CONTRIBUTION FROM THE Los ALAMOS SCIENTIFIC LABORATORY, UNIVERSITY OF CALIFORNIA, Lo\$ ALAMOS, NEW MEXICO

Synthesis and X-Ray Properties of Alkali Fluoride-Protactinium Pentafluoride Complexes'

BY L. B. ASPREY, F. H. KRUSE, A. ROSENZWEIG, AND R. A. PENNEMAN

Received October 7, *1965*

Complex fluorides containing pentavalent protactinium and alkali fluoride have been made from aqueous hydrofluoric acid solution and also by fluorine oxidation of intimately ground, stoichiometric mixtures of PaF₄ and alkali fluoride. Formed by these reactions are complexes of the MPaF₆ type where $M = Li$, Na, K, Rb, Cs, and NH₄. The crystalline MPaF₆ compounds containing the larger cations (K, Rb, Cs, and NH₄) are orthorhombic, while NaPaF₆ is tetragonal. None of the six MPaF₆ complexes is isostructural with its tantalum analog. Cell dimensions for these seven compounds are given. Properties of some higher complex fluorides are also given.

A new supply^{2, 3} of protactinium has caused a resurgence of interest in its chemistry in several of the world's laboratories. In the 30 years since the original atomic weight studies in 1934 by Grosse⁴ on K_2PaF_7 , there was no further work reported on the characterization of protactinium fluoride complexes. The preparation of hexafluoroprotactinates, MPaF₆ (where M = K, Rb, or NH_4), was reported⁵ in late 1964, and in early 1965 a description of octafluoroprotactinates, M_3PaF_8 (M = Na or Li), appeared.⁶ For other topics see the excellent 1963 protactinium review by Brown and Maddock.

In our preliminary report of the preparation of the $KPaF_6$, RbPaF₆, and NH₄PaF₆ complexes,⁵ it was noted that these compounds are isostructural with their pentavalent uranium analogs but not with the higher symmetry tantalum compounds. In this paper we confirm these facts and present data on previously unreported LiPaF₆, NaPaF₆, CsPaF₆, Rb₂PaF₇, $Cs₂PaF₇$, and $Rb₃PaF₈$.

The isolation of crystalline $MPaF_6$ compounds⁵ represented the first preparation of compounds having a fluoride: protactinium ratio of $6:1$, a class well-known for pentavalent tantalum⁷ and uranium.⁸ Historically, the PaF $_7$ ⁻² ion is firmly established in the inorganic literature, primarily as a result of the preparation of K_2PaF_7 by Grosse 30 years ago. Note, however, that $Na₃PaF₈$ is obtained as the primary solid phase from solutions of NaF and PaF₅ in HF.⁶ Information on the fluoride complexes of protactinium (V) is being obtained at the Oak Ridge National Laboratory by Keller and Chetham-Strode, who are investigating them using Raman techniques.⁹ Maddock and

(1) Work **performed under the auspices of the** U. **S. Atomic Energy Commission.**

(2) D. A. Collins, J. **J. Hillary,** J. S. **Nairn, and G. M. Phillips, J.** *Inorg; Nucl. Chem.,* **24, 441 (1962).**

(4) A. V. **Grosse, J.** *Am. Chem. Soc., 66,* **2501 (1934);** *Proc. Roy.* Soc. **(London), A160, 363 (1935).**

(6) D. Brown and J. **F. Easey,** *Nature,* **265 (4971) 589 (1965).**

(7) R. D. W. **Kemmitt, D. R. Russell, and D. W. A. Sharp, J.** *Chem. Soc.,* **4408 (1963);** B. *Cox,ibid.,* **876 (1956).**

(8) G. D. Sturgeon, R. A. Penneman, F. H. Kruse, and L. B. **Asprey, Inorg.** *Chem.,* **4,748 (1965); 8, 727 (1964); 8, 126 (1964).**

co-workers reported that PaF_6^- , PaF_7^{-2} , PaF_8^{-3} are all observable in fluoride solutions.10

Experimental Section

Materials.--Protactinium 231 $(\alpha$ half-life of 32,500 years) was used; milligram quantities of this isotope must be handled with precautions against the radioactivity. Analysis of a 100-mg portion showed our material to contain 2.2% niobium impurity. Two precipitations as K_2PaF_7 followed by precipitation with ammonia and ignition to Pa₂O₅ decreased the niobium to $\langle 0.1\%$.

