Inorganic Chemistry

Bis(o-phenylenebis(acetylacetonato))dicopper(II): A Strained Copper(II) Dimer Exhibiting a Wide Range of Colors in the Solid State

Chandi Pariya,^{*,†} Frank R. Fronczek, and Andrew W. Maverick^{*}

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States

Supporting Information

ABSTRACT: The bis(β -diketone) *o*-pbaH₂ (*o*-phenylenebis(acetylacetone), 1) reacts readily with Cu^{2+} . Although this reaction was expected to yield a trimeric product (2) on geometric grounds, the binuclear complex $Cu_2(o-pba)_2$ (3) is obtained instead. Materials containing $Cu_2(o-pba)_2$ adopt a variety of colors, depending on the solvents used in preparation: dark green (microcrystalline, 3a), golden-brown (ansolvous, 3b), green-brown (CHCl₃-C₆H₆ solvate, 4), dark blue (nitrobenzene solvate, 5), or violet (toluene solvate, 6). Complexes 5 and 6 contain 1D chains of $Cu_2(o-pba)_2$ molecules joined by weak Cu···O interactions. Crystalline adducts $[Cu_2(o-pba)_2L]_n$ (7 and 8) containing 1D polymeric chains are also obtained upon reaction of 3 with bridging ligands (L = 1,2-bis(4pyridyl)ethane or 4,4'-bipyridine, respectively). All of the new metal complexes except for 3a have been characterized by X-ray analysis.

■ INTRODUCTION

Metal-organic supramolecules constructed from Cu²⁺ and organic linkers continue to be developed at a rapid rate owing to their diverse structures and range of applications.¹ Our group and others have been interested in using β -diketones as organic linkers.² We recently described the bis(β -diketone) meta-phenylenebis(acetylacetone) (*m*-pbaH₂), whose β -diketone moieties make an angle of 120°. Although this linker appeared to be well suited for the construction of a "molecular hexagon", $Cu_6(m$ pba)₆, we found no evidence for this product, obtaining instead the square $Cu_4(m-pba)_4$ in high yield (Scheme 1).³

We now report the chemistry of the ortho isomer, o-pbaH₂, with Cu²⁺. On the basis of the $\sim 60^{\circ}$ angle between the β -diketone moieties in o-pbaH₂, we expected a trinuclear product, $Cu_3(o-pba)_3$ (2). Other linkers with donor groups at 60° angles, and related multidentate ligands, have been used successfully to prepare trinuclear species.⁴ However, the sole product in the $Cu^{2+}-o$ -pba²⁻ reaction is the cyclic *dimer*, $Cu_2(o$ -pba)₂ (3).

Other investigators have reported the formation of unexpectedly small cyclic metal-organic structures. For example, rightangle "corners" such as *cis*-disubstituted Pd(II) complexes usually react with a linear linker such as 4,4'-bpy to produce the square $[Pd_4(4,4'-bpy)_4]$, but a number of examples of trinuclear products $[Pd_3(4,4'-bpy)_3]$ have been observed.⁵ The formation of a triangle instead of the expected square requires a distortion of ca. 30° at each metal ion, just like the formation of a square instead of the expected hexagon (as we saw in the formation of $Cu_4(m-pba)_4^3$). In contrast, the amount of distortion required to assemble $Cu_2(o$ $pba)_2$ is twice as large, ca. 60° at each metal ion. In the present work, we show that this dimer forms solids of a variety of colors, ranging

Scheme 1. Preparation of Supramolecular Cu Complexes from the Meta (a) and Ortho (b) Isomers of the Bis(β diketone) pbaH₂

from blue to green to golden-brown, depending on the solvents used in preparation.

EXPERIMENTAL SECTION

All reagents were used as received. Elemental analyses were performed by M-H-W Laboratories, Phoenix, Arizona.

