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A involving Br(4) or Br(5) is the Br(4)---Br(5) dis-
tance of 3.52 A between ions related by the a glide
plane. This contact and the other short intermolecular
distance are dependent upon the inclination of the Re;
triangle to the (001) plane, but are not necessarily
related to the size of the Br(4)Re(2)Br(5) angle. When
the short intramolecular contacts are considered it is
clear that a marked reduction in repulsive forces has
been achieved by the closing of this angle. First we
note that the distances Br(4)---Br(6) and Br(5)---
Br(6) are virtually independent of the angle under
consideration. This leaves the contacts Br(1)---Br(4)
and Br(2)---Br(5) as the important factors. These
two independent distances average 3.74 A, which,
when compared with the Br(1)---Br(l’) distance of
3.31 A and the corresponding 3.38 A in Re;Bry, indicates
a considerable decrease in bromine-bromine repulsive
forces across the face of the anion.

Accompanying the decrease in the Br(4)Re(2)Br(5)
angle is a corresponding shortening of the two off-
plane terminal bonds to a mean value of 2.38 A, com-
pared with the mean value of 2.47 A for the bonds to
Re(1). This difference of 0.09 A is about 7¢ and there-
fore highly significant. It may be accounted for by
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postulating some = bonding between filled 3d orbitals
of the terminal bromines and the rhenium 5p or 5sbp
hybrid lying in the plane of the Res; triangle and un-
used in the absence of an in-plane terminal bromine,
It is significant that shortening of the terminal off-
plane bonds has not occurred in the isolated Re;Bry!®
species where all rhenium atoms are ‘‘deficient.”
Neither has the angle subtended by the pair of off-
plane bromine atoms decreased. Additional = bonding
cannot therefore be postulated in this case. It is hard
to believe that intermolecular packing forces (which
appear to be quite weak in the complex in which
Re3Bry occurs) could cause such wide variations as
exist between the dimensions of (Re;Bry1)?— and neutral
ResBry. For a full understanding of these variations
we must await a quantitative bonding theory which
considers the trinuclear cluster as a whole.
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S;N2Cl, crystallizes in the monoclinic space group P2, with cell dimensions ¢ = 6.546 A, b = 8.600 A, ¢ = 5.508 A', and 8 =
102.37°; there are two formula units per unit cell. The material is a salt consisting of a chloride anion and a S-N-S-N-S-
L

Cl™ cation.

Introduction

S3NyCly was first identified by Demarcay,? who
prepared it by allowing SCl, or S,Cl, to react with
SiN4.  Meuwsen?® prepared S;N:Cl, by allowing (NSCl),
to react with S;Cl,, More recently Jolly, Maguire,
and Rabinovich* produced the material by refluxing a
suspension of ammonium chloride in S,Cl,, An X-ray
crystal structure analysis on a crystal prepared by
Jolly’s method was undertaken to determine the
molecular structure of this compound.

Experimental Section

S;NoClp is a yellow crystalline salt which decomposes in the
air, The salt was removed from its container in a nitrogen-

(1) Work done under the auspices of the U. 8. Atomic Energy Commis-
sion.

(2) E. Demarcay, Compt. Rend., 92, 726 (1881).

(3) A. Meuwsen, Ber., 68, 1731 (1932).

(4) W. L. Jolly, K. D. Maguire, and D. Rabinovich, Inorg. Chem., 2, 1304
(1963).

The sulfur and nitrogen atoms form a puckered five-membered ring.

filled drybox, crushed, and sieved. Several crystal fragments
of about 0.3 mm were introduced into tapered quartz capillaries
of about the same size and sealed. With patient use of a micro-
scope and a file, a single crystal fragment was isolated and
wedged in the capillary; the capillary was fire sealed to a final
length of about 1 cm. The crystal tfragment was an irregular
plate with dimensions approximately 0.3 X 0.4 X 0.2 mm.
Some decomposition of the crystal surface did occur as the erystal
lost its yellow color and took on a blackish tinge; however, the
crystal diffracted X-rays well and no further deconiposition was
encountered. The crystal was oriented with the monoclinic b
axis parallel to the length of the capillary.

