is shown in projection in Figure 5. Qualitative comparison of X-ray powder intensities suggests that this interpretation is not unreasonable.

The collapse of this structure along the c axis to the α -AlF₃ structure follows readily, forming an almost cubic structure, with the Al–Al distance of 3.52 A directly comparable to the 3.55 and 3.59 A of its precursors. The fluorides revert to a complete octahedral configuration, the Al–F distances having remained at 1.76–1.79 A during the series. Comparison is simplified if the sixfold primitive hexagonal cell, a = 4.914, c = 12.449 A, is used for α -AlF₃. The edges of the pseudo-cube (the Al–Al directions) then lie along the $[2\overline{2}1]$, $[42\overline{1}]$, and [241] directions of the hexagonal cell. The vacancies in γ -AlF₃ correspond to those in α -AlF₃, the latter lying at the centers of the pseudo-cubes.

It is interesting to note that there is a report of different forms of gallium fluoride, one obtained by thermal decomposition of ammonium hexafluorogallate and one by fluorination of oxide at 600° .²⁸

NOTE ADDED IN PROOF.—We have recently become aware of a patent²⁹ on the synthesis of vinyl fluoride, in which one of the claims is for the preparation of a new catalytic form of aluminum fluoride by dehydration of α -aluminum fluoride trihydrate. The powder pattern cited is quite similar to that for the γ -aluminum fluoride

(28) O. Hannebohn and W. Klemm, Z. Anorg. Allgem. Chem., 229, 337
(1936); R. Hoppe, unpublished work, 1955–1956; Dissertation, Münster,
1958. See C. Hebecker and R. Hoppe, Naturwissenschaften, 53, 104 (1966).
(29) F. J. Christoph, Jr., and G. Teufer, U. S. Patent 3, 178,483 (1965).

Figure 5.—Structural relation between NH₄AlF₄ and γ -AlF₃: A, NH₄AlF₄; B, γ -AlF₂. The figures are projected along the *a* axis; numbers within the circles give the fractional distances in terms of cell axes of atoms above (or below) the plane of protection. Note that the drawing of γ -AlF₃ is not that of the unit cell.

presented in this paper but contains a number of lines not present in our material, including a strong line at 3.465 A. The low calculated density indicates an open structure, and it is believed that the product reported in the patent is the open γ -AlF₃ of this paper with a small amount of water remaining in the holes. No analysis is given in the patent, and there is no evidence to indicate complete removal of water.

Contribution from the Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

The Sodium Fluoride-Scandium Trifluoride System¹

BY R. E. THOMA AND R. H. KARRAKER²

Received May 20, 1966

The equilibrium phase diagram of the condensed system NaF-ScF₃ was constructed from data obtained using standardized methods of thermal analysis and thermal gradient quenching, and also by direct observation of crystallizing melts. Crystallographic properties of the solid phases were measured by petrographic and X-ray diffraction techniques. Equilibria among the condensed phases in the system were established through the temperature interval from the liquidus to approximately 400°. Two equilibrium compounds were observed to form from NaF and ScF₃—the cryolite-like phase, 3NaF ·ScF₃, and a hexagonal phase, NaF ·ScF₃, with lattice constants a = 12.97 A, c = 9.27 A. Four invariant points were found to occur in the system NaF-ScF₃: the eutectic at 17 mole % ScF₃ and at 800°, a peritectic at 35 mole % ScF₃ and at 680°, associated with a solid-state transition in 3NaF ·ScF₃, a eutectic at 38 mole % ScF₃ and at 650°, and a peritectic at 42 mole % ScF₃ and at 660°. The equilibrium character of the system NaF-ScF₃ is contrasted with that of NaF-AlF₃ and with those of the sodium fluoride-rare earth trifluoride systems.

Introduction

Variability in stoichiometry, structure, and stability among the complex compounds formed in the binary systems of the alkali fluorides and the lanthanide

(1) Research sponsored by U. S. Atomic Energy Commission under contract with the Union Carbide Corp. trifluorides is influenced chiefly by two factors: (a) disparity in size between the monovalent and trivalent ions³ and (b) relative charge density of the lanthanide ions. Results of the recent investigation of the sodium fluoride-lanthanide trifluoride systems⁴ showed (3) R. E. Thoma, *Inorg. Chem.*, **1**, 220 (1962).