Received: August 12, 2010 Published: March 09, 2011

Table 1. X-Ray Crystallographic and Structure Refinement Data for 3b, 4-8

Compound	3b	4	5
empirical formula	C32H32Cu2O8	$C_{32}H_{32}Cu_2O_8 \cdot C_6H_6 \cdot 4CHCl_3$	$C_{32}H_{32}Cu_2O_8 \cdot 2C_6H_5NO_2$
fw	671.66	1227.24	917.88
cryst syst	triclinic	monoclinic	triclinic
space group	$P\overline{1}$ (No. 2)	$P2_1/n$ (No. 14)	$P\overline{1}$ (No. 2)
a. Å	7.5200(14)	11.7288(10)	7.7190(5)
h, Å	9 200(3)	20.790(2)	11.6921(9)
c, Å	10.728(3)	12.0788(11)	12.1682(10)
a. dea	90 484(13)	90	79 475(4)
B. deg	91.742(16)	119 005(4)	80,666(5)
v. deg	105 265(16)	90	72,687(6)
V Å ³	7156(3)	2575.9(4)	1023 98(13)
7	1	20700(1)	1
т к	115	115	90
$D \rightarrow a cm^{-3}$	1 550	1 582	1.488
cryst dimenions mm	$0.12 \times 0.02 \times 0.02$	$0.40 \times 0.30 \times 0.18$	$0.42 \times 0.15 \times 0.12$
A limite deg	$2.12 \times 0.02 \times 0.02$	$2.7 < \theta < 35.0$	$2.7 \le \theta \le 26.4$
refine mesed/unique/obed	9333/2423/1056	62001/10919/8596	33966/9552/8515
data /naram	2422/104	10.010/204	0552/276
$u_{\rm mm}^{-1}$	1 529	1 406	1 106
μ , min $P(I > 2\sigma(I))$	0.117	0.026	0.024
$R\left(1 \ge 2O(1)\right)$ $R\left(all data\right)$	0.282	0.004	0.002
	1.074	1.020	1.046
GOF	1.074	1.029	1.040
compound	6	7	8
compound			
empirical formula	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$	$C_{32}H_{32}Cu_2O_8 \cdot C_{12}H_{12}N_2 \cdot 1.5C_7H_8$	$C_{32}H_{32}Cu_2O_8 \cdot C_{10}H_8N_2 \cdot C_7H_8N_2 \cdot C_7$
empirical formula fw	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79	$C_{32}H_{32}Cu_2O_8 \cdot C_{12}H_{12}N_2 \cdot 1.5C_7H_8$ 994.09	$C_{32}H_{32}Cu_2O_8 \cdot C_{10}H_8N_2 \cdot C_7H$ 919.97
empirical formula fw cryst syst	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic	C ₃₂ H ₃₂ Cu ₂ O ₈ ⋅ C ₁₂ H ₁₂ N ₂ ⋅ 1.5C ₇ H ₈ 994.09 triclinic	$C_{32}H_{32}Cu_2O_8 \cdot C_{10}H_8N_2 \cdot C_7H$ 919.97 orthorhombic
empirical formula fw cryst syst space group	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2)	C ₃₂ H ₃₂ Cu ₂ O ₈ ⋅C ₁₂ H ₁₂ N ₂ ⋅1.5C ₇ H ₈ 994.09 triclinic PĪ (No. 2)	$C_{32}H_{32}Cu_2O_8 \cdot C_{10}H_8N_2 \cdot C_7H$ 919.97 orthorhombic <i>Cmma</i> (No. 67)
empirical formula fw cryst syst space group <i>a</i> , Å	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10)	$C_{32}H_{32}Cu_{2}O_{8} \cdot C_{12}H_{12}N_{2} \cdot 1.5C_{7}H_{8}$ 994.09 triclinic $P\overline{1}$ (No. 2) 8.670(3)	$C_{32}H_{32}Cu_2O_8 \cdot C_{10}H_8N_2 \cdot C_7H$ 919.97 orthorhombic <i>Cmma</i> (No. 67) 20.978(9)
empirical formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10) 11.4219(15)	$\begin{array}{l} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(\text{No. 67})\\ 20.978(9)\\ 11.525(4) \end{array}$
empirical formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10) 11.4219(15) 11.9423(15)	$C_{32}H_{32}Cu_{2}O_{8} \cdot C_{12}H_{12}N_{2} \cdot 1.5C_{7}H_{8}$ 994.09 triclinic $P\overline{1}$ (No. 2) 8.670(3) 11.963(5) 12.116(8)	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}H_{9}\\ 919.97\\ \text{orthorhombic}\\ Cmma~(\text{No. }67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6) \end{array}$
empirical formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg	$C_{32}H_{32}Cu_{2}O_{8} \cdot C_{7}H_{8}$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10) 11.4219(15) 11.9423(15) 116.990(6)	$C_{32}H_{32}Cu_{2}O_{8} \cdot C_{12}H_{12}N_{2} \cdot 1.5C_{7}H_{8}$ 994.09 triclinic $P\overline{1}$ (No. 2) 8.670(3) 11.963(5) 12.116(8) 101.86(2)	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}H_{9}\\ 919.97\\ \text{orthorhombic}\\ Cmma~(\text{No.}~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90 \end{array}$
empirical formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg β, deg	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10) 11.4219(15) 11.9423(15) 116.990(6) 93.970(8)	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2) \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}H_{9}\\ 919.97\\ \text{orthorhombic}\\ Cmma~(\text{No.}~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ \end{array}$
empirical formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg β, deg γ, deg	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\;(No.\;2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2) \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 90\end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg $V, Å^3$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\;(No.\;2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9) \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ \end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg γ, \deg $V, Å^3$ Z	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(\text{No. 67})\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg γ, \deg $V, Å^3$ Z T, K	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1} \ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.86(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg γ, \deg γ, \deg Z T, K $D_{calcdy} g cm^{-3}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\;(No.\;2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z T, K $D_{calcdr} g cm^{-3}$ cryst dimensions, mm	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\;(No.