Vol. 5, No. 2, February 1966

histidine at pD 8.6 and 12.4, where the imidazole ring is nonprotonated. The upfield shift is indicative of an increase in electron density about the ring protons at pD>11, as a result of ionization of the "pyrrole" hydrogen. P.m.r. data support amino coordination in the Zn(II)-histidine complex at pD 11.8, for the alanine resonances lie between those observed for free histidine at pD 8.6 and 12.4, where the amino group is protonated and nonprotonated, respectively. Furthermore, the alanine resonances lie upfield of those observed in the Zn(II) complex at pD 5.0. These facts are consistent with replacement of the proton on the amino group by the less electronegative Zn(II) ion in going from pD 5.0 to 11.8. In summary, the particular value of the infrared spectral data, and the ancillary p.m.r. data, is that the structures of the coordinated species at a given pD are deducible from correlation of the spectra with the spectra of free ligand as a function of pD. The evaluation of formation constants is not very precise, but the agreement of the results in this area with the expectations based on more precise methods is sufficiently good to lend support to the interpretations placed on the infrared data. In addition, observation of certain frequency shifts in favorable cases, such as the antisymmetric carboxylate stretching mode, yields information which relates closely to the relative enthalpies of coordinate bond formation.

Contribution from the Institute for Atomic Research and Department of Chemistry Iowa State University, Ames, Iowa

A Redetermination of the Crystal Structure of CsCuCl₃^{1a}

BY ALBERT W. SCHLUETER, ROBERT A. JACOBSON, AND ROBERT E. RUNDLE¹⁶

Received August 23, 1965

The crystal structure of $CsCuCl_8$ has been redetermined by single crystal X-ray diffraction techniques. Data were taken by scintillation counter methods and the atomic parameters were refined by anisotropic least-squares methods. The final parameters are essentially those originally reported by Wells. The structure consists of distorted hexagonally close-packed layers of cesium and chlorine atoms with the copper atoms occupying octahedral holes. The Cu–Cu distance is a very short 3.062 Å, but direct copper–copper bonding is ruled out by overlap integral calculations. The close approach of the coppers is considered to be a result of the copper atoms sharing faces of their chlorine octahedra instead of edges as has been found in all other halogen-bridged copper compounds. This interpretation differs from that of Wells. Several other metal–halogen systems having chain structures similar to that found in CsCuCl₃ are considered and the overlap integrals for metal–metal interaction calculated. From the calculations it is apparent that d–d metal–metal bonding for the elements at the right of the transition metal series is unlikely. The implications of this are related to the much discussed $Cu_2(C_2H_3O_2)_4$ · $2H_2O$.

Introduction

The structure determination of CsCuCl₃ was first attempted by Klug and Sears in 1946,^{2a} but they were unsuccessful in solving the structure. Wells^{2b} next investigated the problem and obtained a model which gave an agreement factor, $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, of 20% on the basis of 60 reflections.

Because of their interesting structural and magnetic features, several related copper compounds have recently been investigated in this laboratory, namely, $LiCuCl_3 \cdot 2H_2O$,^{3,4} KCuCl₃, and NH_4CuCl_3 .⁵ These structures all consisted of $Cu_2Cl_6^{2-}$ dimers associated into chains by long unsymmetric Cu–Cl bridges and are quite different from the CuCl₃⁻ infinite chain found for CsCuCl₃ by Wells. Thus CsCuCl₃ should represent a

different and particularly simple system to study magnetically because of its essentially one-dimensional character. Preliminary to such a study we decided to carry out a more accurate determination of its structure, which is being reported here. A magnetic investigation of this compound is currently underway, by B. C. Gerstein of this laboratory.

Experimental Section

Dark red-brown crystals of $CsCuCl_8$ were obtained by evaporating to dryness a solution containing copper and cesium chlorides. A molar excess of copper chloride was used to prevent formation of Cs_2CuCl_4 . The crystals appeared as hexagonal prisms often capped by hexagonal pyramids.