(4) R. E. Thoma, G. M. Hebert, and H. Insley, ibid., 5, 1222 (1966).

⁽²⁾ Summer Research Participant, 1964-1965.

that among the heavier lanthanide systems the effects of charge density were more pronounced than those which were attributable strictly to size disparity. It was therefore significant to investigate the systems which would permit the behavior in the lanthanide trifluoride systems to be contrasted with that produced by the reactions of the alkali fluorides with the trifluorides of metals whose cationic radii are nearest those of the heavier lanthanides.

The current study was initiated to compare compound formation in the NaF–ScF₃ system with that in the systems NaF–LuF₃ and NaF–AlF₃. The only previously known work on the NaF–ScF₃ system at that time was the investigation of NaF freezing point depression by Cantor and Ward.⁵ The results of an investigation of the system NaF–ScF₃ by Fedorov, Sklyarenko, and Petrov⁶ appeared shortly thereafter; more recently, Babaev and Bukhalova⁷ have again described the phase diagram of the system in a report which takes no cognizance of the earlier work by Fedorov, *et al.* Since each of these prior investigations is either incomplete or erroneous, we continued the investigation of the NaF–ScF₃ system⁸ as described in the present report.

Experimental Section

Apparatus and Methods .- Phase transition data were obtained from heating and cooling curve experiments, by direct observation of melts crystallizing at known temperatures, and by identification of the equilibrium phases formed in quenched specimens. The techniques used for measurement of the temperatures which define the NaF-ScF3 phase diagram, as well as the X-ray and microscopic techniques used in identifying phases, have been discussed previously.9-11 Phase transitions were determined principally from the results of thermal gradient quenching experiments. For these experiments, 5-g specimens of the proper compositions were prepared from commercially available reagent grade sodium fluoride and from pure scandium fluoride which was prepared in this laboratory by reaction of ammonium bifluoride with high-purity scandium oxide.12 NaF-ScF3 mixtures were also treated with ammonium bifluoride for 16 hr at temperatures of 150 to 200° in dry helium atmospheres and then heated to approximately 1000° for 15 min. After cooling to room temperature, the samples were powdered (again in dry helium atmospheres), examined microscopically for traces of oxides or oxyfluoride contaminants, and then used to fill sample tubes for use in thermal gradient quenching experiments.

Attempts to obtain single crystals of the low-temperature form of $3NaF \cdot ScF_3$ at the compound composition were unsuccessful. The cubic high-temperature form of the compound undergoes a strongly energetic solid-state transition on cooling below 680° and routinely produces poorly crystallized and highly twinned material as it inverts. Larger single crystals of the low-

Figure 1.--The system NaF-ScF3.

temperature form could not be preserved in quenched specimens; in all attempts the seed crystals became twinned. This problem was avoided by crystallizing β -3NaF·ScF₈, the low-temperature form, from a molten NaF–ScF₃ mixture in which it was the primary phase (at about 30 mole % ScF₃). In this manner, crystals of β -3NaF·ScF₃ were formed which had not inverted and were of sufficiently good quality for X-ray diffraction single-crystal studies. In similar manner, crystals of NaF·ScF₃ were grown from an NaF–ScF₃ mixture of approximately 41 mole % ScF₄.

Results and Discussion

Equilibrium phase behavior in the NaF-ScF₃ system is described by the phase diagram in Figure 1. Two intermediate compounds, $3NaF \cdot ScF_3$ and $NaF \cdot ScF_3$, are formed in the system. Crystallographic properties of these compounds, measured as part of the current study, are given in Table I. Compositions and temperatures of singular points and invariant equilibrium reactions among NaF-ScF₃ phases are listed in Table II. Phase transition temperature data obtained from thermal analysis and thermal gradient quenching experiments are given in Tables III and IV.

Equilibria in the system NaF–ScF₃ may be described in terms of the two subsystems NaF–3NaF·ScF₃ and 3NaF·ScF₃–ScF₃. The former is remarkably similar to the sodium fluoride–cryolite system in that both consist of simple eutectic systems of NaF with complex components which are isomorphous in each of their dimorphic modifications; in contrast, the 3NaF· ScF₃–ScF₃ and 3NaF·AlF₃–AlF₃ subsystems are dissimilar, differing principally in the formulas and crystal symmetries of the intermediate compounds which are produced.

