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Five-coordinate oxorhenium(V) anions with redox-active cate-
cholate ligands deoxygenate stable nitroxyl radicals, including
TEMPO•, to afford dioxorhenium(VII) complexes and aminyl
radical-derived products. A structural homologue with redox-inert
oxalate ligands does not react with TEMPO•. Redox-active ligands
are proposed to lower the kinetic barrier to TEMPO• deoxygenation
by giving access to 1e- redox steps that are crucial for the
formation and stabilization of intermediate species.

An ability to engender 1e- versus 2e- redox selectivity is
paramount for realizing a variety of synthetically important
bond-making and -breaking redox reactions.1 Low-coordi-
nate oxorhenium(V) complexes are prototypical 2e- redox
reagents, with particular utility for mediating oxygen-atom
transfer.2,3We speculated that coordination to a redox-active
ligand may afford access to 1e- redox reactions that are
atypical of oxorhenium(V) complexes, while preserving the
ability of the metal to mediate 2e- oxo-transfer reactivity.4

This strategy was successfully applied to bimetallic O2

homolysis at five-coordinate oxorhenium(V) species.5 Re-
ported herein are remarkable 2e- deoxygenation reactions of
stable nitroxyl radicals by five-coordinate oxorhenium(V)
anions. Kinetics studies suggest amultistep reactionmechan-
ism, where, by analogy to the first step of O2 activation,
redox-active ligands are proposed to facilitate 1e- trapping of
oxygen radicals.
The addition of 2,2,6,6-tetramethylpiperidine-1-oxyl

(TEMPO•) to tan solutions containing the five-coordinate
monooxoanion [ReV(O)(cat)2]

- ([cat]2-=1,2-catecholate) in
CH3CN immediately produces a dark-purple solution con-
taining the cis-dioxo [ReVII(O)2(cat)2]

- complex. When the
reaction is performed at 25 �C in NMR tubes containing
CD3CN, the oxidation is complete prior to acquisition of an
initial spectrum (<10 min).6 Integration of the 1H NMR
resonances for [ReVII(O)2(cat)2]

- confirms the stoichiometry
shown in Scheme 1. Two new methyl resonances are also
observed in a 3:1 ratio. Analysis of a similarly prepared
purple CH3CN solution by gas chromatography-mass spec-
trometry (GC-MS) confirms that these correspond to
2,2,6,6-tetramethylpiperidine (TMP-H) and the N-cyano-
methyl congener (TMP-CH2CN) (Scheme 1). When the
reaction is performed in CD3CN, the molecular ion peaks
increase by 1 and 2 atomic mass units, respectively, implicat-
ing the solvent in the reaction (Figures S1 and S2 in the
Supporting Information, SI).
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Both amine products derive from the same piperidyl
radical (TMP•) intermediate. TMP-CH2CN was previously
reported from the electrochemical oxidation of TMP-H in
CH3CN and was proposed to arise from the trapping of
TMP• by •CH2CN (generated in situ by the net abstraction
of H• from CH3CN).7-9 Accordingly, performing a reaction
of [ReV(O)(cat)2]

-with 1 equiv ofTEMPO• in thepresence of
excess (13 equiv) 9,10-dihydroanthracene (DHA) as a sacri-
ficial H• source affords TMP-H as the only observable
product by GC-MS (Figure S3 in the SI).10

Reactions of [ReV(O)(cat)2]
- with TEMPO• in ethanol,

tetrahydrofuran, or CH2Cl2 all gave clean and quantitative
conversion to [ReVII(O)2(cat)2]

-, as evidenced by 1H NMR
and UV-vis spectroscopy. All of the reactions contained
TMP-H as the major TEMPO•-derived organic product
(65-100%), with minor species apparently arising from
radical decomposition of the solvent. Clean conversion of
[ReV(O)(cat)2]

- to [ReVII(O)2(cat)2]
- was similarly achieved

in stoichiometric reactionswith the stable di-tert-butylnitroxyl
and tert-amyl-tert-butylnitroxyl radicals. For both, a com-
plex mixture of amine-containing organic products was
observed in neat CH3CN solutions, but reactions performed
in the presence of excess DHA (10-15 equiv) gave only the
expected R2N-H products by GC-MS.
In total, the data suggest that [ReV(O)(cat)2]

- efficiently
abstracts an oxygen atom from nitroxyl radicals to afford
[ReVII(O)2(cat)2]

- and aminyl radical transients (Scheme 1).
The reaction is a 2e- oxygen-atom transfer that is reminiscent
of oxo transfer from amine N-oxides.5 However, this is
apparently a very unusual reaction for nitroxyl radicals, such
as TEMPO•,11 which are more typically 1e- redox reagents.
Because related radical Re-O bond-forming reactions pro-
ceed with the initial 1e- oxidation of a redox-active ligand,5

we hypothesized that this reaction may be similarly sensitive
to substitution of the redox-active ligand.
Structural homologues of [ReV(O)(cat)2]

