CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, **MASSACIIUSSTTS** INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS **02139**

Molecular Structure and Bonding in Diethylenetriaminechromium Tricarbonyl : **The Cr(0) and Approximate Mn(0) Radii1**

BY F. A. COTTON AND D. C. RICHARDSON²

Received January 31, 1966

The crystal and molecular structure of cis -Cr(dien)(CO)₃ (dien = diethylenetriamine) has been determined by single crystal X-ray diffraction studies. The molecular structure is derived, as expected, from that of octahedral $Cr(CO)_6$, the substituents being mutually *cis.* The compound is crystallographically isostructural with its Mo analog, whose structure was recently reported. From the Cr-N bond lengths a single-bond radius of 1.48 \pm 0.01 A is obtained for Cr(0) in Cr(CO)₆ and its derivatives. It is also inferred that the single-bond radius for Mn in derivatives of Mn₂(CO)₁₀ is probably about 1.39 A, with 1.43 A being a fairly certain upper limit. Comparison of the Cr-CO bond lengths in Cr(dien)(CO)₃ with those in $Cr(\text{area})(CO)$ ₃ compounds implies that the arene rings show little if any π acidity toward the Cr(CO)₃ moiety in the ground states of these arene derivatives.

Introduction

Recently there has been considerable interest in this laboratory³⁻⁶ and elsewhere⁷⁻⁹ in the detailed description of the bonding of ligands to the metal atoms in very low (or zero) formal oxidation states in metal carbonyls and their derivatives. Both structural and spectroscopic observations are valuable in attempting to elucidate the problem. From the purely structural point of view, it is necessary to know general structures of the molecules, that is connexity of bonds and molecular symmetry, as well as accurate values of bond distances, from which such elusive quasi-experimental, quasi-theoretical parameters as metal single bond radii and metal-ligand bond orders can be deduced.

The present paper reports a structural study of an amine-substituted derivative of chromium carbonyl, from which information and conclusions pertinent to the question of Cr-CO bonding may be obtained.

Experimental Section

Preparation **of cis-(Diethy1enetriamine)chromium** Tricarbonyl. -The Cr(dien)(CO)₃ was prepared by heating at 150 $^{\circ}$ for 0.5 hr chromium hexacarbonyl, 1.5 g, with an excess of diethylenetriamine, 5 ml, under an atmosphere of nitrogen.^{3b,10} Slow cooling of the reaction mixture to room temperature allowed the formation of crystals suitable for X-ray work. The orange-brown rhombohedral crystals were washed with ethanol, then pentane, and dried in a vacuum desiccator.

X-Ray Crystallographic Study.-The rhombohedra were found to belong to the orthorhombic system with cell dimensions *a* = 8.312 ± 0.002 , $b = 11.81 \pm 0.02$, $c = 10.05 \pm 0.01$ A. The compound just floats in iodobutane of density **1.62.** Assuming the density of the crystals to be **1.60** and using the molecular weight of **239** amu the number of molecules per unit cell was calculated to be 3.98. The systematic absences $h00$ for $h \neq$ 2n, 0k0 for $k \neq 2n$, 00l for $l \neq 2n$ observed on precession photographs uniquely determined the space group as $P2_12_12_1$.

The intensities of about 1530 reflections, $0 < 2\theta \le 58^{\circ}$, were collected using the General Electric XRD-5 X-ray diffractometer equipped with a Furnas-Harker eucentric goniometer and a scintillation counter, with Mo K_{α} radiation. The crystal, of approximate dimensions 0.4 mm on an edge, was mounted in a nitrogen-filled capillary with the c axis vertical and parallel to the spindle. The intensities were measured using a modification of the moving crystal-moving counter method of Furnas." Lorentz-polarization corrections were applied but absorption was neglected $(\mu = 12 \text{ cm}^{-1})$.

Solution and Refinement of Structure.⁻⁻⁻A three-dimensional Patterson synthesis was computed¹² using all reflections. From the large peak in each of the Harker sections $(1/2, y, z)$, $(x,$ $\frac{1}{2}$, z), $(x, y, \frac{1}{2})$, the fractional coordinates of the chromium atom were estimated to be $x = 0.318$, $y = 0.396$, $z = 0.811$.

A Fourier summation was computed¹² with all phases the same as those given by the chromium atoms, and this gave a fairly clear picture of the entire molecule. Two cycles of least-squares refinement13 of the over-all scale factor and Cr, C, 0, and N atom coordinates produced a residual14 of 0.17. Four cycles of refinement of the atom coordinates and the isotropic temperature factors lowered the residual to **0.13.** A Fourier electron density map computed at this time clearly showed this compound to be isostructural with $Mo(dien)(CO)₈$.⁵ An error analysis, dividing the reflections into groups of 50 by relative intensity, showed nothing unusual, and it was decided best to give all reflections equal weights.