Weissenberg photographs exhibited 6/mmm Laue symmetry. The only systematic extinction observed was $l \neq 6n$ for 00*l* reflections, indicating the space group P6₁22 and confirming Wells' observation. The lattice constants were determined by a least-squares extrapolation treatment of twelve reflections in the back-reflection region observed using a single crystal orienter. The orienter was previously aligned with an aluminum single crystal. The lattice constants found are: $a = b = 7.2157 \pm 0.0005$ and $c = 18.1777 \pm 0.0010$ Å.

Complete three-dimensional data to $\sin \theta/\lambda = 0.904$ were taken with zirconium-filtered molybdenum K α radiation using a General

 ^{(1) (}a) Work was performed at the Ames Laboratory of the U. S. Atomic Energy Commission. Contribution No. 1780. (b) Deceased, Oct. 9, 1963.
 (2) (a) H. P. Klug and G. W. Sears, Jr., J. Am. Chem. Soc., 68, 1133 (1946); (b) A. F. Wells, J. Chem. Soc., 1662 (1947).

⁽³⁾ P. H. Vossos, L. D. Jennings, and R. E. Rundle, J. Chem. Phys., 32, 1590 (1960).

⁽⁴⁾ P. H. Vossos, D. R. Fitzwater, and R. E. Rundle, Acta Cryst., 16, 1037 (1963).

⁽⁵⁾ R. D. Willet, et al., J. Chem. Phys., 38, 2429 (1963).

9011234567890122222222223333

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
26 140 138 26 140 138 27 710 109 30 262 264 310 262 264 311 264 214 32 2 4 28 1 1 29 10 243 20 1244 243 30 264 243 312 2 1 112 2343 366 11344 1264 128 11345 1048 444 11345 1048 1048 10 3455 2365 111 3105 100 10 3455 2365 111 3207 237 12 137 137 130 144 247 1411 200 270 15 100 552 100 13157 137 127 147 1490 148 1417 200<
23 407 2000 24 407 2000 25 400 322 27 100 497 30 1 1 0 251 266 7 100 497 30 1 1 0 251 266 27 100 497 30 1 1 0 251 266 28 2267 243 30 1 1 10 252 2697 1224 2697 854 10 1244 2697 10 2244 2697 10 2244 2697 124 2480 488 129 343 344 120 244 246 121 244 246 122 244 246 120 343 3698 <
1 75 607 22 200 330 24 216 224 25 1212 213 25 1212 213 25 1212 213 25 1212 213 26 1212 213 27 283 400 17 1287 128 17 1287 128 18 1424 129 19 11400 1740 11 1100 1740 11 100 1283 12 1200 1244 13 1000 1740 13 1000 1740 13 1000 1740 13 1000 1740 13 1000 1100 14 1000 1100 15 1000 111 16 1000 111 17 1000 111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 217 \\ 217 \\ 117 \\ 117 \\ 117 \\ 117 \\ 127 $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
6 6 0 0 98 841 1 165 1464 2 4448 2193 5 165 181 7 1950 122 10 156 152 12 4448 2193 10 156 152 135 105 1104 12 249 101 135 105 152 14 5 124 15 133 107 0 12247 246 1333 107 0 12247 246 205 1333 107 1 1247 246 205 1333 107 1 1241 2417 216 1343 143 133 11 141 141 124 143 143 1340 152 151
0 112 1336 2 126 231 4 446 4352 3 226 231 4 446 4352 3 226 231 4 446 4352 7 123 1429 12 159 154 12 159 154 12 159 154 12 159 154 12 159 154 12 159 154 12 159 154 13 159 154 15 159 155 15 159 154 15 155 15 159 155 15 15 155 15 15 155 15 15 155 15 15 155 15 15 155 15 15
7 133 1144 8 9 1149 9 9 1329 112 10 0.9 9 132 11 106 100 114 12 125 123 114 15 0.6 0.44 115 16 100 125 122 21 125 125 122 221 2 2 2 3 202 255 125 3 245 3018 144 4 168 104 166 12 2345 3018 144 12 2345 3018 144 12 2345 3018 177 12 2345 3018 177 12 100 21 100 121 13 100 246 450 21 12 100 226 125 125 12 100 226 100 23 100
3 34 70 4 10 221 5 145 214 7 194 145 9 01 126 9 122 166 9 122 167 13 160 127 14 150 127 15 122 167 16 127 124 16 127 124 17 124 130 9 0 217 214 18 100 24 245 190 217 214 110 11 10 12 146 10 145 110 110 12 144 1310 110 9 14 1310 110 11 10 110 110 12 144 1310 12 144 1310 13