Crystal properties of the NaF–ScF₃ intermediate phases, $3NaF \cdot ScF_3$ and $NaF \cdot ScF_3$, have not been described previously. The compound $3NaF \cdot ScF_3$ bears a marked resemblance to $3NaF \cdot AlF_3$ with respect to crystal symmetry. Both phases crystallize from melts

⁽⁵⁾ S. Cantor and W. T. Ward, J. Phys. Chem., 67, 2766 (1963).

⁽⁶⁾ N. Y. Fedorov, S. I. Sklyarenko, and E. S. Petrov, Akad. Nauk Sibirsk. SSSR, 1, 104 (1964).

⁽⁷⁾ E. P. Babaev and G. A. Bukhalova, Zh. Neorgan. Khim., 10, 1455 (1965).

⁽⁸⁾ R. H. Karraker and R. E. Thoma, J. Tenn. Acad. Sci., 40, 67 (1965).

⁽⁹⁾ H. A. Friedman, G. M. Hebert, and R. E. Thoma, "Thermal Analysis and Gradient Quenching Apparatus and Techniques for the Invesitgation of Fused Salt Phase Equilibria," ORNL-3375, Dec 18, 1962.

⁽¹⁰⁾ C. J. Barton, et al., J. Am. Ceram. Soc., 42, 65 (1958).

⁽¹¹⁾ G. D. Robbins, R. E. Thoma, and H. Insley, J. Inorg. Nucl. Chem., 27, 559 (1965).

⁽¹²⁾ F. H. Spedding and A. H. Daane, "The Rare Earths." John Wiley and Sons, Inc., New York, N. Y., 1961, p. 78.

TABLE I

Optical and X-Ray Diffraction Data for NaF-ScF3 Compounds

β -3NaF · ScF₃

Equilibrium stability range: $<680^{\circ}$ Optical character: uniaxial (+), $2V \cong 0^{\circ}$ Refractive indices: $N_{\omega} = 1.368, N_{\epsilon} = 1.374$

X-Ray diffraction data

Symmetry: monoclinic, P2₁/n $a = 5.60 \pm 0.02$ A, $b = 5.81 \pm 0.02$ A, $c = 8.12 \pm 0.02$ A, $\beta = 90^{\circ} 45 \pm 5'$ Density: 2.87 (calcd, z = 2)

,d	, A				A		
Obsd	Caled	I	hkl	Obsd	Calcd	I	hkl
4.68	4.72	97	011	2.01	2.02	75	220
4.57	4.64	30	$10\overline{1}$	1.97	1.98	16	023
4.54	4.58	58	101	1.95	1.96	10	$22\overline{1}$
4.00	4.06	94	∫002)	1.88	1.88	10	031
	4,03		110	1.87	1.87	13	$\int 12\overline{3}$
2.88	2.91	65	020		1.86		(123)
2.86	2.87	97	$11\overline{2}$	1.83	1.83	16	`13 0
2.83	2.85	100	112		1.81		(114)
2.78	2.80	30	200	1.80	1.81	30	301
2,51	2.52	55	210		1.81		$22\overline{2}$
	2.45		(121)		1.78		(131)
2.44	2.45	47	$\{013\}$	1.78	1.79	25	$\{13\overline{1}\}$
	2.45		103		1.78		(310)
	2.42	65	∫103	1.73	1.73	10	311
2.41	2.42		$21\overline{1}$		1.67		$(13\overline{2})$
2.35	2.36	12	022	1.66	1.66	50	$\left\{ 024 \right\}$
2.23	2.24	28	113		1.67		(132)
2.17	2.18	25	$12\overline{2}$	1.63	1.63	47	204
2.02	2.03	63	004	1.62	1,62	25	312

 $NaF \cdot ScF_3$

Equilibrium stability range: $<660^{\circ}$ Optical character: uniaxial (-) Refractive indices: $N_{\omega} = 1.442$, $N_{\epsilon} = 1.431$

X-Ray diffraction data

Symmetry: hexagonal, P3₁ 12, P3₂ 12, P3₁ 21, or P3₂ 21 $a = 12.97 \pm 0.03$ A, $c = 9.27 \pm 0.02$ A