For conversion to the fluorides, the $Pa₂O₆$ was reduced with a mixture of H_2 and HF to yield PaF₄. A portion of the PaF₄ was then treated with F_2 yielding Pa F_6 without Pa₂OF₈ (which would have been expected if oxygen impurity were present in the fluorine¹¹).

Other reagents were prepared as follows: In order to obtain hydrogen of the necessary purity (oxygen and water-free), the gas was passed through UH₃ at 380° . Fluorine was passed through NaF to remove HF. Commercial HF was condensed and hydrogen plus other uncondensed gases were pumped off; after treatment with F_2 (to oxidize possible H_2 and H_2O impurities) the process was repeated. Anhydrous alkali fluorides were of reagent grade and were fluorinated before use to remove traces of moisture.

Equipment.-Anhydrous preparations were carried out on a 10-50 mg scale in a vertical nickel reactor tube $(1 in. i.d.)$ heated by a split tube furnace. The reactor tube was machined from nickel bar stock and no welds were located in the hot zone. Previously we had observed failures upon repeated exposure of welds to hot fluorine. The top of this nickel tube opened into the bottom of an inert atmosphere drybox. Closure was made at the top, water-cooled end of the reactor by a screw cap having a Teflon gasket. The bottom of the reactor had a thermocouple well extending into the center of the hot zone; samples being fluorinated rested in a holder that was supported by the end of the thermocouple well. Other tubes led through the base of the reactor through which H_2 , HF, F_2 , or He gases could be admitted. The reactor tube could be evacuated to 0.2μ ; a liquid nitrogen trap was used between the pump and the system.

An analytical balance was placed inside the inert atmosphere box in order to weigh the moisture-sensitive materials. The box was kept dry by circulating argon over $Mg(C1O₄)₂$.

Technique.-For the aqueous preparations, a 48% HF solution containing an alkali (or ammonium) fluoride and protactinium (V) was evaporated in air and then finely ground, all within a Berkeley-type glove box. At $MF: PaF_5 = 1:1$, the M_2PaF_7 complex containing the heavier alkali fluorides (not Li or Na) was sufficiently insoluble so that the first few crystals gave the most

⁽³⁾ D. Brown and A. **G. Maddock,** *Quart.* **Rev. (London), 17,289 (1963).**

⁽⁵⁾ L. B. Asprey and R. A. **Penneman,** Science, **146,924 (1964).**

^{(9) 0.} L. Keller and A. Chetham-Strode, Oak Ridge National Laboratory, private communication, 1965. Proceedings of Protactinium Conference, Orsay. France, July 1965.

⁽¹⁰⁾ N. Bukhsh, J. **Flegenheimer, F. M. Hall, A. G. Maddock, and C. F. de Miranda, presented at the Protactinium Conference, Orsay, France, July 1965.**

⁽¹¹⁾ I,. Stein, *Inorg. Chem.,* **8, 995 (1964).**

intense X-ray lines characteristic of the heptafluoride. Subsequent crystals obtained by further evaporation were pure $MPaF₆$ free from M_2PaF_7 . With M_2PaF_7 , an excess of alkali is needed to avoid contamination with $MPaF_6$.

A representative sample was taken for X-ray and optical identification. The remainder of the sample was ground, transferred into the nickel reactor, and heated at 400° in F₂ at 1-1.5 atm. After this treatment, the whole sample was then crushed and a powder diffraction photograph was again taken to find whether any change had occurred.

