Complexes of Nickel(II) with Schiff Bases Formed from Salicylaldehydes and N-Substituted Trimethylenediamines

BY L. SACCONI, N. NARDI, AND F. ZANOBINI

Received May 6, 1966

Schiff bases formed from ring-substituted salicylaldehydes and N,N-substituted derivatives of 1,3-diaminopropane (trimethylenediamine, tn) form complexes with nickel (II) of the general formula $[X-SALtn-N(R)R']_2Ni$. The nature of the substituents R, R', and X determines whether the ligand is bi- or tridentate. When R = H, R' = n-alkyl or when R, R' = $(CH_3)_2$, $(CH_2)_4$ the resulting complexes are octahedral. Dipole moment measurements and an X-ray crystallographic analysis show that these complexes have a *trans*-octahedral configuration. When $R = CH_3$, $R' = C_6H_5$ all the complexes have the square-planar configuration, and are diamagnetic. When R = H, $R' = C_6H_5$ or R, $R' = (C_2H_5)_2$, $(CH_2)_5$ the configuration of the complex is determined by the ring substituent X. Some compounds were obtained as both paramagnetic and diamagnetic isomers. In inert solvents the planar and octahedral forms coexist in an equilibrium mixture.

Introduction

We have, in this laboratory, previously studied the complexes of nickel(II)^{1,2} and cobalt(II)³ obtained with Schiff bases formed from ring-substituted salicylaldehydes and N,N-substituted ethylenediamines. The ligand in these complexes (given the general formula $[X-SALen-N(R)R']_2M$) is either bi- or tridentate depending on the electronic and steric effects of the substituents R, R', and X. Thus some of the complexes were *cis*-octahedral and some were tetracoordinated (the nickel ones being planar, the cobalt ones tetrahedral), but in other instances five-coordinated complexes were obtained² in which one ligand is bidentate and the other is tridentate. In solution an equilibrium mixture of the various species was formed.

We wished to study the effect of an increase in the chain length of the diamines upon the stereochemistry of the complexes. We have therefore chosen as ligands the trimethylenediamine derivatives of the general formula

Schiff bases of this type form complexes with nickel-(II) which will be given the abbreviated formula [X-SALtn-N(R)R']₂Ni. The stereochemistry of the complexes was investigated by means of molecular weight, spectroscopic, magnetic, and dielectric polarization measurements.

In this series of complexes, the compound $[H-SALtn-N(CH_3)_2]_2Ni$ had been prepared and investigated by Holm, *et al.* These authors suggested for this complex a *cis*-octahedral structure.⁴

Experimental Section

Preparation of the Compounds.—The complexes were prepared by heating together the substituted bis(salicylaldehyde)nickel(II)

- L. Sacconi, P. Nannelli, and U. Campigli, *Inorg. Chem.*, 4, 818 (1965).
 L. Sacconi, P. Nannelli, N. Nardi, and U. Campigli, *ibid.*, 4, 943 (1965).
 - (3) L. Sacconi, M. Ciampolini, and G. P. Speroni, *ibid.*, 4, 1116 (1965).
 - (4) A. Chakravorty, J. P. Fennessey, and R. H. Holm, ibid., 4, 26 (1965).

dihydrate complexes (10 mmoles) with the appropriate Nsubstituted trimethylenediamines (22 mmoles) and ethanol (ca. 50 ml) under reflux until the precipitate was homogeneous. In some cases a little water was added to facilitate the precipitation. After cooling the reaction mixture, the precipitate was collected and recrystallized. Substituted trimethylenediamines not commercially available were prepared by the addition of the appropriate amine to acrylonitrile and subsequent catalytic reduction of the resulting nitriles to amines.^{5,6} The N-phenyltrimethylenediamine was prepared by reducing 1-phenylpyrazole with sodium in alcohol.⁷

Spectrophotometric Measurements.—The absorption spectra were recorded with a Beckman DK2 spectrophotometer. The solvents were purified by the standard procedures used for spectrophotometric measurements. The reflectance spectra were recorded using the standard Beckman reflectance attachment and magnesium oxide as a reference. Concentrations of the solutions were in the range 0.01-0.02 M.

