

Deoxygenation of Nitroxyl Radicals by Oxorhenium(V) Complexes with Redox-Active Ligands

Cameron A. Lippert and Jake D. Soper*

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

Received December 12, 2009

Five-coordinate oxorhenium(V) anions with redox-active catecholate ligands deoxygenate stable nitroxyl radicals, including TEMPO[•], to afford dioxorhenium(VII) complexes and aminyl radical-derived products. A structural homologue with redox-inert oxalate ligands does not react with TEMPO[•]. Redox-active ligands are proposed to lower the kinetic barrier to TEMPO[•] deoxygenation by giving access to 1e⁻ redox steps that are crucial for the formation and stabilization of intermediate species.

An ability to engender 1e⁻ versus 2e⁻ redox selectivity is paramount for realizing a variety of synthetically important bond-making and -breaking redox reactions.¹ Low-coordinate oxorhenium(V) complexes are prototypical 2e⁻ redox reagents, with particular utility for mediating oxygen-atom transfer.^{2,3} We speculated that coordination to a redox-active ligand may afford access to 1e⁻ redox reactions that are atypical of oxorhenium(V) complexes, while preserving the ability of the metal to mediate 2e⁻ oxo-transfer reactivity.⁴ This strategy was successfully applied to bimetallic O₂ Scheme 1

homolysis at five-coordinate oxorhenium(V) species.⁵ Reported herein are remarkable $2e^-$ deoxygenation reactions of stable nitroxyl radicals by five-coordinate oxorhenium(V) anions. Kinetics studies suggest a multistep reaction mechanism, where, by analogy to the first step of O₂ activation, redox-active ligands are proposed to facilitate $1e^-$ trapping of oxygen radicals.

The addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO[•]) to tan solutions containing the five-coordinate monooxo anion $[\text{Re}^{V}(O)(\text{cat})_2]^-([\text{cat}]^{2^-}=1,2\text{-catecholate})$ in CH₃CN immediately produces a dark-purple solution containing the *cis*-dioxo [$\text{Re}^{\text{VII}}(\text{O})_2(\text{cat})_2$]⁻ complex. When the reaction is performed at 25 °C in NMR tubes containing CD₃CN, the oxidation is complete prior to acquisition of an initial spectrum (<10 min).⁶ Integration of the ¹H NMR resonances for [Re^{VII}(O)₂(cat)₂]⁻ confirms the stoichiometry shown in Scheme 1. Two new methyl resonances are also observed in a 3:1 ratio. Analysis of a similarly prepared purple CH₃CN solution by gas chromatography-mass spectrometry (GC-MS) confirms that these correspond to 2,2,6,6-tetramethylpiperidine (TMP-H) and the N-cyanomethyl congener (TMP-CH₂CN) (Scheme 1). When the reaction is performed in CD₃CN, the molecular ion peaks increase by 1 and 2 atomic mass units, respectively, implicating the solvent in the reaction (Figures S1 and S2 in the Supporting Information, SI).

^{*}To whom correspondence should be addressed. E-mail: jake.soper@ chemistry.gatech.edu.

For example, see: (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981.
 (b) Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry, Vol. 7: Oxidation; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991. (c) Report of the Basic Energy Sciences Workshop on Solar Energy Utilization; U.S. Department of Energy: Washington, DC, 2005.

⁽²⁾ Holm, R. H. Chem. Rev. 1987, 87, 1401-1449.

^{(3) (}a) Espenson, J. H. Adv. Inorg. Chem. 2003, 54, 157–202. (b) Owens,
G. S.; Arias, J.; Abu-Omar, M. M. Catal. Today 2000, 55, 317–363.
(c) Herrmann, W. A.; Kuhn, F. E. Acc. Chem. Res. 1997, 30, 169–180.