Anhydrous preparations were made by intimately grinding weighed amounts of alkali fluoride and protactinium tetrafluoride (in $1:1$, $2:1$, and $3:1$ stoichiometric ratios) within the inert atmosphere box. The mixture was then fluorinated (in a sapphire dish) at 400° and 1.5 atm. Temperatures of \sim 400° were satisfactory, but some loss of PaF₆ was noted at 500° .

X-Ray powder diffraction photographs were taken using a 114.6-mm Debeye-Scherrer camera, Ilford-G film, and filtered Cu radiation, **(A** 1.5418 A). Contamination was avoided on the exterior of the 0.2-mm Lindeniann glass capillaries by mounting the empty capillary within a protective test tube with only the larger, open end of the capillary exposed above a test tube stopper. Transfer of the fine α -active powder from the capillary mouth to the tip was facilitated by agitating the capillary with a Yibrograver. The capillary was then temporarily sealed by a drop of viscous fluorocarbon oil, transported to a hood, removed from the test tube, and sealed with a microtorch. Thereafter, X-ray data were obtained in the normal manner without additional precautions (other than care to avoid capillary breakage).

The complex protactinium (V) fluorides containing alkali or ammonium ions are white, crystalline solids.

 $LiF-PaF₅$ System.--Two compounds were observed in the lithium-protactinium(V) fluoride system. LiPaFa was obtained by evaporation of a solution containing Li and Pa in 1:1 mole ratio in 48% HF followed by fluorination of the dried residue. Without fluorination, the dried product contained both LiPaF_s and Li₃PaF_s. A starting mole ratio of 2:1 Li:Pa in aqueous HF gave a mixture of LiPaF_s and Li_sPaF_s while a $3:1$ Li : Pa mole ratio yielded only LisPaFs.

 $NaF-PaF₆ System.—Two preparative methods gave NaPaF₆:$ The first involved evaporation to dryness of a 48% HF solution containing Na and $Pa(V)$ in 1:1 mole ratio followed by grinding and fluorination of the product. Fluorination of the dried residue is necessary to obtain good X-ray powder patterns of $NaPaF₆$, free of Na_3PaF_8 . A second approach is to grind together and then fluorinate an equimolar ratio of NaF and PaF4. When higher ratios of Na to Pa were employed, no Na_2PaF_7 was detected, but Na_3PaF_8 formed readily and was identified as being isostructural with $Na₃UF₈$.¹²

KF-PaF6 System.-Simple evaporation of an HF solution containing a 1:1 K: Pa(V) ratio yielded KPaF₆ crystals. Fluorination of the $KPaF_6$ caused no change in the X-ray pattern. With either 2:l or 3:l K:Pa starting ratios, the characteristic X-ray pattern of K_2PaF_7 was the only phase observed.

 NH_4F-PaF_5 System.—Evaporation of an HF solution containing NH₄ and Pa(V) in a 1:1 mole ratio gave NH₄PaF₆. Heating this compound under vacuum gave $PaF₅$ containing some $Pa₂OF₈$. HF solutions containing NH₄ and Pa(V) in ratios of 2:1 and 3:1 yielded $(NH₄)₂PaF₇$, which is isostructural with K_2PaF_7 and Rb_2PaF_7 .

 $RbF-PaF₆$ System.--Crystals of $RbPaF₆$ resulted when a solution of 48% HF containing Rb and Pa(V) in 1:1 mole ratio was evaporated. Fluorination of precipitated RbPaFe did not alter its X-ray properties. Fluorination of fineiy ground mixtures of RbF and PaF₄ in 1:1 mole ratio also yielded RbPaF₆. At 2:1 and 3:1 ratios of Rb:Pa(V), Rb₂PaF₇ was the major phase precipitated from aqueous HF; traces of $RbPaF_6$ could be detected. From an HF solution containing Rb and $Pa(V)$ at 10:1, a new phase, Rb_3PaF_8 , was formed; no lines due to Rb_2 - $PaF₇$ were observed in the X-ray powder photograph of this preparation.