\;2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\\ 0.43\;\times\;0.10\;\times\;0.02 \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20\ \times\ 0.15\ \times\ 0.05\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ \end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg γ, \deg γ, \deg γ, \deg γ, χ T, K D_{calcdr} g cm ⁻³ cryst dimensions, mm θ limits, deg	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\\ 0.43\ \times\ 0.10\ \times\ 0.02\\ 2.8 < \theta < 30.0\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20\times 0.15\times 0.05\\ 2.5<\theta< 24.3\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ \end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg γ, \deg γ, \deg $V, Å^3$ Z T, K $D_{calcdr} g cm^{-3}$ cryst dimensions, mm θ limits, deg reflns, measd/unique/obsd	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\\ 0.43\times 0.10\times 0.02\\ 2.8<\theta< 30.0\\ 18674/5043/4420\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{12}H_{12}N_2\cdot 1.5C_7H_8\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20\times 0.15\times 0.05\\ 2.5<\theta< 24.3\\ 19243/6513/4847\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7H\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ 16670/1392/939\\ \end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\\ 0.43\ \times\ 0.10\ \times\ 0.02\\ 2.8\ <\ \theta\ <\ 30.0\\ 18674/5043/4420\\ 5043/245\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1} \ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20\times 0.15\times 0.05\\ 2.5<\theta< 24.3\\ 19243/6513/4847\\ 6513/143\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}H_{9}\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ 16670/1392/939\\ 1392/158\\ \end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z T, K $D_{calcdr} g cm^{-3}$ cryst dimensions, mm θ limits, deg reflns, measd/unique/obsd data/param μ, mm^{-1}	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10) 11.4219(15) 11.9423(15) 116.990(6) 93.970(8) 105.046(8) 864.94(19) 1 115 1.466 0.43 × 0.10 × 0.02 2.8 < θ < 30.0 18674/5043/4420 5043/245 1.283	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1} \ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20 \times 0.15 \times 0.05\\ 2.5 < \theta < 24.3\\ 19243/6513/4847\\ 6513/143\\ 1.029\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{10}H_{8}N_{2}\cdot C_{7}N_{2}\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ 16670/1392/939\\ 1392/158\\ 1.096\end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, f,	$C_{32}H_{32}Cu_2O_8 \cdot C_7H_8$ 763.79 triclinic $P\overline{1}$ (No. 2) 7.5492(10) 11.4219(15) 11.9423(15) 116.990(6) 93.970(8) 105.046(8) 864.94(19) 1 115 1.466 0.43 × 0.10 × 0.02 2.8 < θ < 30.0 18674/5043/4420 5043/245 1.283 0.032	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1} \ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20 \times 0.15 \times 0.05\\ 2.5 < \theta < 24.3\\ 19243/6513/4847\\ 6513/143\\ 1.029\\ 0.123\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7I\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ 16670/1392/939\\ 1392/158\\ 1.096\\ 0.097\\ \end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å $c, (I > 2\sigma(I))$ c, Å c,	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\;(No.\;2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\\ 0.43\times 0.10\times 0.02\\ 2.8<\theta< 30.0\\ 18674/5043/4420\\ 5043/245\\ 1.283\\ 0.032\\ 0.079\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20\times 0.15\times 0.05\\ 2.5<\theta< 24.3\\ 19243/6513/4847\\ 6513/143\\ 1.029\\ 0.123\\ 0.350\\ \end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7I\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ 16670/1392/939\\ 1392/158\\ 1.096\\ 0.097\\ 0.286\end{array}$
empirical formula fw cryst syst space group a, Å b, Å c, Å a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg γ, deg γ, deg $r, Å^3$ Z T, K $D_{calcd}, g cm^{-3}$ cryst dimensions, mm θ limits, deg reflns, measd/unique/obsd data/param μ, mm^{-1} $R (I > 2\sigma(I))$ R_w (all data) GOF	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_7H_8\\ 763.79\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 7.5492(10)\\ 11.4219(15)\\ 11.9423(15)\\ 11.9423(15)\\ 116.990(6)\\ 93.970(8)\\ 105.046(8)\\ 864.94(19)\\ 1\\ 115\\ 1.466\\ 0.43\times 0.10\times 0.02\\ 2.8<\theta< 30.0\\ 18674/5043/4420\\ 5043/245\\ 1.283\\ 0.032\\ 0.079\\ 1.057\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_{2}O_{8}\cdot C_{12}H_{12}N_{2}\cdot 1.5C_{7}H_{8}\\ 994.09\\ triclinic\\ P\overline{1}\ (No.\ 2)\\ 8.670(3)\\ 11.963(5)\\ 12.116(8)\\ 101.86(2)\\ 110.69(2)\\ 101.23(2)\\ 1100.4(9)\\ 1\\ 115\\ 1.500\\ 0.20\times 0.15\times 0.05\\ 2.5<\theta<24.3\\ 19243/6513/4847\\ 6513/143\\ 1.029\\ 0.123\\ 0.350\\ 1.341\end{array}$	$\begin{array}{c} C_{32}H_{32}Cu_2O_8\cdot C_{10}H_8N_2\cdot C_7I\\ 919.97\\ \text{orthorhombic}\\ Cmma~(No.~67)\\ 20.978(9)\\ 11.525(4)\\ 16.980(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 4105(3)\\ 4\\ 115\\ 1.488\\ 0.45\times 0.08\times 0.07\\ 3.0<\theta<22.1\\ 16670/1392/939\\ 1392/158\\ 1.096\\ 0.097\\ 0.286\\ 1.589\end{array}$