TABLE I Observed and Calculated Structure Factors $(L, 10F_0, 10F_0)$

★ 0-0-5, 250.4(315.2); 0-0-12, 321.7(391.0); 1-1-0, 227.3(332.0); 2-0-3, 201.0(359.4); 2-0-6, 219.0(213.7); 2-0-9, 237.6(255.5); 2-2-0. 213.5(203.5)

These reflections affected by extinction, F_o (F_o), are not on an absolute scale.

Electric XRD-5 X-ray unit equipped with a single crystal orienter. For each of the 1092 reflections a total count was obtained from a 100-sec. scan using a scan rate of 1°/min. A correction for background and streak was made from the recorder trace for each reflection. The recorder was calibrated and zeroed frequently to obtain good accuracy. An absorption correction was made using Busing's polyhedral absorption correction program rewritten for the IBM 7074 computer.

Structural Refinement

The parameters of Wells were tested and an agreement factor of R = 45% was obtained. Using a fullmatrix least-squares program two cycles of refinement reduced the R factor to 35%. A model constructed at this point indicated that the cesium atom, on the basis of a hexagonal close-packed arrangement, was displaced by 0.2 Å, and too close to two chlorine atoms. It was shifted to a more nearly close-packed position. Further isotropic refinement yielded an R factor of 11%. At this point seven of the strongest, low-order reflections, suspected of being strongly affected by extinction, were removed. Anisotropic refinement lowered the R factor for the 1062 nonzero reflections to a final agreement factor, R = 5.05%. The final parameters and standard deviations are given in Table II. In Table I the values of $10F_{o}$ and $10F_{e}$ are listed on an absolute scale.

Discussion

The CsCuCl₃s tructure consists of distorted hexagonally close-packed layers of cesium ions and chlorine atoms, with the copper atoms, located on twofold axes, occupying all the octahedral holes which have six chlorine nearest neighbors. Two chlorines are at a distance of 2.35 Å., two at 2.28 Å., and two at 2.78 Å. from the coppers (Figure 1). The distortion from perfect close packing is slight with Cl(2') 0.149 Å. above the plane and Cl(2) the same distance below (Figure 2). The copper atoms are 0.42 Å. from the $6_1 c$ axis and are oriented to form spiraling chains by sharing faces of the

		Final Atom Positio	nal Parame	eters with	Standard De	eviations		
Atom	x/a	у/Ъ		\$/c		σ _x	σ_y	σε
Csa	$0.35458(0.345)^{b}$	0.70916		0.25000		0.0001	0.0002	
Cu	0.0616(0.07)	0.0000		0.0000		0.0003		
$Cl(1)^a$	0.8877(0.90)	0.7754		0.2500		0.0003	0.0006	
Cl(2)	0.3540 (0.35)	0.2095(0.2)	22)	0.2418(0	.25)	0.0005	0.0005	0.0002
		Final Ther	mal Param	ete r s with	Deviations			
Atom	β_{11}	β_{22}	Bas		β ₁₂		\$ 13	\$ 28
Cs	0.01311(14)	0.01113(7)	0.00222(2)	0.00570(3)	-0.0	0094(3)	0
Cu	0.01026(22)	0.01123(11)	0.00101 (2) (0.00562(6)	0.0	0020(2)	0.00040(4)
Cl(1)	0.0125(4)	0.0094(2)	0.0012 (1) (0.0047(1)	0.00	001 (1)	0
Cl(2)	0.0097 (2)	0.0128 (3)	0.0014 (1) (0.0051 (2)	-0.0	006 (1)	-0.0002 (1)

TABLE II

^a Special positions: $y = 2x, z = \frac{1}{4}$. ^b Wells' parameters in parentheses.

Figure 1.—The molecular structure of $CuCl_3$ - in CsCuCl₃.

