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Air-sensitive complexes {Fe(NO)2}
9-{Fe(NO)2}

9 [Fe(μ-SC6H4-
o-N(CH3)2)(NO)2]2 (1), {Fe(NO)2}

9-{Fe(NO)2}
10 [Fe(μ-SC6H4-

o-N(CH3)2)(NO)2]2
- (2), the anionic {Fe(NO)2}

10 [(SC6H4-o-
N(CH3)2)Fe(NO)2]

- (3), and the anionic {Fe(NO)2}
10-{Fe(NO)2}

10

[Fe(NO)2(μ-SC6H4-o-N(CH3)2)(μ-CO)Fe(NO)2]
- (4) withmixedCO-

thiolate-bridged ligands were synthesized. All complexes were
characterized by IR, UV-vis, electron paramagnetic resonance,
and single-crystal X-ray diffraction. The interconversions among
these complexes were demonstrated. The interconversion bet-
ween complexes 1 and 2 is accomplished by reduction and
oxidation. Complex 3 adapts a {Fe(NO)2}

10 electronic structure
with a N/S ligation mode and serves as a donor reagent of the
{Fe(NO)2}

10 moiety. {Fe(NO)2}
10-{Fe(NO)2}

10 complex 4
possesses the butterfly-like [Fe(μ-S)(μ-C)Fe] core with a shorter
Fe 3 3 3 Fe distance of 2.5907(5) Å attributed to the shorter Fe-S
and Fe-C bond distances.

Nitric oxide (NO) is one of the most important small
molecules in physiology.1 Dinitrosyl iron complexes
(DNICs), endogenous NO-containing compounds, are
known as one of two possible naturally occurring forms for
the storage and delivery of NO in a biological system.2

DNICs are classified into protein-bound and low-molecu-
lar-weight (LMW) DNICs serving as the storage and donor
of the NO or {Fe(NO)2} moiety. In vitro/vivo, both protein-
bound and LMW DNICs are possibly identified and
characterized by their distinctive electron paramagnetic

resonance (EPR) signals at g=2.03.3 Roussin’s red esters
(RREs), the dimeric form of DNICs, are interconvertible
to DNICs and considered to perform the same role as
DNICs.4 Like {Fe-NO}n (n = 6-8), well studied by
Wieghardt et al.,5 on the basis of the oxidation levels of the
{Fe(NO)2} core of DNICs, DNICs can be divided into three
major types:monomericEPR-active {Fe(NO)2}

9, EPR-silent
{Fe(NO)2}

10, and dimeric EPR-silent/active [{Fe(NO)2}
9-

{Fe(NO)2}
9]/[{Fe(NO)2}

9-{Fe(NO)2}
10].6 Ford et al. have

reported the X-ray structures of {Fe(NO)2}
10 [Fe(NO)2-

(imidazolate)]4 and [Fe(NO)2(1-MeIm)2] DNICs with the
N,N-ligation mode.7 In addition to the varieties of
{Fe(NO)2}

9 DNICs containing various ligation modes [S,S]/
[S,O]/[S,N]/[N,N],8 Liaw et al. demonstrated interconversion
among [(RS)2Fe(NO)2]

-, dimeric DNICs [Fe(μ-SR)(NO)2]2,
and anionic dimeric DNICs [Fe(μ-SR)(NO)2]2

- (R=tBu).9

Also, Liaw et al. elucidated the anionic mixed thiolate-
sulfide-bridged RRE as a key intermediate in the
transformation of DNICs/anionic RREs into [2Fe-2S]
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clusters facilitatedbyHSCPh3 via the reassembling process.10

Recently, we have reported the synthesis of the neutral five-
coordinate {Fe(NO)2}

9 DNICs [(TMEDA)Fe(NO)2I].
11 In

this contribution, the anionic dimeric DNIC [Fe(μ-SC6H4-
o-N(CH3)2)(NO)2]2

- (2) and the reduction product {Fe-
(NO)2}

10 [(SC6H4-o-N(CH3)2)Fe-(NO)2]
- (3) were isolated.