Preparation of Compounds. $Cu_2(o-pba)_2$ (**3a**). $CuSO_4 \cdot SH_2O$ (0.500 g, 2.00 mmol) was dissolved in 10 mL of H_2O and converted to $[Cu(NH_3)_4]SO_4(aq)$ by the dropwise addition of conc. $NH_3(aq)$. To this blue-violet solution, a solution of *o*-pbaH₂ (0.275 g, 1.00 mmol) in 20 mL of CH_2Cl_2 was added slowly, and the mixture was stirred for 6 h. CH_2Cl_2 (20 mL) was added, and the organic layer was separated, dried over MgSO₄, and evaporated to give a dark green powder. This residue was washed with hexane (2 × 10 mL) and dried in the air. Yield: 0.325 g (96%), mp > 210 °C. Anal. Calcd for $C_{32}H_{32}Cu_2O_8$: C, 57.22; H, 4.80. Found: C, 57.11; H, 4.93. $Cu_2(o-pba)_2$ (**3b**). A solution of $Cu_2(o-pba)_2$ (**3a**, 0.050 g, 0.074 mmol) in 1.5 mL of CHCl₃ was layered with acetone. Small goldenbrown crystals of **3b** were obtained after ca. 48 h. This product was collected and dried in the air. Yield: 0.039 g (78%). Anal. Calcd for $C_{32}H_{32}Cu_2O_8$: C, 57.22; H, 4.80. Found: C, 57.46; H, 4.56.

 $Cu_2(o-pba)_2 \cdot C_6 H_6 \cdot 4CHCl_3$ (**4**). A solution of $Cu_2(o-pba)_2$ (**3**a, 0.050 g) in 1.5 mL of CHCl₃ was layered with benzene. Green-brown dichroic crystals of **4** were obtained after ca. 72 h. Yield: 0.053 g (58%). These crystals slowly become opaque on standing, suggesting a loss of

solvent; microanalysis results were in agreement with the ansolvous material. Anal. Calcd for $Cu_2(o-pba)_2$ ($C_{32}H_{32}Cu_2O_8$): C, 57.22; H, 4.80. Found: C, 57.12; H, 4.65.

 $Cu_2(o-pba)_2 \cdot 2C_6H_5NO_2$ (**5**). A solution of $Cu_2(o-pba)_2$ (**3a**, 0.050 g) in 1.5 mL of CHCl₃ was layered with nitrobenzene. Dark blue crystals of **5** were obtained in ca. 4 days. This product was collected and dried in the air. Yield: 0.047 g (65%). Anal. Calcd for C₄₄H₄₂Cu₂N₂O₁₂: C, 57.57; H, 4.61, N, 3.05. Found: C, 57.48; H, 4.72; N, 3.11.

