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The treatment of [Ru(LOEt)(N)Cl2] (1; LOEt
- = [Co(η5-C5H5)-

{P(O)(OEt)2}3]
-) with Et3SiH affords [Ru(LOEt)Cl2(NH3)] (2),

whereas that with [Ru(LOEt)(H)(CO)(PPh3)] (3) gives the dinuclear
imido complex [(LOEt)Cl2Ru(μ-NH)Ru(CO)(PPh3)(LOEt)] (4). The
imido group in 4 binds to the two ruthenium atoms unsymmetrically
with Ru-N distances of 1.818(6) and 1.952(6) Å. The reaction
between 1 and 3 at 25 �C in a toluene solution is first order in both
complexes with a second-order rate constant determined to be
(7.2 ( 0.4) � 10-5 M-1 s-1.

Transition-metal complexes containing metal-nitrogen
multiple bonds have attracted much attention because of
their possible involvement in catalytic cycles of metal-
mediated nitrogen fixation.1,2 Of special interest is the for-
mation of imido and amido species from the hydrogenation
ofmetal nitrides,whichmayplay a role in themetal-catalyzed
reduction of N2 to NH3.

3-8 Peters and co-workers reported
that the hydrogenation of a dinuclear iron(II) μ-nitrido
complex gave a μ-imido μ-hydrido species.4 Burger and
co-workers synthesized an iridium(III) amido complex by

the hydrogenation of an iridium(III) terminal nitrido
complex.5 Smith and co-workers reported the formation of
NH3 from the reaction of an iron(IV) terminal nitrido
complex with hydrogen atom donors such as 1-hydroxy-
2,2,6,6-tetramethylpiperidine, apparently via a hydrogen-
atom-transfer (HAT) mechanism.6 Inspired by these obser-
vations, we set out to explore the reactivity of more easily
accessible ruthenium(VI) nitrido complexes toward hydro-
gen and hydride compounds. The formation of RuNHx (x=
1-3) species from RutN is of particular interest given the
significance of ruthenium-based catalysts in ammonia
synthesis.9

Previously, we synthesized an electrophilic ruthenium(VI)
nitrido complex with the Kl€aui oxygen tripodal ligand10

[Co(η5-C5H5){P(O)(OEt)2}3]
- (Chart 1, denoted as LOEt

-

hereafter), [Ru(LOEt)(N)Cl2] (1), which reacted with PPh3,
Me3NO, and S2O3

2- to give phosphiniminato, nitrosyl, and
thionitrosyl complexes, respectively.11 In this paper, we
describe the reactivity of 1 toward hydride compounds. The
formation of a dinuclear imido complex from 1 and a
ruthenium(II) hydride complex will be reported.
No reaction was found between 1 andmolecular hydrogen

(1-3 atm) at room temperature. However, complex 1 could
be reduced readily with main-group hydrides such as silanes
and boranes (see the Supporting Information, SI). For
example, the treatment of complex 1 with excess Et3SiH
(>3 equiv) in toluene at room temperature afforded yellow
crystals identified as [Ru(LOEt)Cl2(NH3)] (2) in 85% yield

Chart 1. Kl€aui Oxygen Tripodal Ligand LOEt
-
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(Scheme 1 and the SI). The silicon-containing product(s) has
not been fully characterized, although Et3SiOHwas detected
in the reaction mixture by gas-liquid chromatography
analysis. The measured magnetic moment for 2 of ca.
1.8 μB is consistent with the low-spin d5 configuration for
ruthenium(III). The IR spectrum displayed νNH bands at
3263 and 3333 cm-1. The solid-state structure of 2 is shown in
Figure 1. The Ru-Odistances in 2 [2.059(5)-2.122(4) Å] are
longer than those in 1 [2.030(5) and 2.031(5) Å, Ru-O (trans
to Cl)].11 The Ru-Ndistance of 2.061(6) Å is slightly shorter
than those in reported ruthenium(III) ammine complexes
(2.091-2.142 Å).12 The formation of 2 apparently involves a
multistep mechanism. No reaction was found between 1 and
Brønsted acids such as acetic acid (pKa = 4.75) and phenol
(pKa= 18.0 in dimethyl sulfoxide13), ruling out a proton trans-
fer pathway. It is also unlikely that a simpleHATmechanism
is involved because 2 was not formed14 from reactions of 1
with conventional HAT reagents such as dihydroanthracene15