Density: 3.01 (calcd), z = 18

d	. A———			d.	A		
Obsd	Caled	1	hkl	Obsd	Calcd	I	hkl
6.46	6.49	20	110	1.95	1.96	11	332
5.29	5.31	38	111	1.91	1.92	13	143
3.74	3.77	25	$\int 112$	1.88	1.87	76	060
	3.74		<u>∖</u> 030∫	1.86	1.86	25	134
3.45	3.47	14	031	1.76	1.76	6	025
3.08	3.09	16	003		1.61		(162)
3.06	3.06	100	221	1.60	1.60	7	$\{350\}$
2.90	2.91	6	032		1.60		(070)
2.79	2.79	7	113		1.60		(063)
2.36	2.37	8	141	1.59	1.60	28	$\{441\}$
2.18	2.18	7	∫051∖		1.59		135
	2.18		∖114 ∫				
	2.03		(124)				
2.02	2.02	5	$\{052\}$				
	2.02		(150)				

Table II Invariant Equilibria in the System ${\rm NaF-ScF_8}$

mole % ScF3	temp, °C	Type of equilibrium	Phase reaction (invariant temp)
17	800	Eutectic	$L \rightleftharpoons NaF + \alpha - 3NaF \cdot ScF_{3}^{\alpha}$
25	885	Congruent melting point	$L \rightleftharpoons \alpha$ -3NaF·ScF ₃
35	680	Peritectic inversion of 3NaF·ScF ₈	$lpha$ -3NaF·ScF $_3 \rightleftharpoons eta$ -3NaF·ScF $_3$
38	650	Eutectic	$L \rightleftharpoons \beta$ -3NaF·ScF ₃ + NaF·ScF ₃
42	660	Peritectic	$L + ScF_{3} \rightleftharpoons L + NaF \cdot ScF_{3}$

^a L refers to liquid.

T.....

~

NaF-ScF₃ Phase Transition Temperature Data Obtained from Thermal Gradient Quenching Experiments

FROM THERMAL	GRADIENT QUENCHIN	G EXPERIMENTS
Compn,	Liquidus	Solidus
mole % ScF3	temp, °C	temp, °C
0	995	
5	954	
10	913	
15	809	797
18	820	797
20	850	796
23	870	803
25	885	
27	878	647
30	830	665
35	680	650
36	674	651
37	652	652
38	657	657
40	653	653
41	668	652
42	738	657
45	880	659
50	1097	660
55		648
60		648
70		663

TABLE IV

 ${\rm NaF-ScF_3}$ Phase Transition Temperature Data Obtained from Thermal Analysis

			Other
	Liquidus	Solidus	transition
Compn,	temp,	temp,	temp,
mole % ScF₃	°C	°C	°C
11	893	800	678
13	865	800	680
15	828	801	681
17	821	799	681
19	828	799	680
21	860	798	680
23	878	794	680
25	885	885	679
45		650	660
55		660	

and invert with little or no hysteresis to isomorphous, monoclinic, low-temperature forms. Indication of the solid-state transformation was confirmed by cooling curves and by data obtained on investigation of this compound with a high-temperature diffractometer. Results of these experiments indicate that the hightemperature form of $3NaF \cdot ScF_3$ is isomorphous with the high-temperature form of cryolite^{13,14} and is a member of a group of complex fluorides which in their high-temperature forms adopt the ideal perovskite structure but which on cooling invert to a number of distorted forms whose structures are of lower symmetry.¹⁵

Within the subsystem $3NaF \cdot ScF_3$ -ScF₃, three invariant equilibrium points occur: a peritectic at 35 mole % ScF₃ and at 680° associated with the solidstate transition in $3NaF \cdot ScF_3$, the eutectic at 38 mole % ScF₃ and at 650°, and a peritectic at 42 mole % ScF₃ and at 660°. The compound NaF·ScF₃ melts incongruently at 660° to form ScF₃ and liquid. In a single-crystal X-ray diffraction study of NaF·ScF₃, the phase was found to be hexagonal with a = 12.97 A and c = 9.27 A. The space group is one of the enantiomorphic pairs, P3₁12, P3₂12, P3₁21, or P3₂21. The reaction to form NaF·ScF₃ from the melt is slow and the rate is controlled by solution of ScF₃ in the melt. Cooled melts in the region 42–50 mole % ScF₃ were generally found to contain a considerable amount of incompletely resorbed ScF₃ crystals. In order for the reaction between the liquid and ScF₃ to be completed, it was necessary to equilibrate the salt mixtures at or above the eutectic temperature for 10 or more days.