 $CSF-PaF₅ System.$ As in the case of the rest of the heavier alkalis the MPaF₆ compound is of low solubility and a 1:1 Cs: Pa-(V) ratio in aqueous 48% HF precipitated CsPaF₆. At 2:1 $Cs: Pa(V)$ ratios, $Cs₂PaF₇$, apparently not isostructural with $Rb₂$ -PaF₇, was precipitated. Fluorinating a 2:1 Cs: Pa(V) mixture at 275° also yielded Cs_2PaF_7 ; however, at 400° CsPaF₆ was the major phase observed.

Results and Discussion

X-Ray Results. (A) MPaF₆ Compounds.-In the cases of $LiPaF_6$ and $NaPaF_6$ only microcrystalline powders could be obtained *via* the fluorination route. Therefore, cell dimensions and symmetry were assigned on the basis of powder data only. No acceptable results have been obtained for $LipaF_6$. However, using the straight-line graphical solution method of Coleman and McInteer,¹³ NaPaF₆ could be indexed on the basis of a tetragonal cell, $a_0 = 5.35$, $c_0 = 3.98$ A. These cell dimensions give a rather small molecular volume of 114 A3 per formula unit.

The rest of the MPaF₆ compounds ($M = K$, Rb, NH₄, and Cs) were obtained as orthorhombic crystals. Crystals of the three isostructural uranium (V) compounds were also obtained from anhydrous HF and both optical and X-ray measurements were made on them.* Because of the high radioactivity, the optic figure (but not refractive index data) was obtained on the protactinium compounds. Optical measurements on the four $MPaF_6$ compounds show that they are biaxial, requiring symmetry of orthorhombic or lower. The X-ray powder data could be indexed satisfactorily for a unimolecular orthorhombic cell.

Our powder diffraction data for the three analogous uranium (V) compounds⁸ has been interpreted by Charpin14 as compatible with an orthorhombic unit cell with a_0 and b_0 of similar size at about 5.8 A and c_0 about 4.0 A. Brown and Easey¹⁵ find corresponding dimensions for $KPaF_6$. Charpin further suggested, based on geometrical considerations, that the *c* axis length should be doubled. Burns and Keller¹⁶ have recently found for $RbPaF_6$ that the unit cell is tetramolecular rather than unimolecular.

Our single crystal data obtained for the analogous uranium compounds, $NH₄UF₆$, KUF₆, and RbUF₆, show that in these compounds also the *b* and c axes must be doubled. The cell of quadruple volume as first observed by Burns and Keller for $RbPaF_6$ was confirmed for all three compounds and, thus, in all likelihood is valid for all the orthorhombic members of this series. Systematic absences of reflections indicate the space group to be Abm2 or Abmm (Cmma). Reflections of the type *hkl* for which *k* and *1* are odd are extremely weak, while those with *k* and *1* even are generally quite strong. The intensity distribution of

⁽¹³⁾ J. S. Coleman and B. B. RIcInteer, "1.0s **Alamo?** Straight 1,ine In dexing Diagram," to be published.

⁽¹⁴⁾ P. Charpin, *Compt. Rend.*, 260, 1914 (1965).

⁽¹⁵⁾ D. Brown and J. F. Easey, *J. Chem. Soc.*, in press. (16) J. H. **Burns** and 0. L. Keller, Oak Ridge National Lahoiatory, private communication, 1965; ORNL-3913, Annual Report of Reactor Chemistry Division, 1965.