⁽⁴⁾ For recent examples of redox-active ligands in bond-making and -breaking reactions at coordinatively unsaturated metals, see: (a) Blackmore, K. J.; Ziller, J. W.; Heyduk, A. F. *Inorg. Chem.* 2005, 44, 5559–5561.
(b) Haneline, M. R.; Heyduk, A. F. J. Am. Chem. Soc. 2006, 128, 8410–8411.
(c) Zarkesh, R. A.; Ziller, J. W.; Heyduk, A. F. Angew. Chem., Int. Ed. 2008, 47, 4715–4718. (d) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 5302–5303. (e) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13340–13341. (f) Stanciu, C.; Jones, M. E.; Fanwick, P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 12400–12401. (g) Lu, C. C.; Weyhermuller, T.; Bill, E.; Wieghardt, K. Inorg. Chem. 2009, 48, 6055–6064. (h) Smith, A. L.; Soper, J. D. Polyhedron 2010, 29, 164–169.

⁽⁵⁾ Lippert, C. A.; Arnstein, S. A.; Sherrill, C. D.; Soper, J. D. J. Am. Chem. Soc. 2010, 132, 3879–3892.

⁽⁶⁾ Under identical conditions, the oxidation of $[\text{Re}^V(O)(\text{cat})_2]^-$ with 1 atm of air requires > 3 h, indicating that the observed process does not result from O₂ contamination.

Both amine products derive from the same piperidyl radical (TMP[•]) intermediate. TMP-CH₂CN was previously reported from the electrochemical oxidation of TMP-H in CH₃CN and was proposed to arise from the trapping of TMP[•] by [•]CH₂CN (generated in situ by the net abstraction of H[•] from CH₃CN).^{7–9} Accordingly, performing a reaction of [Re^V(O)(cat)₂]⁻ with 1 equiv of TEMPO[•] in the presence of excess (13 equiv) 9,10-dihydroanthracene (DHA) as a sacrificial H[•] source affords TMP-H as the only observable product by GC-MS (Figure S3 in the SI).¹⁰

Reactions of $[\text{Re}^{V}(O)(\text{cat})_2]^-$ with TEMPO[•] in ethanol, tetrahydrofuran, or CH₂Cl₂ all gave clean and quantitative conversion to $[\text{Re}^{VII}(O)_2(\text{cat})_2]^-$, as evidenced by ¹H NMR and UV–vis spectroscopy. All of the reactions contained TMP-H as the major TEMPO[•]-derived organic product (65–100%), with minor species apparently arising from radical decomposition of the solvent. Clean conversion of $[\text{Re}^{V}(O)(\text{cat})_2]^-$ to $[\text{Re}^{VII}(O)_2(\text{cat})_2]^-$ was similarly achieved in stoichiometric reactions with the stable di-*tert*-butylnitroxyl and *tert*-amyl-*tert*-butylnitroxyl radicals. For both, a complex mixture of amine-containing organic products was observed in neat CH₃CN solutions, but reactions performed in the presence of excess DHA (10–15 equiv) gave only the expected R₂N–H products by GC–MS.

In total, the data suggest that $[\text{Re}^{V}(O)(\text{cat})_2]^{-}$ efficiently abstracts an oxygen atom from nitroxyl radicals to afford $[\text{Re}^{VII}(O)_2(\text{cat})_2]^{-}$ and aminyl radical transients (Scheme 1). The reaction is a 2e⁻ oxygen-atom transfer that is reminiscent of oxo transfer from amine *N*-oxides.⁵ However, this is apparently a very unusual reaction for nitroxyl radicals, such as TEMPO[•],¹¹ which are more typically 1e⁻ redox reagents. Because related radical Re–O bond-forming reactions proceed with the initial 1e⁻ oxidation of a redox-active ligand,⁵ we hypothesized that this reaction may be similarly sensitive to substitution of the redox-active ligand.

Structural homologues of $[\text{Re}^{V}(O)(\text{cat})_{2}]^{-}$ were prepared by both new and previously reported methods. As detailed elsewhere,⁵ $[\text{Re}^{V}(O)(OPPh_{3})(\text{Br}_{4}\text{cat})_{2}]^{-}$ and $[\text{Re}^{V}(O)(PPh_{3})$ - $(\text{ox})_{2}]^{-}$ ($[\text{Br}_{4}\text{cat}]^{2-}$ = tetrabromo-1,2-catecholate; $[\text{ox}]^{2-}$ = ethanedioate, $C_{2}O_{4}^{2-}$) have labile OPPh₃ and PPh₃ ligands, which make them precursors to the corresponding fivecoordinate oxorhenium(V) fragments. Square-pyramidal (Et₄N)[Re(O)(3,5-^tBu₂cat)₂] ([3,5-^tBu₂cat]^{2-} = 3,5-di-*tert*-butylcatecholate; Figure S4 in the SI) was obtained in high yield Scheme 2

by adaptation of a procedure for the preparation of closely related species.^{5,12}