Magnetic Measurements.—The magnetic measurements were performed by the Gouy method, with the apparatus and the experimental technique described in a previous paper.⁸ The sample tube was calibrated with $Hg[Co(NCS)_4]$ and freshly boiled distilled water.⁹

Molecular Weight Determinations.—Molecular weights were measured at 37° on benzene solutions using a Mechrolab osmometer. Benzene was distilled over phosphorus pentoxide through a Todd column packed with glass helices. The instrument was calibrated with benzyl. Weight fractions were in the range 0.002-0.006.

Dielectric Polarization Measurements.—The apparatus and the procedures used have been previously described.¹⁰ The molar refractions for the sodium D line, RD, of the complexes were calculated by adding the proper values of bond refractions¹¹ to the measured molar refraction of the bis(N-cyclohexylsalicylaldiminato)cobalt(II) complex.¹² Values of the orientation polarization, P_{o} , were calculated by assuming a value of 20% RD for the atom polarization.

(6) F. C. Whitmore, H. S. Mosher, R. R. Adams, R. B. Taylor, E. C. Chapin, C. Weisel, and W. Yanko, *ibid.*, **66**, 725 (1944).

Lewis and L. Wilkins, Ed., Interscience Publishers, New York, N. Y., 1960, p 415,

(10) L. Sacconi, M. Ciampolini, F. Maggio, and F. P. Cavasino, J. Inorg. Nucl. Chem., **19**, 73 (1961).

(11) A. I. Vogel, W. T. Cresswell, G. H. Jeffrey, and J. Leichester, J. Chem. Soc., 514 (1962).

(12) L. Sacconi, M. Ciampolini, F. Maggio, and F. P. Cavasino, J. Am. Chem. Soc., 84, 3246 (1962).

⁽⁵⁾ D. S. Tarbell, N. Chakespeare, C. J. Claus, and J. F. Bunnett, $J.\ Am.\ Chem.\ Soc.,\ 68,\ 1217\ (1946).$

⁽⁷⁾ L. Balbiano, Gazz. Chim. Ital., 19, 688 (1889).
(8) L. Sacconi, R. Cini, M. Ciampolini, and F. Maggio, J. Am. Chem.

Soc., 82, 3487 (1960). (9) B. N. Figgis and J. Lewis in "Modern Coordination Chemistry," J.

TABLE I
Summary of Physical and Analytical Data for Substituted [X-SALtn-N(R)R']2Ni Complexes

