by the
inclusion of the very small Jinter due to the large Jintra/Jinter
ratio; that is, the macroscopic magnetic properties are well

described by a pure 1DAFMmodel (regular chain). This fact
explains why this model can be used to fit experimental data
obtained at high enough temperatures. Only with use of
microscopic properties that are sensitive to the small Jinter and
at low enough temperatures is the 3D magnetic topology
observed (as in muon-spin relaxation experiments).
The impact of the presence of odd- and even-membered

finite chains in the crystals has also been evaluated. In the
CuPz(NO3)2 crystal, odd-membered weakly interacting
chains produce an increase in both χ(T) and Cp(T) curves
when the temperature is very close to zero, in good agreement
with the experimental observations,10,29 while even-mem-
bered chains produce a shoulder in the Cp(T) curve between
0.8 and 5 K. No changes are seen in the remaining regions.
Concerning the spin gap, odd-membered chains present a
negligible spin gap but the finite even-membered chains still
have a sizable one.
The spin gap for an open or cyclic infinite chain should be

zero; however, it was estimated to be 0.176 and 0.077 cm-1,
respectively, because of the fact that larger chain models are
required.Alternatively,we have proven that a zero spin gap is
obtained by introducing the coexistence of odd- and even-
membered finite chains within the crystal.
Finally, the effect of increasing the size of Jinter by 5 and 10

times was investigated by fixing the value of Jintra to that
found in the 2 K CuPz(NO3)2 crystal. The magnetic suscept-
ibility and heat capacity curves remain practically unchanged
when using 3D models consisting of short-length chains.
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computed χT(T) curve for the CuPz(NO3)2 crystal using the
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curve (b) obtained from powder samples is also shown] (Figure
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2 K using the 12s-16s 1D cyclic magnetic model spaces with
J(d2)=-5.96 cm -1 (Figure S3), energy spectrum of the 12 870
states corresponding to a 16s magnetic model space grouped
according to the spin quantum number S of the state (Figure
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curves computed for the 2� 7s and 2� 8smodels using different
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Figure 11. Energy spectra with respect to the ground state for the
lowest-energy states computed using the 4 � 4s 3D (up) and 4 � 6s 3D
(down) models for a hypothetical CuPz(NO3)2 crystal in which all Jinter
parameters are increased 5 and 10 times. The energy spectra for 4[4s 1D]
(up) and4[6s 1D] (down)models (i.e.,withnoJinter) and for 4� 4s 3D (up)
and4� 6s 3D (down)modelswith the computed Jinter are also represented
for comparison. In all of these cases, Jintra is kept equal to -5.96 cm-1

(which is the Jintra value at 2 K).
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