The addition of 1 equiv of TEMPO[•] to CH₃CN solutions containing the redox-active ligand complex $[Re^{V}(O)(3,5^{-t}Bu_{2})]$ cat_{2} or $[Re^{V}(O)(OPPh_{3})(Br_{4}cat_{2})]^{-}$ affords clean and quantitative conversion to the corresponding dioxorhenium-(VII) products. In contrast, GC-MS analysis of CH₃CN solutions containing $[\text{Re}^{V}(O)(\text{PPh}_{3})(\text{ox})_{2}]^{-}$ and 1-3 equiv of TEMPO[•] shows no TMP-H or TMP-CH₂CN over 3 days at 25 °C and <5% TMP-H after 42 h at 70 °C. Oxidation of $[\text{Re}^{V}(O)(\text{PPh}_{3})(\text{ox})_{2}]^{-}$ by strong oxygen-atom donors, including pyridine N-oxide, leads to rapid decomposition to $\text{ReO}_4^{-,5}$ so the stability of TEMPO[•] in $[\text{Re}^{V}(O)(\text{PPh}_3)$ - $(ox)_2$ solutions implies that the [Re^V(O)(ox)_2]⁻ core does not abstract an oxygen atom from TEMPO[•]. We previously noted that $[\text{Re}^{\text{VII}}(\text{O})_2(\text{cat})_2]^-$ decomposes $[\text{Re}^{\text{V}}(\text{O})(\text{PPh}_3)^ (\text{ox})_2]^-$ by apparent oxo transfer to the $[\text{Re}^{\text{V}}(\text{O})(\text{ox})_2]^-$ frag-ment (Scheme 2a).⁵ Because $[\text{Re}^{\text{VII}}(\text{O})_2(\text{cat})_2]^-$ is itself generated in reactions with TEMPO[•] (Scheme 2b), $[\text{Re}^{\text{V}}(\text{O})^-$ (cat)₂]⁻ mediates net oxo-group transfer from TEMPO[•] to $[\text{Re}^{V}(O)(ox)_{2}]^{-}$, implying that the reaction thermodynamics are not prohibitive. The inability of $[\text{Re}^{V}(O)(\text{PPh}_{3})(\text{ox})_{2}]^{-}$ to directly deoxygenate TEMPO[•] must then arise from a kinetic impediment.

The reaction of $[\text{Re}^{V}(O)(\text{cat})_2]^-$ with TEMPO[•] in a dilute CH₃CN solution is sufficiently slow to permit monitoring by UV-vis absorption spectroscopy. Under pseudo-first-order conditions ($[Re^{V}] = 0.15 \text{ mM}$; $[TEMPO^{\bullet}] = 1.5 - 6.0 \text{ mM}$), the concentration-time data are clearly biphasic, indicating that an intermediate species accumulates during the reaction (Figures 1 and S5 and S6 in the SI). Global iterative analysis of the full spectral window using an $A \rightarrow B \rightarrow C$ integrated rate law model yields good first-order fits to both the growth and decay phases of the reaction, with two exponential equations corresponding to consecutive first-order processes. The reactions performed with varied concentrations of $[\text{Re}^{V}(O)(\text{cat})_{2}]^{-}$ and TEMPO[•] indicate that the first phase of the reaction is first-order with respect to both reactants; the rate constant for the second reaction phase shows a zeroorder dependence on the TEMPO[•] concentration (Figure S7 and Table S1 in the SI). The reactions of TEMPO[•] with $[\text{Re}^{V}(O)(3,5^{-t}\text{Bu}_{2}\text{cat})_{2}]^{-}$ are also biphasic (Figure S8 in the SI), but analogous reactions with $[Re^{v}(O)(OPPh_{3})(Br_{4}$ cat_{2} are instead fit best by an A \rightarrow B \rightarrow C \rightarrow D rate law model (Figure S9 in the SI). The generation of $[Re^{VII}(O)_2]$ - $(Br_4cat)_2]^-$ in the C \rightarrow D phase occurs very slowly, but formation of the immediate precursor occurs in two phases with distinct rates (Table 1).