 $Cu_2(o-pba)_2 \cdot C_6H_5CH_3$ (**6**). A solution of $Cu_2(o-pba)_2$ (**3a**, 0.050 g) in 1.5 mL of CHCl₃ was layered with toluene. Violet crystals of **6** were obtained in ca. 4 days. This product was collected and dried in the air. Yield: 0.042 g (74%). Anal. Calcd for $C_{39}H_{40}Cu_2O_8$: C, 61.32; H, 5.29. Found: C, 61.50; H, 5.50.

Coordination Polymers of Cu₂(o-pba)₂. $[Cu_2(o-pba)_2(dpea)]$ · 1.5C₆H₅CH₃ (**7**). A solution of Cu₂(o-pba)₂ (**3a**, 0.025 g, 0.037 mmol) in 1.0 mL of CHCl₃ turned bluish-green when 1,2-bis(4-pyridyl)ethane (dpea; 0.010 g, 0.054 mmol, in 0.5 mL CHCl₃) was added; the resulting mixture was layered with toluene. Bluish-green crystals of 7 were obtained in 2 days. These crystals slowly become opaque on standing, suggesting a loss of solvent; microanalysis results were in agreement with the ansolvous material. Yield: 0.026 g (82%). Anal. Calcd for Cu₂(o-pba)₂(dpea) (C₄₄H₄₄N₂Cu₂O₈): C, 61.69; H, 5.18, N, 3.27. Found: C, 61.99; H, 5.23; N, 3.43.

 $[Cu_2(o-pba)_2(4,4'-bpy)] \cdot C_6H_5CH_3$ (**8**). A solution of $Cu_2(o-pba)_2$ (**3a**, 0.025 g, 0.037 mmol) in 1.0 mL of CHCl₃ turned bluish-green when 4,4'-bipyridine (0.009 g, 0.058 mmol, in 0.5 mL CHCl₃) was added; the resulting mixture was layered with toluene. Bluish-green crystals of **8** were obtained in 2 days. These crystals slowly become opaque on standing, suggesting a loss of solvent; microanalysis results were in agreement with the ansolvous material. Yield: 0.027 g (88%). Anal. Calcd for Cu₂(*o*-pba)₂(4,4'-bpy) (C₄₂H₄₀N₂Cu₂O₈): C, 60.88; H, 4.87, N, 3.38. Found: C, 60.75; H, 4.90; N, 3.44.

X-Ray Structure Determinations. Intensity data were collected at low temperatures on a Nonius KappaCCD diffractometer equipped with an Oxford Cryosystems Cryostream sample cooler and a graphite monochromated Mo K α X-ray source ($\lambda = 0.71073$ Å). Data were corrected for absorption using the multiscan method using DENZO and SCALEPACK.⁶ Structures were solved by direct methods using SIR⁷ and refined on F² using SHELXL.⁸ Crystal quality for 4, 5, and 6 was excellent, less so for 3b, 7, and 8. The toluene solvent in 6 was disordered about an inversion center. The toluene solvent in 8 was also disordered into two orientations, and a common isotropic displacement parameter was refined for its C atoms. Contribution from disordered solvent in 7, assumed to be toluene, was removed using SQUEEZE.⁹ For 7, only Cu and O were treated as anisotropic. For all structures, hydrogen atoms were frequently visible in difference maps but were placed in idealized positions, and torsional parameters were refined for methyl groups. Crystal data and refinement details are given in Table 1.

Powder diffraction data were collected by using a Bruker D8 Advance instrument.

RESULTS AND DISCUSSION

The bis(β -diketone) *o*-pbaH₂ was synthesized according to the literature procedure¹⁰ and converted to dark green Cu₂(*o*-pba)₂ (3) in a CH₂Cl₂ solution by treatment with [Cu(NH₃)₄]²⁺ (aq). The transformations of **3** are illustrated in Scheme 2. The initial product is a dark green powder (**3a**) which dissolves readily in CHCl₃ or CH₂Cl₂ but not in most other solvents. For example, **3a** dissolves in acetone to give a green solution, but this solution deposits a golden-brown powder within a few seconds. Slow evaporation of a CHCl₃/acetone solution yields crystalline golden-brown Cu₂(*o*-pba)₂ (**3b**; Figure 1) over a period of several days. Complex **3a** is microcrystalline, as determined by powder X-ray diffraction,

Figure 1. Crystal structure of $Cu_2(o-pba)_2$ (3b) $(Cu1\cdots Cu1' = 4.551(2) \text{ Å})$, with 50% ellipsoids for non-hydrogen atoms.

and its diffraction pattern is quite different from that of **3b** (see Figure S1, Supporting Information).