Refining the scale factor and one of the bridging carbon atoms, Cq, reduced the residual to **0.12.** A difference Fourier at this stage indicated a need for anisotropic temperature factors and showed electron density in the regions where the hydrogen atoms would be expected. Working from a model and modifying the values to best fit the Fourier map the coordinates of the hydrogen atoms were estimated. Two cycles of varying only the hydrogen atom coordinates and isotropic temperature factors slightly raised the residual and only a few of the hydrogen atom positions remained reasonable. The hydrogen atoms were therefore dropped from consideration.

⁽¹⁾ Supported by grants from the United States Atomic Energy Commis sion and the National Science Foundation.

⁽²⁾ N.I.H. Predoctoral Fellow, 1963-1965.

^{(3) (}a) F. **A. Cotton and C.** S. **Kraihanzel,** *J. Am. Chem. SOL.,* **84, 4432 (1962); (h) C.** S. **Kraihanzel and** F. **A. Cotton,** *Inovg. Chem.,* **2, 533 (1963). (4) F. A. Cotton,** *ibid.,* **3, 702 (1964).**

⁽⁵⁾ F. A. **Cotton and** R. **M. Wing,** *ibid.,* **4, 314 (1965).**

⁽⁶⁾ F. **A. Cotton and** R. M. **Wing,** *ibid.,* **4, 1328 (1965).**

⁽⁷⁾ H. B. Gray and N. **A. Beach,** *J. Am. Chem. SOL., 85,* **2922 (1963).**

⁽⁸⁾ L. **H. Jones,** *J. Chem. Phys., 36,* **2375 (1962).**

⁽⁹⁾ *G. R.* **Dobson,** *Inovg. Chem.,* **4, 1673 (1965).**

⁽¹⁰⁾ E. Abel, M. A. Bennett, and *G.* **Wilkinson,** *J. Chem. Soc..* **2325 (1960).**

⁽¹¹⁾ F. A. Cotton and R. C. **Elder,** *Inovg. Chem.,* **3,** *397* **(1964).**

⁽¹²⁾ All Patterson and Fourier summations were computed using the ERFR2 Fourier summation program for the IBM 709/7090 computer written **by W. G. Sly,** D. **P. Shoemaker, and** J. **H. Van den Hende, 1962.**

⁽¹³⁾ *C.* **T. Prewitt, "A Full Matrix Crystallographic Least Squares Pro-gram for the IBM 709/7090 Computer," Massachusetts Institute of Technology, 1962. Atomic scattering factors were taken from J. A. Hoerni and** J. **A. Ibers,** *Acta Cryst., 7,* **744 (1954), for** *C,* N, **and 0, and from A.** J. **Freeman and R. E. Watson,** *ibid.***, 14,** 231 (1961), for Cr. (14) Defined **as** $[\Sigma w | F_0] - |F_0|]/\Sigma |wF_0|$.

Two more cycles of refinement of all major atom coordinates and anisotropic temperature factors brought the residual to 0.091. Another two cycles of full-matrix refinement in which the scale factor was also a variable caused the residual to drop to 0.065 The final atomic positional coordinates are given in Table TI

with no significant changes in any of the varied parameters from the penultimate to the ultimate cycle. The observed and calculated structure factors, $|F_{\circ}|$ and F_{\circ} , are given in Table I.

TABLE II FINAL ATOM POSITIONAL PARAMETERS^a FOR dienCr(CO)₃

	Coordinates			
Atom	x/a	x/b	z/c	
Сr	0.3095(2)	0.3900	0.8065	
C_1	0.469	0.424	0.688	
\mathbf{C}_2	0.465	0.404	0.933	
C_{3}	0.293	0.542	0.812	
O ₁	0.570	0.457	0.616	
O ₂	0.572	0.417	1.006	
O ₃	0.301	0.642	0.804	
N_{I}	0.108	0.358	0.940	
N_2	0.115	0.359	0.665	
N_3	0.327	0.207	0.778	
C.	-0.048	0.340	0.875	
C_{5}	-0.038	0.393	0.731	
C_6	0.112(2)	0.240	0.614	
C_7	0.264(2)	0.181	0.644	

^a Standard deviations are all one unit in the last recorded figure except as indicated by a number >1 in parentheses.

and the components of the anisotropic thermal vibration tensors in Table III. The bond lengths and bond angles are recorded in Tables IV and V, respectively. Figure 1 shows a perspective view of the molecule with identifying numbers on the atoms.