We tentatively rationalize these experimental observations by the two-step mechanism shown in Scheme 3. In the first reaction step, the observed first-order dependence on both reactants is consistent with the initial attack of 1 equiv of TEMPO[•] on 1 equiv of $[\text{Re}^{V}(O)(\text{cat})_2]^-$. The most common mode of TEMPO[•] complexation to redox-active metal ions involves reduction to the closed-shell $[\text{TEMPO}]^-$ anion with

^{(7) (}a) Masui, M.; Yamagata, K.; Ueda, C.; Ohmori, H. *J. Chem. Soc., Chem. Commun.* **1985**, 272–273. (b) Ohmori, H.; Ueda, C.; Yamagata, K.; Masui, M.; Sayo, H. *J. Chem. Soc., Perkin. Trans.* **2 1987**, 1065–1069.

⁽⁸⁾ Assuming that radical combination is rapid compared to H[•] abstraction from CH₃CN,⁹ the consumption of 2 equiv of TEMPO to generate 1 equiv of TMP-CH₂CN and 1 equiv of TMP-H is a balanced reaction. The excess of the TMP-H product in our reactions may implicate some reaction with adventitious sources of H[•].

⁽⁹⁾ CH₃CN can be a kinetically poor H[•] donor. See: (a) Roberts, B. P. *Chem. Soc. Rev.* **1999**, *28*, 25–35. (b) Tsentalovish, Y. P.; Kulik, L. V.; Gritsan, N. P.; Yurkovskaya, A. V. *J. Phys. Chem. A* **1998**, *102*, 7975–7980. (10) The reaction of $[\text{Re}^V(O)(\text{cat})_2]^-$ with 1 equiv of TEMPO[•] in a 80:20

⁽¹⁰⁾ The reaction of $[\text{Re}^{V}(O)(\text{cat})_{2}]^{-}$ with 1 equiv of TEMPO[•] in a 80:20 CD₃CN:CH₃CN mixture gives only the protio amine species (TMP-H and TMP-CH₂CN), as determined by analysis of their respective isotopic compositions by GC-MS. Assuming a detection limit of 10%, the selectivity of >90% for protio products gives an estimate of the lower limit for $k_{1}/k_{D} > 36$ which is in excellent agreement with a reported value ^{7b}

 $k_{\rm H}/k_{\rm D} > 36$, which is in excellent agreement with a reported value.^{7b} (11) (a) Alper, H. J. Org. Chem. **1973**, 38, 1417–1418. (b) Carloni, P.; Damiani, E.; Iacussi, M.; Greci, L.; Stipa, P.; Cauzi, D.; Rizzoli, C.; Sgarabotto, P. Tetrahedron **1995**, 51, 12445–12452. (c) Lucarini, M.; Marchesi, E.; Pedulli, G. F.; Chatgilialoglu, C. J. Org. Chem. **1998**, 63, 1687–1693.

⁽¹²⁾ Kettler, P. B.; Chang, Y.-D.; Zubieta, J.; Abrams, M. J. Inorg. Chim. Acta 1994, 218, 157–165.

Figure 1. UV-vis absorption data for a reaction of 0.14 mM $[\text{Re}^{V}(O)(\text{cat})_2]^-$ with 1.5 mM TEMPO[•] at 25 °C in CH₃CN to generate $[\text{Re}^{VII}(O)_2(\text{cat})_2]^-$. (a) Spectra at t = 0 (green line), t = 30 s (orange line), and t = 720 s (purple line). (b) Time-resolved data at 325 nm (orange O) and 545 nm (purple \Box). The fits (orange and purple lines) were obtained simultaneously from iterative analysis of the full spectral window (300–700 nm) using a biexponential A \rightarrow B \rightarrow C integrated rate law model, giving the rate constants shown in Table 1.