						-Calc	d, %	-Four	nd, %—
х	R	R'	Crystallization	Formula	Mp, °C	N	Ni	N	Ni
H	н	CH3	CHCl₃ + petr ether	C22H80N4O2Ni	234 - 236	12.70	13.37	12.63	13.19
5-CH3			$CHCl_{\theta} + C_{2}H_{\delta}OH$	C24H34N4O2Ni	221 - 223	11.93		12.15	
5-C1			CHCl₃ + petr ether	$C_{22}H_{28}N_4O_2Cl_2Ni$	239 - 240	10.98		10.97	
3,4-Benzo			CHCl₃ + petr ether	C ₈₀ H ₈₄ N ₄ O ₂ Ni	262 - 265	10.35		10.38	
5,6-Benzo			$CHCl_3 + C_2H_6OH$	C30H34N4O2Ni	265 - 268	10.35		10.41	
н	н	C_8H_7	CHCl ₈ + petr ether	C26H38N4O2Ni	216 - 218	11.27	11.84	11.28	12.04
5-CH₃			C ₂ H _b OH	C28H44N4O2Ni	175 - 176	10.67		10.62	
5-C1			CHCl ₃ + petr ether	C26H36N4O2Cl2Ni	204 - 205	9.89		9.93	
Н	CH_3	CH_3	CHCl ₃ + petr ether	C24H34N4O2Ni	176 - 177	11.94	11.72	12.16	11.61
5-CH3			Toluene	C26H38N4O2Ni	169-170	11.26		11.32	
5-C1			CHCl ₃ + petr ether	C24H32N4O2Cl2Ni	197 - 199	10.41		10.35	
5-NO2			Toluene	$C_{24}H_{32}N_6O_6N_1$	232 - 234	15.03		15.02	
3,4-Benzo			<i>m</i> -Xylene	C32H38N4O2Ni	260 - 263	9.84		9.77	
5,6-Benzo			Toluene	C82H38N4O2Ni	231 - 232	9.84		9.81	
н	CH_2	$-CH_2$	$CHCl_3 + C_2H_6OH$	C28H38N4O2Ni	199-200	10.74	11.29	10.68	11.35
5-CH3	/		$CHCl_{3} + C_{2}H_{5}OH$	C34H42N4O2Ni	207 - 208	10.20		10.30	
5-C1			$CHCl_3 + C_2H_5OH$	C28H36N4O2Cl2Ni	232 - 234	9.49		9.53	
3,4-Benzo	\		Dimethylformamide	C36H42N4O2Ni	270-272	9.02		9.05	
5,6-Benzo	CH2	$-CH_2$	Dimethylformamide	C36H42N4O2Ni	242 - 243	9.02		9.03	
н	C_2H_5	C_2H_5	Petr ether	$C_{28}H_{42}N_4O_2N_1$	48 - 50	10.66	11.07	10.82	11.09
5-CH₃			Petr ether	C ₃₀ H ₄₆ N ₄ O ₂ Ni	71-72	10,12		10.38	
5-Cl (green)			Petr ether	C28H40N4O2Ni	112 - 115	9.43		9.46	
5-Cl (ochre)			Petr ether	$C_{28}H_{40}N_4O_2Cl_2N_1$	112 - 114	9.43		9.46	
3.4-Benzo			Cyclohexane	C36H46N4O2Ni	108 - 110	8,96		8.92	
5.6-Benzo			Petr ether	C26H46N4O2Ni	110-112	8.96		9.07	
н	CH_2-	$-CH_2$	$CHCl_3 + petr ether$	C30H42N4O2Ni	151 - 152	10.20	10.80	10.37	11.07
3-CH3	/		$CHCl_3 + petr ether$	C32H48N4O2Ni	176 - 177	9.70		9.68	
5-CH3	/	CH2	$CHCl_3 + petr ether$	C32H46N4O2Ni	140 - 142	9.70		9.72	
3-C1	\	/	$CHCl_{s} + petr ether$	C30 H40 N4O2C12Ni	186 - 187	9.06		9.03	
5-C1	CH2-	-CH2	$CHCl_3 + petr ether$	C ₃₀ H ₄₀ N ₄ O ₂ Cl ₂ Ni	173 - 175	9.06		9.10	
5-NO2			$CHCl_3 + C_2H_bOH$	C34H40NeO6Ni	208 - 210	13.15		13.20	
3,4-Benzo			C ₂ H ₆ OH	C38H45N4O2Ni	172 - 174	8.62		8.78	
5,6-Benzo			$CHCl_3 + petr ether$	CasH46N4O2Ni	203-205	8.62		8.51	
H (green)	н	C ₆ H ₅	$CHCl_3 + petr ether$	C32H34N4O2Ni	152 - 153	9.91	10.36	10.07	10.04
H (ochre)			CHCl ₈ + petr ether	C82H84N4O2Ni	151 - 153	9.91		10.01	
5-CH ₃ (green)			$CHCl_3 + petr ether$	C34H38N4O2Ni	164 - 165	9.44		9.58	
5-CH3 (ochre)			$CHCl_3 + petr ether$	C84H88N4O2Ni	163-164	9.44		9.40	
5-C2H8			$CHCl_3 + petr ether$	C38H42N4O2Ni	165 - 166	9.02		9.26	
5-C1			$CHCl_3 + petr ether$	C32H32N4O2Cl2Ni	197 - 199	8.83		8.95	
3,4-Benzo			CHCl ₈ + petr ether	C40H38N4O2Ni	194-196	8.42		8.38	
5,6-Benzo			$CHCl_3 + petr ether$	C40H38N4O2Ni	188-189	8.42		8.41	
н	CH3	C6H5	$CHCl_3 + C_2H_5OH$	C34H38N4O2Ni	141 - 142	9.44	9.89	9.71	9.83
5-CH₃			$CHCl_3 + petr ether$	CanH42N4O2Ni	201-202	9.02		8.95	
3-C1			CHCl ₃ + petr ether	C34H36N4O2Cl2Ni	155 - 156	8.46		8.20	
5-C1			CHC13	C84H36N4O2Cl2Ni	212-213	8.46		8.86	
3,4-Benzo			CHCl₃ + petr ether	C42H42N4O2Ni	201-202	8.08		8.19	
5,6-Benzo			CHCl ₃ + petr ether	$C_{42}H_{42}N_4O_2N_1$	168 - 169	8.08		8.04	