The other crystalline materials described here were all prepared from CHCl₃ solutions of **3** by layering and have been characterized by X-ray analysis: with benzene, green-brown Cu₂- $(o-pba)_2 \cdot C_6H_6 \cdot 4CHCl_3$ (**4**; Figure 2); with nitrobenzene, dark blue Cu₂ $(o-pba)_2 \cdot 2C_6H_5NO_2$ (**5**; Figure 3); with toluene, violet Cu₂ $(o-pba)_2 \cdot C_6H_5CH_3$ (**6**; Figure 4). All of the crystalline materials (**3b**, **4**, **5**, and **6**) dissolve in CHCl₃ or CH₂Cl₂ to give green solutions which are indistinguishable from those prepared using **3a**. (Complex **3b** dissolves less readily than the other materials; this may be for thermodynamic reasons, as suggested by the fact that solid **3a** spontaneously converts to solid **3b** in solvents such as acetone.)

Compounds **3a** and **3b** have the same composition but different colors. The absorption spectrum of dark green solid **3a** is nearly identical to that of its $CHCl_3$ solution, as illustrated by the spectra in Figure 5 (for the solid) and in Figure S2 (for the solution), with maxima at 690–700 and 580–590 nm and a rising absorbance below 500 nm. (The spectra in Figure 5 were recorded for Nujol mulls of the solids, because their solutions are all dark green.) These spectra are similar to those of Cu complexes of other 3-substituted acetylacetonates (d–d bands above 500 nm, and CT and intraligand transitions at shorter wavelengths), suggesting that **3a** contains isolated molecules.

Ansolvous crystalline **3b**, on the other hand, is golden-brown, with intense absorption at shorter wavelengths in addition to the features in the 550–700 nm region. The CuO₄ coordination environment in **3b** is nearly planar (the Cu atom is 0.005 Å from the O₄ plane), and the CuO₄ and two crystallographically independent β -diketonate planes make angles of 15.9° and 30.3° with the CuO₄ coordination plane.

Figure 2. Crystal structure of $Cu_2(o-pba)_2 \cdot C_6H_6 \cdot 4CHCl_3$ (4; $Cu_1 \cdot \cdot \cdot Cu_1' \cdot 4.5482(5)$ Å), showing one unit cell, viewed along the crystallographic *a* direction; *b* is horizontal (50% ellipsoids for non-hydrogen atoms).

The C₆H₆-CHCl₃ solvate 4 is green-brown, and individual crystals frequently show a well-developed dichroic face, with green and brown colors in polarized light (Figure 6). These green and brown colors are similar to those of **3a** and **3b**, respectively. We could not obtain spectra of this material in the two polarizations for a more quantitative comparison, owing to a rapid loss of solvent from the crystals. X-ray analysis of **4** (Figure 2) reveals molecules that are almost identical to those in **3b** (Cu···Cu = 4.5482(5) Å; Cu atom 0.012 Å from O₄ plane; 26.0° and 20.7° between the CuO₄ and β -diketonate planes). The Bruker Apex2 face-indexing software¹¹ identified the prominent face in crystals of **4** as (100), as illustrated in Figure 7. The location of the *b* axis enabled us to assign the polarizations in Figure 6.

The brown colors in **3b** and **4** are similar, but their cause remains puzzling. We considered the severe structural distortions that occur in the $Cu_2(o-pba)_2$ molecules as a possible cause for the unusual colors. If **3a** contained polymeric $[Cu(o-pba)]_n$, for example, it might be unstrained and show the "normal" dark green color. However, this is unlikely, because it would require that the polymer and dimer interconvert rapidly as the solids are dissolved and precipitated. Such an interconversion could only occur by dissociation of the chelating ligands, which is unfavorable in nonpolar solvents. Also, **3a** and **3b** interconvert to some extent even in the solid state: dark green **3a** slowly turns brownish-green on standing, and grinding golden-brown crystalline **3b** gives it a slight green color. Thus, **3a**, like **3b**, consists of discrete $Cu_2(o-pba)_2$ molecules.

The orientation of the molecules in crystals of 4 is shown in Figure 2. The $Cu_2(o-pba)_2$ molecules are aligned so that their

Figure 3. Crystal structure of $Cu_2(o-pba)_2 \cdot 2C_6H_5NO_2$ (**5**), showing a portion of the 1D chain of $Cu_2(o-pba)_2$ units: $Cu_1 \cdot \cdot \cdot Cu_1' = 4.9636(4)$ Å; $Cu_1 \cdot \cdot \cdot O4' = 2.422(1)$ Å. Solvent molecules omitted for clarity; 50% ellipsoids for non-hydrogen atoms.