A General Electric XRD-5 apparatus equipped with a quarter-
circle Eulerian cradle type goniostat, a scimtillation counter, a
pulse height discriminator, and a molybdenum X-ray tube was
used to measure the cell dimensions and the intensities. The
X-ray tube was operated at 20 ma and 40 kv. The primary X-
ray beam was filtered with a Zr filter.

The measured monoclinic cell dimensions based on Ake, =
0.70026 A are: ¢ = 6.546 = 0.007 A, b = 8.600 = 0.004 A,
¢ = 5.508 &= 0.005 A, and 8 = 102.37 &= 0.03°." The observed
density was 2.0 g/ml, suggesting two formula units per unit cell;
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the calculated X-ray density is 2.14 == 0.01 g/ml. The observed
extinctions are 0k0, 2 = 2x# 4+ 1, and the space group is P2;.

A total of 1022 independent reflections were each counted for
10 sec using a stationary crystal-stationary counter technique.
These are all of the data in a quarter of the sphere of reflection
where 26 < 62°, or sin 8/» < 0.726. Background was plotted
as a function of 26 and applied routinely to the reflections with
the exception of a minority of intensities where very intense
reflections would spill over on weaker ones in the same row; these
backgrounds were then measured individually. Typical back-
ground counts were 20, 10, and 6 counts/sec at 20, 40, and
60° of 26, respectively, The most intense reflection (102) was
about 56,000 counts/sec.

All of the computations were performed with an 1M 7044
computer with a 32K memory. The least-squares program used
minimizes the function Zw(|Fo| — |F.|)2/ZwF,2, where w is the
weighting factor and F, and F, are the observed and calculated
structure factors. All of the reflections were given unit weights
with the exception of the six most intense reflections which
toward the end of the computations were given zero weight.
Anisotropic temperature factors have the form exp — (4281 +
b2Boy 4 12833 + 2hkBra 4 2Bz 4 2kIBax); however, for our con-
venience the program converts these thermal parameters to
B;;in A? where Bi; = 48q;/a:%a;* and a.* is the sth reciprocal
axis length.

Atomic scattering factors?® for neutral S, Cl, and N were used.
S and Cl were both corrected for the anomalous dispersion effect,
with Af” = 0.1 and Af'' = 0.2 electron.® The real component
Af’ was added to the scattering factors; the imaginary com-
ponent Af’’ was incorporated into the actual least-squares cal-
culation.

The ‘‘unreliability index’’ reported throughout this paper is
R = 2|R| - P2 R,

Determination of Structure

The structure was deduced from the three-dimen-
sional Patterson function. A careful investigation
of the function gave us trial positions for the three
sulfur, two chlorine, and one nitrogen atoms; a Fourier
based on the phases of the six-atom structure then gave
the last nitrogen atom. As the atomic positions were
deduced their parameters were introduced into a least-
squares refinement using isotropic temperature factors.

Inorganic Chemistry

identification of the sulfur and chlorine atoms was
determined by studying the structure geometry and
the interatomic distances. Anisotropic temperature
factors were applied to all of the atoms and R reduced
to 0.048. A few blunders in the data were detected,
and these reflections were remeasured and corrected.
Large discrepancies were present in the six most in-
tense reflections which could be attributed to extinec-
tion effects and to the nonlinearity of the scintillation
counter at high counting rates. These six reflections,
all those with counting rates greater than 20,000 counts/
sec, were assigned zero weight. The R decreased to
0.0292. The introduction of the imaginary dispersion
correction increased R to 0.0293; the y parameters
were all reversed and R became 0.0291. This differ-
ence is so small that there may be some doubt concern-
ing which structure is correct, but we report the one
which gave the best agreement. The other structure
is almost identical except that the two nitrogen atoms
are shifted 0.014 A toward zero along the vy axis. The
only bond lengths which are significantly different are
S(1)-N(1) and S(1)-N(2), which are respectively
longer and shorter by about 0.010 A in the other
structure. This relative shift of light and heavy atoms
along a polar direction when refined in this manner,
or ‘‘polar dispersion shift,”’ is an effect which has also
been observed in thorium nitrate pentahydrate’ and
in a diiodocyclobutene® and which is explained in more
detail elsewhere.” In the present case the ambiguity
is of trivial importance to the chemical interpretation.