Results

The compounds listed in Table I were shown by molecular weight measurements not to be appreciably polymerized in benzene solution. Magnetic susceptibility values are given in Tables II and III and details concerning the visible absorption spectra are given in Table IV. Since the ligands absorb strongly above *ca.* 20,000 cm⁻¹, discussion of the spectra is limited to bands having less than this frequency.

Series 1. R, $\mathbf{R}' = (\mathbf{CH}_3)_2$, $(\mathbf{CH}_2)_4$.—All these compounds have an effective magnetic moment of 3.13–3.24 BM. The dipole moment values were found to be less than 1 D. in benzene at 20°. This points to a nonpolar structure for the complexes and therefore rules out a *cis* structure. The reflectance spectra (Figure 1) show a weak, broad band with more than one maximum in the region 6500–13,000 cm⁻¹ and a shoulder at *ca*. 17,000 cm⁻¹. This type of spectrum is indicative of a distorted octahedral structure and is to be compared with the spectra reported for some *trans*-octahedral (D_{4h} symmetry) nickel(II) complexes.¹³ In the latter there are two weak, broad bands in the near-infrared region which are attributed to the ³B_{2g}

(13) S. M. Nelson and T. M. Shepherd, J. Chem. Soc., 3276 (1965).

and ${}^{3}E_{g}$ levels derived from the ${}^{3}T_{2g}(F)$ level in octahedral symmetry.

A complete three-dimensional X-ray structural analysis, performed in this Laboratory,¹⁴ has shown that the complex $[H-SALtn-N(CH_3)_2]_2Ni$ has a distorted *trans*-octahedral configuration shown schematically as

The coordination polyhedron consists of six donor atoms around the nickel; the four nitrogen atoms lie in a plane of symmetry, normal to the twofold axis which passes through the oxygen atoms. The β N-Ni distance is 0.25 A greater than the α N-Ni distance of 2.05 A. This effect is likely due to steric repulsion between the β N methyl groups and the opposite salicylaldimine ring. The angle α N-Ni- β N is *ca*. 83°; hence the point group of the complex is C_{2h}.

(14) M. Di Vaira and P. L. Orioli, to be published.