Table 1. Rate Constants for TEMPO[•] Oxidations of Oxorhenium(V)^a

	$k_1 (s^{-1})$	$k_2 (s^{-1})$
$[\operatorname{Re}^{V}(O)(\operatorname{cat})_{2}]^{-b}$	0.14 ± 0.04	$(1.3 \pm 0.2) \times 10^{-2}$
$\left[\operatorname{Re}^{V}(O)(3,5-^{t}\operatorname{Bu}_{2}\operatorname{cat})_{2}\right]^{-b}$	0.033 ± 0.001	$(9 \pm 2) \times 10^{-4}$
$[\text{Re}^{V}(O)(OPPh_3)(Br_4cat)_2]^{-c}$	$0.16 \pm 0.03,$	$(1.7 \pm 0.5) \times 10^{-4}$
	$(1.2 \pm 0.6) \times 10^{-3}$	

^{*a*} All reactions performed in CH₃CN at 25 °C with $[\text{Re}^{V}] = 0.14 \text{ mM}$ and $[\text{TEMPO}^{\bullet}] = 1.5 \text{ mM}$. ^{*b*} Fit to a biexponential $A \rightarrow B \rightarrow C$ integrated rate law model. ^{*c*} Fit to an $A \rightarrow B \rightarrow C \rightarrow D$ rate law model. The two values of k_1 are the successive rate constants for formation of the immediate precursor to $[\text{Re}^{\text{VII}}(\text{O})_2(\text{Br}_4\text{cat})_2]^-$, so k_2 corresponds to product formation.

concomitant 1e⁻ oxidation of the metal.^{13,14} In [Re^V(O)-(cat)₂]⁻, this 1e⁻ could derive from either the metal center or a redox-active [cat]²⁻ ligand. Attempts to isolate and further characterize the intermediate are ongoing, so the locus of oxidation is not known. However, d¹ oxorhenium(VI) complexes are comparatively rare compared to d⁰ and d² analogues.^{3a} Also, computational studies of O₂ activation at [Re^V(O)(cat)₂]⁻ clearly implicate ligand-centered redox in radical Re–O bond formation.⁵ By analogy, we propose this nitroxyl-binding step: (1) is accompanied by the isomerization of *trans*-[Re^V(O)(cat)₂]⁻ to the cis conformer; (2) occurs with oxidation of a redox-active [cat]²⁻ ligand to give a semiquinonate [sq[•]]⁻ free-radical intermediate. The reaction is completed by a second oxidation of the oxorhenium fragment, which homolyzes the nitroxyl-derived N–O bond. The dioxo product is d⁰, implying that this second 1e⁻ step

Scheme 3

occurs with intramolecular reduction of the coordinated semiquinonate radical $[sq^{\bullet}]^{-}$ ligands.¹⁵

The trends in the reaction rates (Table 1) do not cleanly parallel the oxidation potentials of the redox-active ligands $([3,5^{-t}Bu_2cat]^{2-} > [cat]^{2-} > [Br_4cat]^{2-})$.¹⁶ The comparatively slow TEMPO[•] deoxygenation by $[Re^{V}(O)(3,5^{-t}Bu_2cat)_2]^{-}$ versus $[Re^{V}(O)(cat)_2]^{-}$ is surprising and suggests that steric hindrance by the *tert*-butyl groups may inhibit equilibrium formation of the [TEMPO]⁻-complex intermediate. The very slow rate of $[Re^{VII}(O)_2(Br_4cat)_2]^{-}$ formation is consistent with the proposed mechanism, but generation of the precursor complex is more complex. The very fast $A \rightarrow B$ phase may reflect the enhanced Lewis acidity of the $[Re^{V}(O)-(Br_4cat)_2]^{-}$ core.^{5,17} In the context of this proposed mechanism, we attribute the kinetic inertness of $[Re^{V}(O)(ox)_2]^{-}$ toward TEMPO[•] to its reluctance to undergo 1e⁻ transfer. Binding $R_2N-O^{•}$ to $[Re^{V}(O)(ox)_2]^{-}$ would require metal-centered 1e⁻ oxidation because the $[ox]^{2-}$ ligands are not redox-active.