Results
A list of the atomic and thermal parameters of Ss-
N,Cls is shown in the Table I.
Table IT presents a list of the observed and calculated
structure factors.
The most interesting result of this work is the ap-

TaBLE

POSITIONAL? AND THERMAL? PARAMETERS IN S3N:Cl,

Atom x ¥ z B
CI(1) 0.1017 0.0° 0.4844 3.32
Cl(2) 0.1975 —0.3541 0.1028 2.86
S(D) 06099 0.1671 0.3235 2.37
S(2) 0.2303 0.0264 0.1552 2.69
S(3) 0.2161 0.2734 0.1148 2.56
N(1) 0.4756 0.0105 0.2436 2.54
N(2) 0.4558 0.3039 0.2549 2.98

B Bss B:; B Bes
5.33 3.63 1.18 1.51 1.24
2.83 3.08 0.11 0.50 —0.09
3.48 2.81 0.37 0.37 —-0.11
2.14 2.82 0.13 0.88 0.11
2.10 3.61 0.11 0.06 0.13
2.88 3.60 0.85 1.02 0.46
2.68 3.55 —0.10 0.30 —0.89

e Estimated standard deviations of the positional parameters for S and Cl are less than 0.0003, and for N they are less than 0.0008.

b Estimated standard deviations of tlie thermal parameters for S and Cl are about 0.05, and for N they are about 0.2.

A2 ¢ Polar space group P2; requires one y parameter to be fixed.

Starting with three atoms (Cl, 8, N) the structure
refined to R = 0.47, with four atoms (2Cl, S, N) R =
0.37, with five atoms (2 Cl, 2 S, N) R = 0.29, with six
atoms (2 Cl, 38, N) R = (.13, and finally with all seven
atoms R = 0.09. At the five-atom stage a nonexistent
atom was introduced, but was rejected by the least
squares vie a large temperature parameter. The final

(3) J. A. Ibers, “International Tables for X-ray Crystallography,”” Vol.

III, The Kynoch Press, Birmingham, England, 1962, p 202.
(6) D. H. Templeton, ref 5, p 215.

Units of B;; are

parent ionic nature of the material. The material
consists of a S3N,Cl+ jon and a Cl~ion. The chloride
ion is Cl(2) and its closest approachs are to S(1) at
2.90 A, S(3) at 2.93 A, and S(2) at 3.04 A. Figure 1
shows a sketch of the S;N.Cl+ ion labeled with distances
and angles.

The three sulfurs and two nitrogens form a slightly

(7) T. Ueki, A. Zalkin, and D, H. Templeton, Acta Ciryst., 20, 836 (1966).

(8) G. L. Hardgrove, L. XK. Templeton, and D. H. Templeton, unpub-
lished work.
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Figure 1.—Distances and angles in S;NzCl+,
standard deviations are about 0.005 A on the distances and

about 0.3° on the angles.
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Figure 2.—Projection of §;N:Cl; down the ¢ axis.