			Temp,			µeff
x	R	R'	°C	$10^6\chi_{ m g}$	$10^6 \chi { m Ni}^a$	$\mathbf{B}\mathbf{M}$
н	H	CH_3	19	8.79	4150	3.13
5-CH3			19	8.59	4314	3.18
5-C1			20	7.58	4162	3.14
3,4-Benzo			20	6.97	4094	3.13
5,6-Benzo			20	6.87	4042	3.10
H	н	C_8H_7	18	7.86	4220	3.15
5-CH3			19	7.40	4219	3.15
5-C1			19	6.75	4163	3.14
н	CH_3	CH3	19	8.73	4394	3.23
5-CH3			19	8.23	4401	3.22
5-C1			20	7.26	4226	3.16
$5-NO_2$			20	7.37	4430	3.22
3,4-Benzo			18	6.68	4160	3.13
5,6-Benzo			19	6.90	4275	3.18
н	CH	$_2 - CH_2$	19	7.82	4397	3.22
5-CH3			20	7.14	4265	3.18
5-C1			19	6.72	4319	3.20
3,4-Benzo	\sim		20	6.49	4435	3.24
5,6-Benzo	CH	$_{2}-CH_{2}$	20	6.28	4280	3.22
H	C_2H_5	C_2H_{δ}	20		Diamagnetic	
5-CH3			20		Diamagnetic	
5-Cl (green)			22		Diamagnetic	
5-Cl (ochre)			20	6.25	4282	3.19
3,4-Benzo			21	6.21	4286	3.18
5,6-Benzo			20		Diamagnetic	
H	$CH_2 - C$	H_2	19		Diamagnetic	
3-CH3			19		Diamagnetic	
5-CH3		CH_2	20		Diamagnetic	
3-C1	\sim		18		Diamagnetic	
5-C1	$CH_2 - C$	\mathbf{H}_2	18		Diamagnetic	
$5-NO_2$			19	6.20	4670	3, 32
3,4-Benzo			19		Diamagnetic	
5,6-Benzo			19		Diamagnetic	
H (green)	н	C_6H_5	18		Diamagnetic	
H (ochre)			21	6.92	4237	3.18
5-CH ₃ (green)			19		Diamagnetic	
5-CH₃ (ochre)			18	7.03	4518	3.26
$5-C_2H_5$			20	6.54	4454	3.25
5-Cl			19	6.09	4240	3.16
3,4-Benzo			20	5.30	3923	3.05
5,6-Benzo			21		Diamagnetic	
н	CH_3	C_6H_{δ}	20		Diamagnetic	
5-CH3			20		Diamagnetic	
3-C1			21		Diamagnetic	
5-C1			20		Diamagnetic	
3,4-Benzo			21		Diamagnetic	
5 6-Benzo			20		Diamagnetic	

^a Corrected for diamagnetic contribution as calculated from Pascal's constants (P. W. Selwood, "Magnetochemistry," 2nd ed, Interscience Publishers, Inc., New York, N. Y., 1956).

The levels ${}^{3}T_{2g}$ and ${}^{3}T_{1g}$ of the nickel(II) ion in an octahedral crystal field are split into six nondegenerate levels in a field of C_{2h} symmetry. As the center of symmetry is retained, electronic transitions are expected to give rise to weak absorption bands, and the low-frequency bands found can be rationalized on this basis.

In solution in inert solvents the spectra differ slightly from the reflectance spectra, notably in the appearance of a weak band at *ca*. 5000 cm^{-1} . This signifies that the molecule may be distorted in another way in solution, and the possibility that other species are present in the mixture cannot be excluded. Anyhow, the low value of the dipole moment indicates that the predominant species is still the *trans*-octahedral one. The molar susceptibility values in solution preclude the presence of planar species. In pyridine octahedral adducts are formed, as shown by the absorption spectra.