- were prepared
by both new and previously reported methods. As detailed
elsewhere,5 [ReV(O)(OPPh3)(Br4cat)2]

- and [ReV(O)(PPh3)-
(ox)2]

- ([Br4cat]
2- = tetrabromo-1,2-catecholate; [ox]2- =

ethanedioate, C2O4
2-) have labile OPPh3 and PPh3 ligands,

which make them precursors to the corresponding five-
coordinate oxorhenium(V) fragments. Square-pyramidal
(Et4N)[Re(O)(3,5-tBu2cat)2] ([3,5-

tBu2cat]
2-=3,5-di-tert-bu-

tylcatecholate; Figure S4 in the SI) was obtained in high yield

by adaptation of a procedure for the preparation of closely
related species.5,12

The addition of 1 equiv of TEMPO• to CH3CN solutions
containing the redox-active ligand complex [ReV(O)(3,5-tBu2-
cat)2]

- or [ReV(O)(OPPh3)(Br4cat)2]
- affords clean and

quantitative conversion to the corresponding dioxorhenium-
(VII) products. In contrast, GC-MS analysis of CH3CN
solutions containing [ReV(O)(PPh3)(ox)2]

- and 1-3 equiv of
TEMPO• shows no TMP-H or TMP-CH2CN over 3 days at
25 �C and <5% TMP-H after 42 h at 70 �C. Oxidation of
[ReV(O)(PPh3)(ox)2]

- by strongoxygen-atomdonors, includ-
ing pyridine N-oxide, leads to rapid decomposition to
ReO4

-,5 so the stability of TEMPO• in [ReV(O)(PPh3)-
(ox)2]

- solutions implies that the [ReV(O)(ox)2]
- core does

not abstract an oxygen atom from TEMPO•. We previously
noted that [ReVII(O)2(cat)2]

- decomposes [ReV(O)(PPh3)-
(ox)2]

- by apparent oxo transfer to the [ReV(O)(ox)2]
- frag-

ment (Scheme 2a).5 Because [ReVII(O)2(cat)2]
- is itself

generated in reactions with TEMPO• (Scheme 2b), [ReV(O)-
(cat)2]

- mediates net oxo-group transfer from TEMPO• to
[ReV(O)(ox)2]

-, implying that the reaction thermodynamics
are not prohibitive. The inability of [ReV(O)(PPh3)(ox)2]

- to
directly deoxygenate TEMPO• must then arise from a kinetic
impediment.
The reaction of [ReV(O)(cat)2]

- with TEMPO• in a dilute
CH3CN solution is sufficiently slow to permit monitoring by
UV-vis absorption spectroscopy. Under pseudo-first-order
conditions ([ReV]=0.15mM; [TEMPO•]=1.5-6.0mM), the
concentration-time data are clearly biphasic, indicating that
an intermediate species accumulates during the reaction
(Figures 1 and S5 and S6 in the SI). Global iterative analysis
of the full spectral window using an A f B f C integrated
rate law model yields good first-order fits to both the growth
and decay phases of the reaction, with two exponential
equations corresponding to consecutive first-order processes.
The reactions performed with varied concentrations of
[ReV(O)(cat)2]

- and TEMPO• indicate that the first phase
of the reaction is first-orderwith respect to both reactants; the
rate constant for the second reaction phase shows a zero-
order dependence on the TEMPO• concentration (Figure S7
and Table S1 in the SI). The reactions of TEMPO• with
[ReV(O)(3,5-tBu2cat)2]

- are also biphasic (Figure S8 in the
SI), but analogous reactions with [ReV(O)(OPPh3)(Br4-
cat)2]

- are instead fit best by an A f B f C f D rate law
model (Figure S9 in the SI). The generation of [ReVII(O)2-
(Br4cat)2]

- in the C f D phase occurs very slowly, but
formation of the immediate precursor occurs in two phases
with distinct rates (Table 1).
We tentatively rationalize these experimental observations

by the two-step mechanism shown in Scheme 3. In the first
reaction step, the observed first-order dependence on both
reactants is consistent with the initial attack of 1 equiv of
TEMPO• on 1 equiv of [ReV(O)(cat)2]

-. The most common
mode of TEMPO• complexation to redox-active metal ions
involves reduction to the closed-shell [TEMPO]- anion with
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concomitant 1e- oxidation of the metal.13,14 In [ReV(O)-
(cat)2]

-, this 1e- could derive from either the metal center or
a redox-active [cat]2- ligand. Attempts to isolate and further
characterize the intermediate are ongoing, so the locus of
oxidation is not known. However, d1 oxorhenium(VI) com-
plexes are comparatively rare compared to d0 and d2 analo-
gues.3a Also, computational studies of O2 activation at
[ReV(O)(cat)2]