Further, the reaction of complex 3 with Fe(TMEDA)(NO)2
under a carbon monoxide (CO) atmosphere yielded the first
anionic, dimeric {Fe(NO)2}

10-{Fe(NO)2}
10 [Fe(NO)2(μ-

SC6H4-o-N(CH3)2)(μ-CO)Fe(N O)2]
- (4) DNIC containing

the mixed thiolate-CO-bridged ligands.
The tetrahydrofuran (THF) solution of complex 1 and

KHBEt3 was stirred at 0 �C for 10 min (Scheme 1a);
reduction occurred to yield complex 2. The IR spectrum of
complex 2 in a [K-18-crown-6 ether]þ salt (2a) exhibits
diagnostic νNO stretching frequencies at 1684 s and 1664 s
cm -1 (THF) with ΔνNO = 20 cm-1. The IR spectra for
complexes 1 and 2a have different patterns/positions [1808
vw, 1778 s, and 1752 s cm-1 for 1 versus 1684 s and 1664 s
cm -1 (THF) for 2a] andΔνNO (ΔνNO=26 cm-1 for 1 versus
ΔνNO=20 cm-1 for 2a).12 In contrast to complex 1, exhibit-
ing four absorption bands at 314, 370, 586, and 806 nm
(THF) and complex [Fe(μ-SEt)2)(NO)2]2

-,13 complex 2a
displays three absorption bands at 309, 371, and 509 nm
(THF). The EPR spectrum of complex 2b displays
an isotropic signal at g = 2.002 at 298 K (Figure S1 in
the Supporting Information). The reaction of complex 2a

and KHBEt3 led to the formation of complex 3 in a THF
solution at 0 �C (Scheme 1b). Complex 3 displays an EPR-
silent {Fe(NO)2}

10 electronic structure with N/S-ligation
mode.
The IR spectrum of complex 3 also exhibits diagnostic νNO

stretching frequencies at 1660 s and 1610 s cm-1 (THF) with
ΔνNO = 50 cm-1. The single-crystal X-ray structures of
complexes 2b and 3 are depicted in Figure 1.
Upon the addition of 1 equiv of Fe(TMEDA)(NO)2 into

complex 3 under a CO atmosphere in THF (Scheme 1c), a
pronounced color change from brown to dark blue occurred
at ambient temperature. The formation of EPR-silent com-
plex 4 was confirmed by IR, UV-vis, and single-crystal
X-ray diffraction. The electronic structure of complex 4 is
best described as the anionic dinuclear {Fe(NO)2}

10-
{Fe(NO)2}

10 DNIC. Obviously, the strong π-accepting brid-
ging CO plays a key role in stabilizing the {Fe(NO)2}

10-
{Fe(NO)2}

10 complex 4 via relieving the electronic richness of
the [{Fe(NO)2}

10-{Fe(NO)2}
10] centers. As presented in

Scheme 1f, upon the addition of Fe(CO)2(NO)2 into the
THF solution of complex 2b in a 1:1 stoichiometry, a reaction
ensued over the course of 3 h to yield the anionic complex 4b
along with complex 1 in the yield of a 1:2 molar ratio.
Presumably, Fe(CO)2(NO)2 acts as {Fe(NO)2}

10 as well as
a CO-donor reagent in this reaction. One of the labile CO
donors derived fromFe(CO)2(NO)2 bound to the Fe atomof
the {Fe(NO)2}

10 part of complex 2b accompanied by the
bridged-thiolate cleavage may rationalize the formation of
complex 1 derived from the dimerization of [Fe(NO)2-
(SC6H4-o-N(CH3)2)] motifs. The subsequent combination
of [Fe(NO)2(SC6H4-o-N(CH3)2)(CO)] and the [Fe(NO)2]
motif led to the formation of complex 4b. The IR spectrum
of complex 4b shows νNO stretching frequencies at 1705 s and
1691s cm-1 and the νCO stretching frequency at 1843 w cm-1

(THF). The absorbance bands of complex 4b are at 314, 381,
606, and 975 nm.
The single-crystal X-ray structure of the [Fe(NO)2-

(μ-SC6H4-o-N(CH3)2)(μ-CO)Fe(NO)2]
- unit in a PPh4 salt

(4b) is depicted in Figure 2. Two nitrosyl groups and bridging
thiolate and carbonyl define the distorted tetrahedral geo-
metry of each Fe atom, leading to acute angles Fe(1)-S-
(1)-Fe(2) 82.31(10� and S(1)-Fe(1)-C(1) 103.86(8)�. The
[Fe(μ-S)(μ-C)Fe] core geometry of complex 4b is best des-
cribed as a butterfly-like structure with a dihedral angle of
170.95� (the intersection of the Fe2S and Fe2C planes). As
observed in this study, reduction of the [{Fe(NO)2}