Series 2. R = H, $R' = CH_3$, $n-C_3H_6$.—All the complexes in this series are paramagnetic and have

TABLE III

$\label{eq:magnetic susceptibilities Data for Some Substituted $$ [X-SALtn-N(R)R']_2Ni$ Complexes in Chloroform $$$

			Temp,			μeff,
x	R	R'	°C	$10^6 \chi_{ m g}$	10 ⁸ XN i	\mathbf{BM}
н	н	CH3	20	8.96	4227	3.16
5,6-Benzo			20	6.98	4.97	3.13
н	н	C ₃ H ₇	19	8.04	4302	3.18
5-CH3			19	7.52	4285	3.17
H	CH_3	CH_3	19	8.57	4319	3.18
5-CH3			19	7.94	4257	3.17
н	C_2H_5	C_2H_δ	19	1.91	1348	1.79
5-CH3			20	0.47	618	1.26
5-Cl (green)			20	4.16	2569	2.50
5-Cl (ochre)			20	3.92	2721	2.51
3,4-Benzo			20	3.65	2686	2.52
5,6-Benzo			20		Diamagnetic	
H	CH2-CH	I_2	18	1.47	1170	1.66
3-CH₃	/		20	0.40	557	1.15
5-CH₃		CH_2	19	0.49	609	1.20
3-C1	\sim	/	20	4.39	3116	2.72
5-C1	$CH_2 - CH_2$	I2	18	3.57	2610	2.48
3,4-Benzo			20	3.19	2430	2.40
5,6-Benzo			20		Diamagnetic	
H (green)	\mathbf{H}	C_6H_5	20	1.07	938	1.52
H (ochre)			21	1.27	1055	1.53
5-CH₃ (green)			18	0.44	620	1.16
5-CH₃ (ochre)			18	0.30	361	1.15
$5-C_2H_5$			17	0.86	927	1.47
3,4-Benzo			18	4.34	3285	2.78
5,6-Benzo			18	1.02	1076	1.50
н	CH_3	C_6H_{δ}	18		Diamagnetic	
3-C1			18		Diamagnetic	
5,6-Benzo			20		Diamagnetic	

Figure 1.—Reflectance and absorption spectra of the $[H-SALtn-N(CH_2)_4]_2Ni$ complex at room temperature: A, by reflectance absorption, arbitrary scale; B, in chloroform; C, in pyridine.

 $\mu_{\rm eff}$ values approximately the same as those of compounds in series 1. The reflectance spectra are very similar to those of the analogous [X–SALen–N(R)R']₂-Ni *cis*-octahedral complexes¹ (Figure 2), but the dipole moments are all less than 1 D. compared with 7 D. for the *cis*-octahedral complexes.¹ A *trans*-octahedral structure of the type I must therefore be assigned to the complexes of series 2.

Since in this series one βN substituent is a hydrogen atom the steric hindrance due to R and R' is less than in the previous series. This allows the β nitrogen

		ELECTRONIC	SPECTRA OF THE	SOME REPRESENTATIVE COMPLEXES
x	R	R'	State	Absorption max, cm^{-1} (ϵ_{molar} for soln)
н	н	CH8	Solid	9100 sh, 11,400, 20,000 sh
			CHC13	9100 sh, 11,200 (6.7), 17,500 sh
			py	10,900 (8.0)
н	н	C_3H_7	Solid	8700 sh, 11,300, 20,000 sh
			CHC13	8700 sh, 11,100 (6.7), 17,400 sh
			ру	10,300 (5.2), $17,200$ (4.8)
H	CH_3	CH_3	Solid	7500, 9100, 11,900, 13,300, 17,400 sh
			CHCl3	<5000, 7400 (14.5), 11,000 sh, 16,300 (38.5)
			ру	10,300 (14.0), 17,300 (13.7)
н	CH	$2 - CH_2$	Solid	7000, 8700 sh, 12,000, 13,000, 17,400 sh
			CHC18	<5000, 7000 (12.4), 10,800 (5.8), 11,700 (5.9), 12,500 (5.3), 16,000 (36.3)
			ру	10,200 (13.6), 17,200 (12.0)
	\sim			
	CH	2-CH2		
н	C_2H_5	C_2H_5	Solid	8500 sh, 9500, 15,900
			CHC18	<5000, 7000 (3.7), 10,500 (1.8), 16,000 (65.8)
			ру	10,200 (14.4), 17,100 (16.6)
5-Cl (green)			Solid	15,900
5-Cl (ochre)			Solid	6500, 83,00, 12,100, 12,900, 16,700 sh
н	$CH_2 - CH_2$		Solid	16,400
			CHC13	<5000, 7100 (3.7), 11,100 sh, 16,200 (73.0)
		CH_2	ру	10,800 (15.1), $17,400$ (14.8)
	CH_2-	$-CH_2$		
H (green)	н	C_6H_5	Solid	16,200
			CHC1 ₈	16,200 (67.5)
H (ochre)			Solid	9700, 11,500 sh
			CHC18	16,300 (64.6)
			ру	10,200 (13.7), 17,400 (15.3)
5-CH3 (green)			Solid	15,900
5-CH₃ (ochre)			Solid	9500, 11,400
н	CH_3	C_6H_5	Solid	15,900
			CHC13	15,900 (69,2)
			ру	10,300 (14.1), 17,100 (11.8)