In summary, $[\text{Re}^{V}(O)(\text{cat})_2]^-$ and its analogues exhibit a remarkable ability to deoxygenate nitroxyl radicals, which may be a function of their capacity to undergo both ligand-centered 1e⁻ and metal-centered 2e⁻ redox reactions. Metal ions that bind TEMPO[•] as $[\text{TEMPO}]^-$ often cannot undergo further 1e⁻ oxidation (e.g., Ti^{III}),¹³ or they have high d-electron counts that disfavor terminal oxo formation.¹⁴ In contrast, most oxorhenium(V) complexes that mediate 2e⁻ oxo transfer do not undergo 1e⁻ transfer.^{2,3a} Ongoing efforts in our laboratory are utilizing the ability of redoxactive ligands to orthogonalize 1e⁻ and 2e⁻ redox reactions for redox selectivity in other reactions with small molecules.

Acknowledgment. We gratefully acknowledge the ACS Petroleum Research Fund (45130-G3), a DARPA Young Faculty Award (N6600-1-09-1-2094), and the Georgia Institute of Technology for financial support. We thank Dr. Kenneth Hardcastle at Emory University for X-ray structure determination and David Bostwick for MS.

Supporting Information Available: Details of general experimental and synthetic procedures, GC–MS data for reactions with nitroxyl radicals, selected UV–vis spectra and kinetics data, X-ray crystal structure of $(Et_4N)[Re(O)(3,5^{-t}Bu_2cat)_2]$, and X-ray crystallographic information in CIF format. This material is available free of charge via the Internet at http:// pubs.acs.org.

^{(13) (}a) Mahanthappa, M. K.; Huang, K.-W.; Cole, A. P.; Waymouth, R. M. Chem. Commun. 2002, 502–503. (b) Gazzi, R.; Perazzolo, F.; Sostero, S.; Ferrari, A.; Traverso, O. J. Organomet. Chem. 2005, 690, 2071–2077.
(c) Schröder, K.; Hasse, D.; Saak, W.; Beckhaus, R.; Kretschmer, W. P.; Lützen, A. Organometallics 2008, 27, 1859–1868.

⁽¹⁴⁾ For example, see: (a) Mindiola, D. J.; Waterman, R.; Jenkins, D. M.;
Hillhouse, G. L. *Inorg. Chim. Acta* 2003, 345, 299–308. (b) Ito, M.; Matsumoto,
T.; Tatsumi, K. *Inorg. Chem.* 2009, 48, 2215–2223. (c) Dickman, M. H.;
Doedens, R. J. *Inorg. Chem.* 1982, 21, 682–684. (d) Jaitner, P.; Huber, W.;
Huttner, G.; Scheidsteger, O. J. Organomet. Chem. 1983, 259, C1–C5.

⁽¹⁵⁾ An alternative mechanism of initial outer-sphere electron transfer can be ruled out. $[\text{Re}^{V}(O)(\text{cat})_2]^-$ is not a strong outer-sphere reductant; quasi-reversible oxidation of $[\text{Re}^{V}(O)(\text{cat})_2]^-$ occurs at ca. +0.04 V versus Fc⁺/Fc in CH₃CN. TEMPO[•] is reduced at -1.48 V versus SHE in H₂O. See: (a) Hodgson, J. L.; Namazian, M.; Bottle, S. E.; Coote, M. L. *J. Phys. Chem. A* **2007**, *111*, 13595–13605.

⁽¹⁶⁾ Pascaly, M.; Duda, M.; Schweppe, F.; Zurlinden, K.; Müller, F. K.; Krebs, B. J. Chem. Soc., Dalton Trans. 2001, 828–837.

⁽¹⁷⁾ TEMPO[•] can bind Lewis acids by a nonredox mechanism. See:
(a) Hoffman, B. M.; Eames, T. B. J. Am. Chem. Soc. 1969, 91, 5168–5170.
(b) Cohen, A. H.; Hoffman, B. A. Inorg. Chem. 1974, 13, 1484–1491.