Cu···Cu vectors are almost exactly along the *b* axis. The intense brown color in the micrographs in Figure 6 appears only in polarization perpendicular to *b*. This information limits the transitions that could be responsible: the intensity of the color suggests a charge-transfer assignment, and LMCT transitions originating in the π system of the β -diketonate ligands are possible. These transitions normally lie in the ultraviolet region.

Figure 4. Crystal structure of $Cu_2(o-pba)_2 \cdot C_6H_5CH_3$ (6), showing a portion of the 1D chain of $Cu_2(o-pba)_2$ units: $Cu1 \cdot \cdot \cdot Cu1' = 4.7575(7)$, $Cu1 \cdot \cdot \cdot Cu3' = 2.443(1)$ Å. Solvent molecules omitted for clarity; 50% ellipsoids for non-hydrogen atoms.

Figure 5. Absorption spectra of the five forms of $Cu_2(o-pba)_2$ (3a, 3b, 4, 5, and 6) in the solid state, recorded as Nujol mulls.

The β -diketonates in Cu₂(*o*-pba)₂ are noticeably distorted from planarity, and this distortion could lead to a red-shift in the LMCT transition(s) and the observed brown color. However, the structure of the Cu₂(*o*-pba)₂ unit is almost identical in all of the crystalline solids studied here, so we would expect to see similar intense transitions in the other materials as well; but only **3b** and **4** show them. Intermolecular interactions in **3b** and **4** could produce the brown color, but no unusual interactions were apparent in their crystal structures.¹² Thus, we do not have a complete explanation of the origin of the brown color.

The solvated compounds **5** and **6** both contain separate onedimensional stacks of $Cu_2(o-pba)_2$ molecules and solvent molecules. In the $Cu_2(o-pba)_2$ stacks, adjacent molecules make close approaches, with intermolecular $Cu \cdots O$ distances of 2.422(1) Å (in **5**; Figure 3) and 2.443(1) Å (in **6**; Figure 4). This close approach leads to pyramidal distortions and effective fivecoordination at the Cu atoms. The dark blue and violet colors of **5** and **6**, respectively, and their spectra in Figure 5 are consistent with the change to five-coordination.

Solutions of $Cu_2(o-pba)_2$ turn greenish-blue on reaction with nitrogen-donor ligands, as expected for the formation of 5-coordinate adducts at Cu. We have crystallized two such adducts,

Figure 6. Photographs of the (100) face of a crystal of $Cu_2(o-pba)_2 \cdot C_6H_6 \cdot 4CHCl_3$ (4) in polarized light. Left, horizontal polarization (parallel to *b*); right, vertical (perpendicular to *b*). Scale bar (black bar on left) = 0.25 mm. [This view is slightly different from that in Figure 2, which is along the *a* axis. However, *b* is still horizontal, and the vertical direction is approximately along *c*.]

Figure 7. Face indexing performed for a crystal of $Cu_2(o-pba)_2 \cdot C_6H_6 \cdot 4CHCl_3$ (4).

Figure 8. Crystal structure of $Cu_2(o-pba)_2L \cdot 1.5C_6H_5CH_3$ (7; L = 1,2bis(4-pyridyl)ethane), showing a portion of the 1D polymeric chain of $Cu_2(o-pba)_2L$ units: $Cu1 \cdot \cdot \cdot Cu1' = 5.287(1)$ Å; $Cu1 \cdot \cdot \cdot N1 = 2.292(6)$ Å (50% ellipsoids for non-hydrogen atoms).

with 1,2-bis(4-pyridyl)ethane (7, Figure 8) and 4,4'-bipyridine (8, Figure 9), both of which are 1-D coordination polymers.

Binding of adjacent O or N atoms to $Cu_2(o-pba)_2$ leads to pyramidal environments about Cu and increased Cu···Cu distances: 4.9636(4), 4.7575(7), 5.287(1), and 5.318(3) Å in

Figure 9. Crystal structure of $Cu_2(o-pba)_2L \cdot 1.5C_6H_5CH_3$ (8; L = 4,4'bipyridine), showing a portion of the 1D polymeric chain of $Cu_2(o-pba)_2L$ units: $Cu1 \cdot \cdot \cdot Cu2 = 5.318(3)$ Å (50% ellipsoids for nonhydrogen atoms).