TABLE IV

Figure 2.—Reflectance and absorption spectra of the $[H-SALtn-N(H)C_3H_7]_2Ni$ complex at room temperature: A, by reflectance absorption, arbitrary scale; B, in chloroform; C, in pyridine.

atom to approach more closely to the central nickel atom and accounts for the similarity to the spectra of the SAL-en-N(R)R' derivatives and the differences from compounds of series 1.

The spectra in inert solvents are identical with those of the solids, and the values of μ_{eff} in solution range from 3.13 to 3.18 BM. These facts, together with the low molar absorbance at 16,000 cm⁻¹, allow one to conclude that the equilibrium concentration of planar

species in solution is negligible. The spectra of the $R' = CH_3$ derivatives are unchanged in pyridine, whereas when $R' = n \cdot C_3 H_7$ the spectrum characteristic of the *trans* adduct is obtained.

Series 3. R, $\mathbf{R}' = (\mathbf{C}_2\mathbf{H}_5)_2$, $(\mathbf{CH}_2)_5$.—In the solid state the 3,4-benzo derivative is paramagnetic. For [5-Cl-SALtn-N($\mathbf{C}_2\mathbf{H}_5$)₂]₂Ni both an ochre-colored, paramagnetic isomer and a green, diamagnetic isomer are isolated. All the other complexes are green and diamagnetic. The reflectance spectra of the paramagnetic complexes are similar to those of series 1 and therefore an analogous distorted *trans*-octahedral configuration is to be attributed to them.

In inert solvents all compounds (except the derivative X = 5,6-benzo) give a spectrum characteristic of an equilibrium mixture of planar and octahedral species of the kind that we have reported previously.¹ The absorption in the near-infrared region is very low, but, in contrast with the absorption spectra of the previous series, the intensity of the band at ca. 16,000 cm⁻¹ is very high ($\epsilon \approx 50-70$). In fact, besides the weak absorption of the octahedral form, the absorption of the planar diamagnetic form also falls in this region. The presence of this species in solution is confirmed by the value of the magnetic moments, which range from 1.79 to 2.72 BM. The percentage of the planar diamagnetic form increases with the temperature, as shown by the absorption spectra. For instance, in the case of [5-Cl-SALtn-N(CH₂)₅]₂Ni the molar absorbance at $16,000 \text{ cm}^{-1}$ increases from 66.4 at 5° to 88.8 at 110°, whereas the molar absorbances at 10,000 and 7000 cm⁻¹, due presumably to the octahedral species, decrease from 6.6 and 5.3 at 5° to 2.4 and 4.0 at 110°, respectively. The band at 5000 cm⁻¹, which is also present in this case, shows a decrease in intensity by increasing the temperature. Octahedral adducts are formed in pyridine.