9-
{Fe(NO)2}

9] complex 1 to the [{Fe(NO)2}
9-{Fe(NO)2}

10]
complex 2 results in elongation of the Fe-S and Fe(1) 3 3 3Fe-
(1A) bond distances to relieve the richness of the electron
density surrounding the [{Fe(NO)2}

9-{Fe(NO)2}
10] [Fe(μ-

S)2Fe] centers.
8c In contrast, the shorter Fe 3 3 3Fe distance

[2.5907 (5) Å] found in the electron-rich complex 4b may be
ascribed to the shorter bridging Fe-S [2.2805(7) and

Scheme 1

Figure 1. X-ray diffraction structures of complexes 2b and 3.
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2.2737(7) Å] and Fe-C [1.960(3) and 1.976(3) Å] bond
distances. The mean N-O bond length of 1.180(3) Å in
complex 4b, slightly shorter than the average N-O bond
distance of 1.187(6) Å observed in complex 2b, is nearly at the
lower end of 1.214(6)-1.189(4) Å for the neutral
{Fe(NO)2}

10 DNICs.8c Meanwhile, the mean Fe-N(O) dis-
tances of 1.659(2) Å in complex 4b also approach the upper
end of 1.650(7) -1.638(3) Å for the neural neutral
{Fe(NO)2}

10 DNICs.8c The Fe-C bond distances [1.960(3)

and 1.976(3) Å] of complex 4 are slightly longer than
those found in [(μ-SR)(μ-CO)Fe2(CO)6]

-1 (R=C6H2Me3)
[1.927(7) and 1.925 Å], and the CdO bond distance of
1.156(3) Å for the bridged carbonyl of 4b is shorter than that
of [(μ-SR)(μ-CO)Fe2(CO)6]

-1 (R=C6H2Me3) [1.208(7) Å].14

The re-formation of complex 2 upon the addition of NO gas
into complex 4b demonstrated that theCO-bridging ligand of
complex 4b is labile (Scheme 1d).
Here, we demonstrate the interconversion of [{Fe(NO)2}

9-
{Fe(NO)2}

9], [{Fe(NO)2}
9-{Fe(NO)2}

10], [{Fe(NO)2}
10-{Fe-

(NO)2}
10], and [{Fe(NO)2}

10] DNICs. The first anionic di-
nuclear [{Fe(NO)2}

10-{Fe(NO)2}
10] complex 4 adapts CO, a

π acceptor, as a bridging ligand. The chemical properties as
well as potential pharmaceutical applications of these com-
plexes are currently being investigated in our laboratory.
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Figure 2. ORETP drawing and labeling scheme of the [Fe(NO)2(μ-
SC6H4-o-N(CH3)2)(μ-CO)Fe(NO)2]

-unit in aPPh4 salt (4b) with thermal
ellipsoids drawn at 50% probability. Selected bond distances (Å) and
angles (deg): Fe(1) 3 3 3Fe(2) 2.5907(5); Fe(1)-N(1) 1.664(2); Fe(1)-N(2)
1.658(2); Fe(2)-N(3) 1.653(2); Fe(2)-N(4) 1.660(2); Fe(1)-S(1)
2.2805(7); Fe(2)-S(1) 2.2737(7); Fe(1)-C(1) 1.960(3); Fe(2)-C(1)
1.976(3); O(1)-N(1) 1.186(3); O(2)-N(2) 1.177(3); O(3)-N(3) 1.177(3);
O(4)-N(4) 1.180(3); C(1)-O(5) 1.156(3); N(1)-Fe(1)-N(2) 120.65(11);
N(1)-Fe(1)-S(1) 109.17(7); N(2)-Fe(1)-S(1) 115.87(8); N(1)-Fe-
(1)-C(1) 103.07(10); N(2)-Fe(1)-C(1) 101.51(11); S(1)-Fe(1)-C(1)
103.86(8); O(1)-N(1)-Fe(1) 172.1(2); O(2)-N(2)-Fe(1) 172.2(2).
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