Figure 2.- The hexagonal close packing in CsCuCl₈.

chlorine octahedra about them. One of the bridging chlorines, Cl(1), is bound symmetrically to two coppers —a feature that has been found in all the garnet-colored

DISTANCES AND ANGLES IN COPPER CHLORIDE COMPOUN	DISTANCES	AND ANGLES	in Copper	CHLORIDE	COMPOUND
---	-----------	------------	-----------	----------	----------

		Av. angle Cl-Cu-Cl,	Av. angle Cu-Cl-Cu,
Formula	Cu-Cu, Å.	deg.	deg.
KCuCl₃	3.443	84.1	95.9
$LiCuCl_{3} \cdot 2H_{2}O$	3.47	85.	95.
NH4CuCl8	3.42	84.9	
$Cu_2Cl_4(CH_3CN)_2$	3.39	86.	94.
$Cu_3Cl_6(CH_3CN)_2$	3.346	88.	94.2
$Cu_5Cl_{10}(C_3H_7OH)_2$	3.310	87.	92.8
$CuCl_2 \cdot 2H_2O$	3.73		92.9
$CuCl_2$	3.30	87.	
CsCuCl ₃	3.0621	90.2	76.2

copper compounds.^{4,5} The three-dimensional character of the compound can be considered to be infinite parallel chains held together by cesium ions. The more important bond distances and angles along with their standard deviations can be seen in Figures 1 and 2.

A very interesting feature of the structure is the very short copper-copper distance. As can be seen in Table III this distance is much shorter than that found in any other halogen-bridged copper compound. Two possible explanations for this short distance can be proposed: (1) The copper atoms form copper-copper bonds along the chain axis. Thus each copper is bonded strongly to four chlorines and weakly to two others and to two neighboring copper atoms. (2) In this compound the copper octahedra are connected together by sharing faces while in the other compounds listed in Table III the octahedra are connected together by sharing edges. The sharing of faces would force the copper-copper distance to be shorter than in the other compounds previously investigated. In this description no direct copper-copper bonding is suggested.

Evidence seems to support the latter explanation. As can be seen from Table III, the angles in CsCuCl₃ are distorted from the angles observed in the other copper compounds in such a way as to suggest the sharing of faces. Further evidence for the latter explanation is found in overlap integral calculations. In order to consider the likelihood of the formation of a metalmetal bond, D_{3d} symmetry was assumed at a copper atom. Under this symmetry the representation for σ bonding by copper breaks down into the irreducible representations: $2A_{1g} + E_g + 2A_{2u} + E_u$. Considering only the chlorine atoms the σ bonds transform as

 $A_{1g} + E_g + A_{2u} + E_u$. This leaves A_{1g} and A_{2u} for metal-metal bonding in this simple treatment. The A_{1g} transforms as d_{z^2} which is directed right at the coppers along the chain while A_{2u} is a nonbonding orbital. Thus metal-metal bonds could possibly be formed by σ overlap of $3d_{z^2}$ orbitals along the chain axis. However, the value of the overlap integral for σ $3d_{z^2}$ overlap on copper atoms 3.062 Å. apart is less than 10^{-5} . (This value and the values to follow were determined using the improved orbital exponents calculated by Clementi.⁶) It must be realized of course that these calculations only give an approximate value of the overlap because of the uncertainty in the orbital exponent for the isolated atom and more important the unknown change in the exponent in considering a complexed metal. Nevertheless the value of the overlap in the above case is so extremely small that the metal-metal bond order is essentially zero. This result is confirmed by the magnitude of the magnetic moment for CsCuCl₃, which is normal for one unpaired electron down to 80°K.7