Series 4. $R = H, R' = C_6 H_5$.—The 5-Cl, 5-C₂H₅, and 3,4-benzo derivatives are paramagnetic and ochre in color, and the 5,6-benzo derivative is diamagnetic and green in color. Both a green, diamagnetic and an ochre, paramagnetic isomer were obtained for 5-CH₃ and H. The reflectance spectra (Figure 3) of the paramagnetic compounds are intermediate in type between those of the series 1 and series 2 compounds. This implies that the coordination polyhedron is distorted in an intermediate fashion compared with the compounds of series 1 and 2. Indeed it is reasonable to assume that the β N–Ni distance increases with the substituents in the order N(H)alkyl < N(H)aryl < $N(alkyl)_2$. Although the $N(H)C_6H_5$ group is a poorer electron donor than the $N(CH_3)_2$ group, it is less subject to the steric hindrance which is responsible for the particularity large β N–Ni distance with the latter group.

In chloroform planar and octahedral species are in equilibrium and μ_{eff} varies from 1.16 to 2.78 BM (Table III) at room temperature according to the substituent X. Adducts are formed in pyridine as in the previous cases.

Series 5. $\mathbf{R} = \mathbf{CH}_3$, $\mathbf{R}' = \mathbf{C}_6\mathbf{H}_5$.—All these compounds are green and diamagnetic, both as solids and in solution. The dipole moment values, which range from 0.80 and 1.00 D., are indicative of a *trans*-planar configuration.

Discussion

Since the azomethine nitrogen atom (α) in Schiff base metal complexes is planar sp² hydridized, the carbon atom of the methylene group attached to it must lie in the plane defined by this nitrogen atom, the oxygen atom, and the central metal atom. When the SALen behave as tridentate ligands the β nitrogen atom is constrained to lie in approximately the same plane. Thus, SALen derivatives form *cis*-octahedral complexes. In the case of the SALtn complexes, the extra methylene group gives greater flexibility to the side chain and the β nitrogen atom is able to reach the apical positions of the octahedron, and consequently trans-octahedral complexes can be, and are, formed. Differences in the bulkiness and inductive effects of the substituents R and R' gave rise to different degrees of distortion from a regular trans-octahedral configuration. With SALen-N(R)R' complexes, on the other hand, when R and R' are bulky, five-coordi-

Figure 3.—Reflectance spectra of the $[H-SALtn-N(H)C_{e}H_{b}]_{2}Ni$ complex: A, ochre isomer; B, green isomer.

nated species are formed² in which one ligand is tridentate and the other is bidentate. When the groups R and R' are electron withdrawing as well as bulky, planar, diamagnetic complexes, in which both ligands are bidentate, are formed for both SALtn and SALen derivatives.

The solution magnetism of the SALtn complexes shows that for any given substituents R and R' the substituents X favor the formation of octahedral species in the order 5,6-benzo < 5-CH₃ < H ≈ 5 -Cl < 3,4-benzo. This series is substantially in agreement with the order for the planar \rightleftharpoons tetrahedral equilibrium in bis(N-sec-alkylsalicylaldimino)nickel(II) complexes¹⁵ and the planar \rightleftharpoons octahedral¹ and planar \rightleftharpoons fivecoordinated² equilibria in the complexes [X–SALen– N(R)R']₂Ni. In all cases the 5,6-benzo substituent most strongly induces the formation of the planar species, and the 3,4-benzo (and sometimes 5-Cl) substituent induces the most strongly the formation of paramagnetic species.

Acknowledgment.—Thanks are expressed to Dr. P. Nannelli for assistance in the preparation of some Nsubstituted trimethylenediamines, and to Mr. F. Mani for assisting in the magnetic measurements. N. N. is grateful to the Scientific Affair Division of NATO, for a grant. The financial support of the Italian "Consiglio Nazionale Ricerche" is gratefully acknowledged.

(15) L. Sacconi, M. Ciampolini, and N. Nardi, J. Am. Chem. Soc., 86, 819 (1964).