The results obtained in the current study of the NaF-ScF₃ system agree within experimental error with the liquidus curve of the NaF primary phase reported by Cantor and Ward.⁵ The phase diagram described here affords an interesting contrast with that reported during the course of this investigation by Fedorov and associates,⁶ who believed that the formula of the congruently melting intermediate phase in the system was $2NaF \cdot ScF_3$. The reasons for the remarkable difference between the two diagrams are not deducible from the literature. Scandium trifluoride, like many metal fluorides, is very easily hydrolyzed at high temperatures by traces of moisture in the atmosphere. Hydrolysis reactions such as

$2Na_{3}ScF_{6} + 2H_{2}O \Longrightarrow 2NaF \cdot ScOF + 4NaF + 4HF$

would account for the anomalous activity of NaF reported by Fedorov, *et al.*,⁶ at low ScF₃ concentrations and for a 2:1 oxyfluoride phase not encountered in either our measurements or those of the more recent Russian investigators,⁷ a phase which might have been inferred to be Na₂ScF₅.

The liquidus curve for compositions greater than 50 mole % ScF₃ is tentative and, because it occurs at temperatures which are intractably high for determination by the methods used in this study, was inferred by extrapolation to the reported melting point of ScF₃, 1515°.^{12,16}

The phase diagram of the NaF-ScF₃ system, as well as the symmetry of the 3NaF-ScF₃ phase, shows that cation size and polarizability are the principal controlling factors in determining the character of interactions between pairs of ionic component salts. A consideration of the size of Na⁺ and Sc³⁺ alone leads to the expectation that the NaF-ScF₃ system should have hybrid character and would resemble both the NaF-LuF₃⁴ and NaF-AlF₃¹⁷ systems. However, the molar refraction, a measure of polarization, for the crystalline phase 3NaF·ScF₃ is 18.0 cm^3 , much closer to that for cryolite (20.22 cm^3) than to that for the equimolar NaF-LuF₃ crystalline phases (12.20 cm^3). We infer this to mean that the effect of the lanthanide contraction on the sodium fluoride-lanthanide trifluoride crystalline

⁽¹³⁾ S. v. Naray-Szabo and K. Sasvari, Z. Krist., 99, 27 (1938).

⁽¹⁴⁾ E. G. Steward and H. P. Rooksby, Acta Cryst., 6, 49 (1953).

⁽¹⁵⁾ A. F. Wells, "Structural Inorganic Chemistry," 3rd ed, Oxford University Press, London, 1962.

⁽¹⁶⁾ L. N. Komissarova and B. I. Pokrovskii, Dokl. Akad. Nauk SSSR, 149, 599 (1963).

⁽¹⁷⁾ P. P. Fedotieff and W. P. Iljinskii, Z. Anorg. Chem., 80, 121 (1913).

phases was to reduce the polarizability of the rare earth cations significantly, whereas in the absence of this effect, relative polarizability of Sc^{3+} and Al^{3+} is great, and strongly bonded complex compounds with little compositional variability may be formed.¹⁸ On the basis of this inference, phase diagrams of the binary systems of NaF with the group III fluorides,

(18) The relationship between polarizabilities in complex fluorides was discussed in ref 4.

GaF₃, InF₃, and possibly TIF_3 , should resemble that for NaF-ScF₃ rather than those of NaF with the heavier lanthanide trifluorides.

Acknowledgments.—The authors are pleased to acknowledge the assistance of G. M. Hebert and H. A. Friedman in the experimental work, T. N. McVay and H. Insley for measurements of optical properties, and J. H. Burns, G. D. Brunton, and D. R. Sears for assistance with the X-ray measurements.