Similar calculations for other metal-halogen systems lend credence to this type of approach. Thus for CsNiCl₃, which crystallizes in a close-packed structure isomorphous with CsCuCl₃ with a nickel-nickel distance of 2.96 Å.,⁸ the overlap integral for $3d_{z^2}$ orbitals between nickel atoms is less than 10^{-4} , and CsNiCl₃ also has a normal moment for two unpaired electrons.⁹ Overlap calculations have also been performed for TiCl₃ and ZrCl₃, the structures of which have recently been deduced from powder diffraction studies.¹⁰ The compounds have D_{3d} symmetry at the metal and form chains similar to CsCuCl₃ by sharing faces of chlorine octahedra. The metal-metal distance in both of these isomorphous compounds is 3.07 Å.¹⁰ The calculation of the overlap integrals for σd_{z^2} overlap gave a value of approximately 0.01 for the titanium-titanium bonds and 0.10, almost the maximum possible overlap for 4d_{z²} orbitals, for the zirconium-zirconium bonds. Subnormal magnetic moments have been observed for these substances. TiCl₃ has a moment of 1.3 B.M.¹¹ (compared to the normal moment for one unpaired electron of 1.75 B.M.) indicating some interaction between the metals, and ZrCl₃ is almost diamagnetic with a moment of only 0.4 B.M.¹¹ In the latter case

- (6) E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 2686 (1963).
- (7) B. N. Figgis and C. M. Harris, J. Chem. Soc., 855 (1959).
- (8) G. N. Tishehenko, Tr. Inst. Krist. Akad. Nauk SSSR, 11, 93 (1955).
- (9) R. W. Asmussen and H. Soling, Z. anorg. allgem. Chem., 283, 3 (1956).
 (10) L. F. Dahl, et al., Inorg. Chem., 3, 1236 (1964).

the fourteen σ -bonding electrons (1 from Zr³⁺, 12 from six chlorines and $^{1}/_{2} \times 2$ from two neighboring zirconium atoms) enter the A_{1g}, E_g, E_u, A_{1u}, and A_{1g}' bonding orbitals, the last being the metal-metal d_{z²}-d_{z²} bonding orbital.

This treatment thus consistently explains the magnetic properties of the above materials and also gives evidence that no direct metal-metal bonding occurs in CsCuCl₃. In fact from these overlap calculations it was found that for the metals at the right of the first transition series the single bond length for $d_{z^2}-d_{z^2} \sigma$ bonding is so extremely short that such metal-metal bonding cannot possibly occur unless there are gross changes in the orbital exponent of the combined metal.

The orbital exponents of Clementi were used in these calculations rather than those determined using Slater's rules. The difference between these values is quite significant (for copper $\mu = 2.7$ by Slater's rules and $\mu = 4.4$ as calculated by Clementi), with Clementi's values indicating much more compact d orbitals for the atoms on the right of the transition metal series.

The choice of orbital exponents also has a strong bearing on any discussion of the bonding in copper acetate monohydrate where many approaches have been used to attempt to explain the short copper-copper distance.12-18 All until recently have invoked some sort of direct 3d–3d bonding, the δ bond being very popular; however, none has been completely successful in explaining all the observed data. Our calculations of overlap rule out any direct 3d-3d bonding. Since our calculations were made, Kokoszka^{19,20} and Hansen and Ballhausen²¹ have given consistent interpretations of the available data assuming no direct copper-copper interaction. These results are consistent with our work and further indicate that overlap integrals obtained using the improved orbital exponents present a reliable method of evaluating the existence of direct metal-metal interactions.

- (11) J. Lewis, et al., J. Chem. Soc., 2036 (1962).
- (12) B. N. Figgis and R. L. Martin, *ibid.*, 3837 (1956).
- (13) B. N. Figgis and R. L. Martin, *ibid.*, 2545 (1957).
- (14) I. G. Ross, Trans. Faraday Soc., 55, 1057 (1959).
- (15) I. G. Ross and J. Yates, *ibid.*, 55, 1064 (1959).
- (16) M. L. Tonnet, S. Yamada, and I. G. Ross, *ibid.*, **60**, 840 (1964).
- (17) L. S. Forester and C. J. Ballhausen, Acta Chem. Scand., 16, 1385 (1962).
- (18) E. A. Boudreaux, Inorg. Chem., 3, 506 (1964).
- (19) G. F. Kokoszka, H. C. Allen, and G. Gordon, J. Chem. Phys., 42, 3693 (1965).
- (20) C. W. Reimann, G. F. Kokoszka, and G. Gordon, Inorg. Chem., 4, 1082 (1965).
- (21) A. E. Hansen and C. J. Ballhausen, Trans. Faraday Soc., 61, 631 (1965).