- clearly implicate ligand-centered redox in
radical Re-O bond formation.5 By analogy, we propose this
nitroxyl-binding step: (1) is accompanied by the isomeriza-
tion of trans-[ReV(O)(cat)2]

- to the cis conformer; (2) occurs
with oxidation of a redox-active [cat]2- ligand to give a
semiquinonate [sq•]- free-radical intermediate. The reaction
is completed by a second oxidation of the oxorhenium
fragment, which homolyzes the nitroxyl-derivedN-O bond.
The dioxo product is d0, implying that this second 1e- step

occurs with intramolecular reduction of the coordinated
semiquinonate radical [sq•]- ligands.15

The trends in the reaction rates (Table 1) do not cleanly
parallel the oxidation potentials of the redox-active ligands
([3,5-tBu2cat]

2->[cat]2->[Br4cat]
2-).16 The comparatively

slow TEMPO• deoxygenation by [ReV(O)(3,5-tBu2cat)2]
-

versus [ReV(O)(cat)2]
- is surprising and suggests that steric

hindrance by the tert-butyl groups may inhibit equilibrium
formation of the [TEMPO]--complex intermediate. The very
slow rate of [ReVII(O)2(Br4cat)2]

- formation is consistent with
the proposed mechanism, but generation of the precursor
complex is more complex. The very fast A f B phase may
reflect the enhanced Lewis acidity of the [ReV(O)-
(Br4cat)2]

- core.5,17 In the context of this proposedmechanism,
we attribute the kinetic inertness of [ReV(O)(ox)2]

- toward
TEMPO• to its reluctance to undergo 1e- transfer. Binding
R2N-O• to [ReV(O)(ox)2]

- would require metal-centered 1e-

oxidation because the [ox]2- ligands are not redox-active.
In summary, [ReV(O)(cat)2]

- and its analogues exhibit a
remarkable ability to deoxygenate nitroxyl radicals, which
may be a function of their capacity to undergo both ligand-
centered 1e- and metal-centered 2e- redox reactions. Metal
ions that bind TEMPO• as [TEMPO]- often cannot undergo
further 1e- oxidation (e.g., TiIII),13 or they have high
d-electron counts that disfavor terminal oxo formation.14

In contrast, most oxorhenium(V) complexes that mediate
2e- oxo transfer do not undergo 1e- transfer.2,3a Ongoing
efforts in our laboratory are utilizing the ability of redox-
active ligands to orthogonalize 1e- and 2e- redox reactions
for redox selectivity in other reactions with small molecules.

Acknowledgment.We gratefully acknowledge the ACS
PetroleumResearch Fund (45130-G3), aDARPAYoung
Faculty Award (N6600-1-09-1-2094), and the Georgia
Institute of Technology for financial support. We thank
Dr. Kenneth Hardcastle at Emory University for X-ray
structure determination and David Bostwick for MS.

Supporting Information Available: Details of general experi-
mental and synthetic procedures, GC-MS data for reactions
with nitroxyl radicals, selected UV-vis spectra and kinetics
data, X-ray crystal structure of (Et4N)[Re(O)(3,5-tBu2cat)2],
and X-ray crystallographic information in CIF format. This
material is available free of charge via the Internet at http://
pubs.acs.org.

Table 1. Rate Constants for TEMPO• Oxidations of Oxorhenium(V)a

k1 (s
-1) k2 (s

-1)

[ReV(O)(cat)2]
- b 0.14 ( 0.04 (1.3 ( 0.2) � 10-2

[ReV(O)(3,5-tBu2cat)2]
- b 0.033 ( 0.001 (9 ( 2) � 10-4

[ReV(O)(OPPh3)(Br4cat)2]
- c 0.16 ( 0.03,

(1.2 ( 0.6) � 10-3
(1.7 ( 0.5) � 10-4

aAll reactions performed in CH3CN at 25 �C with [ReV] = 0.14 mM
and [TEMPO•]=1.5mM. bFit to a biexponentialAfBfC integrated
rate law model. cFit to an A f B f C f D rate law model. The two
values of k1 are the successive rate constants for formation of the
immediate precursor to [ReVII(O)2(Br4cat)2]

-, so k2 corresponds to
product formation.

Figure 1. UV-vis absorption data for a reaction of 0.14 mM
[ReV(O)(cat)2]

- with 1.5 mM TEMPO• at 25 �C in CH3CN to generate
[ReVII(O)2(cat)2]

-. (a) Spectra at t=0 (green line), t=30 s (orange line),
and t=720 s (purple line). (b) Time-resolved data at 325 nm (orange O)
and 545 nm (purple 0). The fits (orange and purple lines) were obtained
simultaneously from iterative analysis of the full spectral window
(300-700 nm) using a biexponential A f B f C integrated rate law
model, giving the rate constants shown in Table 1.

Scheme 3
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