Contribution from the Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Equilibrium Dimorphism of the Lanthanide Trifluorides^{1a}

By R. E. THOMA AND G. D. BRUNTON

Received June 3, 1966

The lanthanide trifluorides SmF_3 to LuF_3 and YF_3 were found to undergo high-temperature dimorphism, inverting from hexagonal to orthorhombic crystals on cooling. Equilibrium inversion temperatures were determined for this group using a controlled-atmosphere, high-temperature X-ray diffractometer and were found to lie in the temperature range from 555° for SmF_3 to 1075° for ErF_3 . Dimorphism was not observed for the compounds LaF_3 to NdF_3 . A hexagonal modification of yttrium trifluoride, not heretofore described, was found to be the stable phase above 1052° and below the melting point. Although the hexagonal and orthorhombic forms of the lanthanide trifluorides SmF_3 to HoF_3 correspond to those described earlier by Zalkin and Templeton, ^{1b} hexagonal crystals of YF_3 and the lanthanide trifluorides ErF_3 to LuF_3 , observed at high temperatures, were not isomorphous with tysonite, as was previously believed.

Introduction

The occurrence of dimorphism among the lanthanide trifluorides was first recognized by Zalkin and Templeton.^{1b} They observed that at room temperature the trifluorides LaF3 to NdF3 occurred only in a hexagonal form, that SmF₃, EuF₃, HoF₃, and TmF₃ could be obtained either as the hexagonal $(P\overline{3}c1)$ or orthorhombic form (Pnma), and that only an orthorhombic form of GdF₃, TbF₃, DyF₃, ErF₃, YbF₃, and LuF₃ could be produced. Melting points of the lanthanide trifluorides were determined later by Spedding and Daane,² who noted that SmF₃, GdF₃, ErF₃, YbF₃, and LuF₃ produced thermal effects at temperatures below the melting points. They inferred that these effects were the result of solid-stage crystalline inversions. Evidence of dimorphism was noted by both groups of investigators for SmF_3 , by one or the other for EuF₃ to LuF₃, and by neither for LaF₃ to NdF_3 , TbF_3 , or DyF_3 .

In recent investigations of the alkali fluoride-lanthanide trifluoride systems³ we found that, as NaF-GdF₃ and NaF-TbF₃ mixtures crystallize from the molten state, the trifluoride components invert from the hexagonal (high-temperature) to the orthorhombic

(low-temperature) form at 918 and 950°, respectively. Although these values are somewhat lower than those reported by Spedding and Daane for the transition temperatures, they are in sufficiently close agreement to suggest that the thermal effects they observed in the solid state resulted from the hexagonal-orthorhombic transition. We were unable to preserve hexagonal modifications of DyF₃, ErF₃, YbF₃, and LuF₃ on rapid cooling of NaF-LnF3 mixtures. The results obtained in recent investigations of these and the LiF-LnF3 systems at this laboratory strongly suggested that all of the lanthanide trifluorides may exhibit equilibrium dimorphic transitions at high temperatures. To test this possibility, we investigated the high-temperature behavior of each of the lanthanide trifluorides (excluding PmF_3) and YF_3 in a controlled-atmosphere X-ray diffractometer.

Experimental Section

The lanthanide trifluorides used in the present study were prepared and purified in this laboratory by conversion of the commercial oxides with ammonium bifluorides. Yttrium fluoride was obtained by the same procedures, described earlier,^{4,5} which assure that the oxide contamination does not exceed approximately 300 ppm. The lanthanide oxides used for preparing the trifluorides were obtained from several commercial vendors; cationic purity nominally exceeded 99.9%. The results of

^{(1) (}a) Research supported by the U. S. Atomic Energy Commission under contract with the Union Carbide Corp.; (b) A. Zalkin and D. H. Templeton, J. Am. Chem. Soc., **75**, 2453 (1953).

⁽²⁾ F.H. Spedding and A. H. Daane, Ed., "The Rare Earths," John Wiley and Sons, Inc., New York, N. Y., 1961, p 78.

⁽³⁾ R. E. Thoma, H. Insley, and G. M. Hebert, Inorg. Chem., 5, 1222 (1966).

⁽⁴⁾ J. Walker and E. Olson, "Preparation of Yttrium Fluoride Using Ammonium Bifluoride," USAEC, IS-2, 1959.

⁽⁵⁾ R. E. Thoma, et al., J. Phys. Chem., 65, 1096 (1961).