TABLE III

^a Standard deviations for Cr, 1×10^{-4} ; for all other atoms, $1-2 \times 10^{-3}$.

TABLE IV

BOND LENGTHS (A) IN dienCr $(CO)_8$				
Bond	Length ^a	Bond	Length ^a	
$Cr-C_1$	1.822 ± 0.008	$C_1 - O_1$	1.173 ± 0.011	
$Cr-C2$	1.822 ± 0.008	C_2-O_2	1.162 ± 0.011	
$Cr-C3$	1.804 ± 0.007	$C_3 - O_3$	1.183 ± 0.009	
$Cr-N_1$	2.185 ± 0.007	N_1 – C_4	1.467 ± 0.012	
$Cr-N2$	2.187 ± 0.007	N_{2} – C_{5}	1.495 ± 0.012	
$Cr-N_3$	2.183 ± 0.006	N_2 – C_6	1.488 ± 0.013	
$C_A - C_F$	1.579 ± 0.016	$N_{\rm x}$ - C_7	1.474 ± 0.012	
$Cr-C7$	1.478 ± 0.016			
Mean values				
$Cr-N(av)$	2.185 ± 0.004			
$Cr-C(av)$	1.816 ± 0.005			

^a Uncertainty intervals are standard deviations of individual values or of the mean, as appropriate.

Discussion

The symmetry of the $CrN_3(CO)_3$ portion of Cr- $(dien)(CO)_3$ is approximately C_{3v} . The three Cr-N and the three Cr-CO distances are equal within the experimental uncertainties, as would be expected. The crystal and molecular structures of this compound

^a Uncertainty intervals are standard deviations.

Figure 1.—A perspective view of the dienCr(CO)₃ molecule, with atoms numbered as in Tables II-V. There are no crystallographic symmetry elements present.

are practically identical with those of $Mo(dien)(CO)₃$, which were recently reported.⁵ It is to be noted, however, that the structure of the chromium compound was solved independently without any reference to that of the molybdenum compound.

The mean Cr-CO distance in Cr(dien)(CO)₃, 1.817 \pm 0.006 A, is markedly shorter than that in $Cr(CO)_{6}$ $(1.91 \pm 0.02 \text{ A})$, and a substantial increase in the extent of metal-carbon π bonding is unmistakeably demonstrated, as expected.¹⁵

Finally, it is to be noted that the mean of the $Cr-N$ distances in the compound is 2.185 ± 0.004 A. This mean value will be used in all subsequent discussions.

The Single-Bond Radius of Chromium (0) .—One of the fundamental but difficult problems in connection with formulating detailed descriptions of the bonding in metal carbonyls and other compounds of formally zerovalent metals is the estimation of appropriate singlebond radii of the metals. One of the major objectives of the investigation reported here was to do this for

⁽¹⁵⁾ A semiquantitative interpretation similar to that given earlier⁵ for the molybdenum compounds could also be made here. However, in view of the suggestions made by Dobson⁹ for modification of the numerical values to be assumed for the π -bond orders, with which we at least partially agree, further quantitative discussion will be deferred.

Cr(0). Formally zerovalent metal atoms can be expected to occur only when surrounded by a considerable number of ligands capable of accepting electrons from $d\pi$ orbitals of the metal (that is, ligands which are π acids), and, of course, the lengths of such bonds, which have multiple bond character, cannot be used to derive a single-bond radius for the metal.

However, it is reasonable to assume that when one or several π acid ligands, such as CO, are replaced by ligands which are simple donors but not π acids, such as NH₃ and amines, and sufficient π acid ligands remain to stabilize the molecule, the bonds to the amine ligands will be simple single bonds and their lengths will be the sum of the nitrogen tetrahedral radius,^{16a} 0.70 A, and the metal atom single-bond radius. Thus, from the average of the Cr-N distances in Cr(dien)(CO)₃, 2.18 \pm 0.01 A, we estimate a $Cr(0)$ single-bond radius of 1.48 ± 0.02 A. This may be compared with a singlebond radius of about 1.62 A, which can be estimated in the same way for $Mo(0)$ in $Mo(dien)(CO)$ ₃ from the structural data recently published for that compound. δ

It has been shown⁴ from the CO stretching force constants that the extent of back donation in analogous carbonyl derivatives of Cr, Mo, and W is approximately the same. Thus the difference in radii, 0.14 A, should be approximately reflected in the differences between Cr-CO and Mo-CO distances in analogous pairs of compounds. This is the case in both the M- $(dien)(CO)_3$ compounds, where the difference is 1.94 - $1.82 = 0.12$ A, and the hexacarbonyls, where it is $2.04 - 1.92 = 0.12$ A.