(BDE=78 kcalmol-1; cf. 96 kcal mol-1 for Et3SiH).We are
inclined to believe that the first step for the formation of 2
from 1 involves the insertion of the RutN group into the
silane Si-H bond because a similar insertion reaction was
found for 1 and ruthenium hydride (vide infra). Subsequent
hydrolysis and reduction of the silylamido intermediate
yielded 2. An attempt to isolate/characterize the silylamido
intermediate by reacting 1 with a stoichiometric amount
of Et3SiH was unsuccessful. 2 was also formed from 1 and

n-Bu3SnH. However, the reaction of 1 with n-Bu3SnH is
much faster (even at low temperature, e.g.,-78 �C) than that
with silane (see the SI).We have not been able to characterize
the tin-containing product(s) and elucidate the mechanism
for the reduction of 1 with tin hydride, which presumably is
different from that for the silane reduction.
We next examined the reduction of 1with transition-metal

hydrides. The treatment of 1 with 1 equiv of [Ru(LOEt)-
(H)(CO)(PPh3)] (3)

16 afforded the air-stable dinuclear parent
imido (NH) complex [(LOEt)Cl2Ru(μ-NH)Ru(CO)(PPh3)-
(LOEt)] (4; Scheme 1).17 1 was also found to react with other
ruthenium(II) hydride complexes such as [Ru(η5-C5H5)(H)-
(CO)(PPh3)], as evidenced by NMR spectroscopy. Unfortu-
nately, we have not been able to crystallize the product(s)
formed. The IR spectrum of 4 displayed the νCO band at
1949 cm-1, which is higher than that for 3 (1908 cm-1) but
similar to that for the tosylamido complex [Ru(LOEt)-
(NHTs)(CO)(PPh3)] (1942 cm

-1).16 The 1H NMR spectrum
of 4 displayed a signal at δ 40.6 ppm, which is tentatively
assigned to the imido proton. The imido hydrogen atom has
also been located in the Fourier map in a single-crystal X-ray
diffraction study.18 Attempts to prepare a μ-nitrido complex
by deprotonation of 4 with bases were unusccessful. No
reaction was found when 4 was treated with bases such as
Et3N in benzene-d6. The reactions of 4 with stronger bases
such as LiN(SiMe3)2 and n-BuLi resulted in decomposi-
tion of the complex. The structure of 4 consisting of a
{RuIV(LOEt)Cl2} moiety and a {RuII(LOEt)(PPh3)(CO)} moiety
linked by an NH group is shown in Figure 2. To our
knowledge, this is the first ruthenium parent imido complex
characterized by X-ray diffraction. The imido group binds to
the two ruthenium atoms unsymmetrically with Ru-N
distances of 1.818(6) and 1.952(6) Å, suggestive of the
RuIVdN-RuII bonding description. The RuIV-N distance
in complex 4 is longer than those in ruthenium terminal imido

Figure 1. Molecular structure of 2. Hydrogen atomsof the LOEt
- ligand

are omitted for clarity. The thermal ellipsoids are drawn at the 30%
probability level. Selected bond lengths (Å): Ru1-N1 2.061(6), Ru1-Cl1
2.3209(18), Ru1-Cl2 2.3351(19), Ru1-O7 2.059(5), Ru1-O8 2.073(5),
Ru-O9 2.122(4).