(AV]
w
I>

puckered five-membered ring with a Cl atom, CI(1),
attached to the thio sulfur, 7.e., CI-S—-N-S~N-S. The
[

puckering can be described as a chair form in the follow-
ing sense. If a plane is drawn through the three sulfur
atoms, the CI(1) atom is 2.09 A above the plane, N(1)
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TaBLE III
SELECTED BoND LENGTHS (A) IN SOoME AzyvL RING SYSTEMS
Formula S-S S-N s-C1 Ref
Cl-S-N-S-N-S*Cl~ 2.136 1.543-1.617 2,168 This work
L
Cl Cl
I [
S-N-5-N-8-N .600-1.614 2.084-2.150 10
L .
Ct Cc
I f
,—S—N~S~N—S—N—l .546-1.578 1.991-1.999 9
I
Lo o 0 |
F F F
[ |
S-N-S-N-S5-N .540-1.660 11
S-N-8-N-S-N-S*NO;~ 2.064 .493-1.582 12
[
NiSiHq 1. 13

is 0.188 A below the plane, and the opposing N{(2)
atom is 0.140 A above the plane.

The five-membered ring in S;NyCly is the smallest
such ring system in a series of cyclic azyl systems.
Six-membered rings are present in (NSOCI);* (NS-
Cl)3,* and (NSF)3;!! a seven-membered ring is present
in S,N;NO;;*? and an eight-membered ring in Ny
S:H4 " In all these cases the nitrogens are separated

(9) A. C. Hazell, G. A, Wiegers, and A. Vos, Ac¢ia Cryst., 20, 192 (1966).

(10) G. A. Wiegers and A. Vos, ¢bid., 20, 192 (1966).

(11) G. A. Wiegers and A. Vos, ibid., 14, 562 (1961).

(12) A. W. Cordes, R. F. Kruh, and E. K. Gordon, I'norg. Chem., 4, 681

(1965).
(13) E. W. Lund and S. R. Svendsen, Acta Chem. Scand., 11, 940 (1857).

by sulfur, and halogen, when present, is bonded to
sulfur. Table III shows a comparison of the common
bonds in these compounds.

Figure 2 shows the packing in the crystal as seen in
projection down the ¢ axis.
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The Crystal Structure of Bis(ethylenediamine)palladium(II) Chloride
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The crystal structure of bis(ethylenediamine)palladium(1I) chloride has been determined by three-dimensional X-ray dit-
fraction techniques. The space group is PT with ¢ = 6.8607 = 0.0004 A, » = 83610 = 0.0008 A, ¢ = 4.9940 = 0.0003 A,
a = 97.716 &= 0.006°, 3 = 100.683 £ 0.005°, v = 108.571 =& 0.006°, and Z = 1. These cell parameters were determined
by a least-squares refinement of thirty 26 values measured on a single-crystal diffractometer. The errors indicated are the
estimated standard deviations as obtained from this refinement and, as such, measure the precision of the determination and
not necessarily the accuracy. The structure consists of discrete [Pd(en);]?* and Cl~ ions held together in layers parallel to
(010) by a network of N~H - - Cl hydrogen bonds. The N-CI distances vary from 3.217 to 3.357 A. The palladium ion is
four-coordinated by the nitrogen atoms of the ethvlenediamine ligands in a planar configuration with an average Pd—N dis-

tance of 2.036 A.

Introduction
As part of a series of investigations carried out in
this laboratory into the configuration of the ethylene-
diamine (en) ligand in coordination compounds we
have determined the crystal structure of bis(ethyl-
enediamine)palladium(II) chloride, Pd[NH,(CHy).
NH,[;Cl.. Cox and Preston! report that Pd(en).Cly

is tsomorphous with Pt{en),Cly and has almost identical
cell dimensions. They report Pt(en),Cly as crystal-
lizing in space group P1 and having lattice parameters
as follows: ¢ = 837 A, 0 =495A, ¢c =680 A, a =
100° 467, 8 = 111° 40’, v = 81° 56’. When this cell
is placed in the standardized formn as recommended

(1) E. G. Cox and G. H. Preston, J. Chem. Soc., 1089 (1933).