Finally, it may be noted that the Cr-CO and Mo-CO bonds are about 0.27 and 0.35 A shorter than would be expected for M-C single bonds in the $M(CO)_{6}$ and $M(dien)$ (CO)₃ compounds, respectively. These shortenings are considerably greater than the ~ 0.1 A proposed by Pauling^{16b} on the basis of unspecified assumptions as to the single-bond radii and suggest that his statement that "the bonds have some double-bond character" might well be made more emphatic.

The Radius of Mn in Derivatives of $Mn(CO)_{5}$. The Cr radius in dien $Cr(CO)$ ₃ can be obtained by subtracting the nitrogen radius, 0.70 A, from the mean Cr-N distance, 2.18 ± 0.01 A, giving 1.48 A, as noted above. Since we should naturally assume that the manganese atom is inherently smaller than the chromium atom due to its greater nuclear charge, we must regard this as an upper limit on the Mn(0) radius. More specifically, comparing the mean Mn-CO distance¹⁷ in HMn(CO)₅ with that¹⁸ in Cr(CO)₅NH₃, in

which all factors save the inherent size of the metal atom should be essentially the same, it is found that the Mn radius is, in fact, about 0.05 A smaller than that of Cr. Thus, we may establish an upper limit of \sim 1.43 A for the Mn radius. This is in substantial agreement with one-half the Mn-Mn distance in $Mn₂$ - $(CO)_{10}$, 1.46 A, which is also to be considered an upper limit because of some repulsive force between the $d\pi$ electrons of the two metal atoms. $6,19$

It is even possible, using the CO stretching force constants for $HMn(CO)_{5}^{20}$ and for $Cr(CO)_{5}NH_{3}^{21}$ and the relations between M-C bond lengths, M-C and C-0 bond orders, and CO stretching force constants which have been previously described,³⁻⁵ to estimate that Mn-C bond lengthening relative to the Cr-C bonds, because of lower back donation, is probably about 0.05 A. Thus, the Mn radius would seem likely to be about 1.39 A.

Relevance to Metal-Arene Bonding.—The present results, specifically the metal-to-carbon bond lengths in $dienCr(CO)₃$, afford some information concerning the electron distribution in chromium-to-benzene bonding, at least as it occurs in the $(C_6H_6)Cr(CO)_8$ and $[(CH_3C)_6]$ - $Cr(CO)_3$ molecules. Each of these has recently been studied by Bailey and Dahl.²² Aside from the general similarity of the dimensions of the $Cr(CO)_{3}$ groups in these two compounds to each other and to those of the $Cr(CO)₃$ group in $Cr(dien)(CO)₃$, the essential equality of the mean Cr-C distances in the three compounds is especially noteworthy. For the benzene, hexamethylbenzene, and dien compounds, the mean Cr-C distances and the standard deviations of the mean are, respectively, 1.842 \pm 0.007, 1.814 \pm 0.007, and 1.816 \pm 0.005 A. If it be accepted that the dien group entirely lacks the capacity to back-accept $d\pi$ elections from the metal atom, then these results imply that the benzene and hexamethylbenzene rings fail to do *so* even though they may in principle be capable of doing so by means of their e_2 orbitals. Of course, this conclusion is only valid provided one also assumes that the Cr - $CO \sigma$ bonding is very similar in character in both the arene and dien complexes, but such an assumption seems plausible and there are no data available which contradict it.

Acknowledgment.—We thank the MIT Computation Center for the use of the IBM 7094 computer.

⁽¹⁶⁾ L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell

⁽¹⁷⁾ S. J. LaPlaca, J. **A.** Ibers, and W. C. Hamilton, *J. Am. Chern. Sac.,* University Press, Ithaca, N. Y., 1960: (a) Table 7-13, **p** 246; (b) p **335. 86,** 2282 (1964).

⁽¹⁸⁾ F. C. Rauch, Thesis, Massachusetts Institute of Technology, 1964.

⁽¹⁹⁾ *C.* E. Coffey, J. Lewis, and R. S. Nyholm, *J. Chem.* Soc., 1741 (1964).

⁽²⁰⁾ D. K. Huggins and H. D. Kaesz, *J. Am. Chem. Sac., 86,* 2734 (1964), (21) The spectrum shows four bands (in CHCIa) at 2066, 1980, 1935, and

¹⁸⁸⁵ cm⁻¹. From these, the force constants^{3,4} are found to be $k = 14.6$, $= 15.8, k_i = 0.33 \text{ mdyne/A}.$

⁽²²⁾ M. F. Bailey and L. F. Dahl, *Inorg. Chem.* **4**, 1298, 1314 (1965).