⁽¹²⁾ W. Ruedorff and H. Leutner, $Ann. Chem., 622, 1 (1960).$

TABLE I 1:1 ALKALI FLUORIDE: PROTACTINIUM(V) AND URANIUM(V) **FLUORIDE COMPLEXES**

				Vol. of em- pirical formula
	a_0 , A	b_0 , A	c_0, A	unit, A ³
NH ₄ PaF ₆	5.84	11.90	8.03	139.5
NH_4UF_6	5.83	11.89	8.03	139.2
$KPaF_6$	5.64	11.54	7.98	129.8
KUF ₆	5.61	11.46	7.96	127.9
RbPaF _s	5.86	11.97	8.04	140.9
RbUF ₆	5.82	11.89	8.03	139.0
CsPaFs	6.14	12.56	8.06	155.3
$CsHFA^a$	8.04		8.39	156.4

^a Rhombohedral, hexagonal lattice dimensions.

TABLE II PARTIAL X-RAY POWDER DIFFRACTION DATA FOR RbPaF₆ AND RbUF₆

RbPaF ₆		$\textnormal{\texttt{RbUF}}_F$		
d, A	I/I_0^a	d, A	I/I_0^b	
6.00	s	5.96	66	
5.85	s	5.78	14	
4.18	vs	4.15	97	
4.02	m	4.01	40	
3.66	w	3.64	12	
3.46	W	3.40	9	
3.33	vs	3.31	100 ï	
3.00	m	2.97	19	
2.91	m	2.89	13	
2.67	mw	2.64	9	
2.63	w	2.61	3	
2.39	${\rm v}{\rm w}$	2.38	6	
2.23	S	2.21	37	
2.20	s	2.18	18	
2.10	m	2.07	14	
2.01	m	2.00	24	
1.90	m	1.89	11	
1.86	m	1.87	11	
1.81	m	1.81	28	
1.79	W	1.79	8	

^a Visual estimate of intensity. ^b Peak height from diffractometer scan, normalized to 100.

the strong reflections suggest that at least the actinide atoms are in such special positions as to produce a psuedo-cell of one-quarter the volume of the true cell. Lattice dimensions derived from powder diffraction data are listed in Table I. The observed d spacings and intensities for $RbPaF_6$ (and $RbUF_6$ for comparison) are given in Table II. A complete single crystal study of the RbPa F_6 structure is being made by Burns and Keller, Oak Ridge National Laboratory, and will provide details of bonding in these orthorhombic compounds.

 NH_4UF_6 was described⁸ as biaxial positive with n_z

= 1.520, $n_y = 1.490$, $n_x = 1.488$. The optical orientatation has now been determined relative to the unit cell translations as $Z = c$, $Y = b$, $X = a$. Thus, the two nearly equal indices correspond to the nearly equal axes $(a_0 \text{ and } b_0/2)$ of the pseudo-cell.

(B) M_2PaF_7 Compounds.—No evidence was found for Li_2PaF_7 or Na_2PaF_7 . We find K_2PaF_7 , Rb_2PaF_7 , and $(NH_4)_2 PaF_7$ have the same structure, whereas $Cs₂PaF₇$ does not. The partial powder pattern typical of Rb₂PaF₇ is listed in Table III for comparison with the Cs_2PaF_7 pattern. (Note: The structure of K_2PaF_7 is being worked on by Smith and Brown.¹⁷)

TABLE III

	Rb ₂ PaF ₇ -Cs ₂ PaF ₇ PARTIAL X-RAY POWDER PATTERNS				
--	--	--	--	--	--

 (C) M_3 PaF₈ Compounds.—In agreement with Brown and Easey, we find that Na₃PaF₈ and Na₃UF₈ are isostructural.⁶ However, we were unable to obtain their reported phase of Li₃PaF₈. A new compound, Rb₃PaF₈, was found at high Rb:Pa(V) ratios in 48% HF: the crystalline precipitate was indexed as fcc, $a_0 = 9.6$ A, and did not contain Rb₂PaF₇.

Acknowledgment.-It is a pleasure to acknowledge the assistance of W. H. Zachariasen in helpful discussions of the crystallographic problems. J. H. Burns and O. L. Keller kindly permitted us to include their data on $RbPaF_6$.

(17) A. J. Smith and D. Brown, presented at the Protactinium Conference, Orsay, France, July 1965; Chem. Commun. (London), 554 (1965).