Scheme 1. Reduction of 1 with Et3SiH and 3
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complexes such as [RuII(η6-p-cymene)(NC6H2t-Bu3-2,4,6)]
[1.751(14) Å]19 and [RuVI(TPP)(NC6H3(CF3)2-3,5)2]
[1.808(4) Å; TPP = the dianion of 5,10,15,20-tetraphenyl-
porphyrin]20 but shorter than those in reported μ-imido
complexes such as [RuII(η6-p-cymene)(μ-NC6H3i-Pr2-2,6)]2
[1.977(7) and 1.959(8) Å].19 The RuII-N distance in 4 is
shorter than that in [LOEt(COD)Ru(p-MeC6H4NH2)]BF4

[2.174(5) Å].16 The RuIV-N-RuII unit is bent, with an angle
of 153.6(3)�.
Although reactions of electrophilic transition-metal nitri-

do complexes with nucleophiles have been studied extensi-
vely,5,7d,21-23 to our knowledge, this is the first report of the
insertion of a nitrido ligand into a metal-hydrogen bond. It
may be noted that insertion of an osmium(VI) nitride into
borane B-C and alkene CdC double bonds has been
reported.21 No reaction was found between 3 and [Os(LOEt)-
(N)Cl2] or [Re(LOEt)(N)(PPh3)Cl],

24 suggesting that the reacti-
vity of ruthenium nitride is critically dependent on the electro-
philic character of RuVItN and the ease of RuVI-RuIV

reduction. Mayer et al. suggested that the OstN group of
[OsVITp(N)Cl2] [Tp

- = hyridotris(pyrazol-1-yl)borate(1-)]
behaves like a π-acid ligand like CO as a result of the low-
lying emptyOs-N π* orbitals.25 In this work, we found that,
similar to the migratory insertion of metal-alkyl/hydride
with CO, the RutN group inserts into the Ru-H bond to
give an imido species (Scheme 2), although different mechan-
isms are involved in the two types of insertion. It should also
be noted that the reaction of 3 with tosylazide yielded the
tosylamido complex [Ru(LOEt)(NHTs)(CO)(PPh3)], presum-
ably via insertion of the transient electrophilic tosylnitrene
into the Ru-H bond.16

1HNMR spectroscopy indicates that the reaction between
1 and 3 is a clean process that does not involve any detectable
intermediates. The kinetics for the reaction under pseudo-
first-order conditions ([3] . [1]) has been studied by UV/vis
spectroscopy (see the SI). The reaction was found to be first-
order in both 1 and 3, following a rate law of rate = k2[1][3].
At 298 K, in a toluene solution, k2 was determined to be
(7.2 ( 0.4) � 10-5 M-1 s-1. The measured entropy of
activation of-(43.3( 11.1) eu is suggestive of an associative
pathway. The above kinetic data are consistent with a
concerted mechanism for the nucleophilic attack of the
nitride of 1 by ruthenium(II) hydride.
In summary, we have demonstrated that the electrophilic

ruthenium(VI) nitrido complex 1 reacted with main-group
and ruthenium(II) hydride compounds to give ammine and
μ-imido complexes, respectively. The formation of an imido
species from a metal nitride and a metal hydride may play a
role in the ruthenium-catalyzed ammonia synthesis.
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Figure 2. Molecular structure of 4. Hydrogen atoms, except that with
the imido group, are omitted for clarity. The thermal ellipsoids are drawn
at the 30% probability level. Selected bond lengths (Å) and angle (deg):
Ru1-N1 1.818(6), Ru2-N1 1.952(6), Ru1-Cl1 2.3625(19), Ru1-Cl2
2.341(2), Ru2-P7 2.327(2), Ru2-C81 1.833(8), Ru1-O17 2.119(5),
Ru1-O18 2.083(5), Ru1-O19 2.143(5), Ru2-O27 2.152(5), Ru2-O28
2.154(4), Ru2-O29 2.165(5); Ru1-N1-Ru2 153.6(3).

Scheme 2. Insertion of (a) RutN into Ru-H and (b) CtO into
M-R/H
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