5, **6**, 7, and **8**, respectively. The greater elongation in 7 and **8** is also accompanied by greater displacements of the Cu atoms away from the O4 planes (0.096, 0.087, 0.194, and 0.179 and 0.217 Å in **5**, **6**, 7, and **8**, respectively); both of these trends reflect the stronger coordination of N donors to the Cu centers. Formation of square pyramidal adducts may be favored in the $Cu_2(o-pba)_2$ system, because the orientation of the β -diketone moieties is more compatible with pyramidal geometry at the Cu atom than with planar geometry.

CONCLUSIONS

The reaction of the bis(β -diketone) *o*-pbaH₂ with Cu²⁺ yields the cyclic dimer Cu₂(*o*-pba)₂, rather than the trimer that was expected on the basis of ligand geometry. This reaction proceeds in high yield despite the severe distortion required in the product; the distortion occurs primarily in the dihedral angles between the β -diketonate and CuO₄ planes. Cu₂(*o*-pba)₂ forms solids with a wide range of colors, depending on the solvents used in preparation, and it also binds to bidentate N donors to give 1-D coordination polymers.

ASSOCIATED CONTENT

Supporting Information. Powder X-ray diffraction results for 3a and 3b (Figure S1). Absorption spectrum of 3 in solution (Figure S2). X-ray crystallographic data for 3b, 4, 5, 6, 7, and 8, in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: cpariya@cas.org (C.P.); maverick@lsu.edu (A.W.M.).

Present Address

⁺Synthetic and Polymer Chemistry, CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States

ACKNOWLEDGMENT

Acknowledgment is made to the U.S. Department of Energy (Grant DE-FG02-01ER15267) for support of this work. We thank Gregory McCandless and Dr. Julia Chan for assistance with the powder X-ray diffraction experiments.

REFERENCES

(1) (a) Ma, L.; Mihalcik, D. J.; Lin, W. J. Am. Chem. Soc. 2009, 131, 4610. (b) Yan, Y.; Lin, X.; Yang, S. H.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schröder, M. Chem. Commun. 2009, 1025. (c) Prakash, M. J.; Zou, Y.; Hong, S.; Park, M.; Bui, M. P. N.; Seong, G. H.; Lah, M. S. Inorg. Chem. 2009, 48, 1281. (d) Tranchemontagne, D. J.; Ni, Z.; O'Keeffe, M.; Yaghi, O. M. Angew. Chem., Int. Ed. 2008, 47, 5136. (e) Jung, M.; Kim, H.; Baek, K.; Kim, K. Angew. Chem., Int. Ed. 2008, 47, 5755. (f) Furukawa, H.; Kim, J.; Ockwig, N. W.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11650. (g) Hamilton, T. D.; Papaefstathiou, G. S.; Frišćič, T.; Bučar, D. K.; MacGillivray, L. R. J. Am. Chem. Soc. 2008, 130, 14366. (h) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825. (i) Larsen, R. W. J. Am. Chem. Soc. 2008, 130, 11246. (j) Park, J.; Hong, S.; Moon, D.; Park, M.; Lee, K.; Kang, S.; Zou, Y.; John, R. P.; Kim, G. H.; Lah, M. S. Inorg. Chem. 2007, 46, 10208. (k) Perry, J. J.; Kravtsov, V. C.; McManus, G. J.; Zaworotko, M. J. J. Am. Chem. Soc. 2007, 129, 10076. (1) Hamilton, T. D.; Papaefstathiou, G. S.; MacGillivray, L. R. J. Solid State Chem. 2005, 178, 2409. (m) Hamilton, T. D.; MacGillivray, L. R. Cryst. Growth Des. 2004, 4, 419. (n) Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 4368.

(2) (a) Bray, D. J.; Antonioli, B.; Clegg, J. K.; Gloe, K.; Jolliffe, K. A.; Lindoy, L. F.; Wei, G.; Wenzel, M. Dalton Trans. 2008, 1683. (b) Clegg, J. K.; Bray, D. J.; Gloe, K.; Hayter, M. J.; Jolliffe, K. A.; Lawrance, G. A.; Meehan, G. V.; McMurtrie, J. C.; Lindoy, L. F.; Wenzel, M. Dalton Trans. 2007, 1719. (c) Chen, B.; Fronczek, F. R.; Maverick, A. W. Inorg. Chem. 2004, 43, 8209. (d) Benites, M. R.; Fronczek, F. R.; Hammer, R. P.; Maverick, A. W. Inorg. Chem. 1997, 36, 5826. (e) Wrobleski, D. A.; Rauchfuss, T. B. J. Am. Chem. Soc. 1982, 104, 2314.

(3) Pariya, C.; Sparrow, C. R.; Back, C. K.; Sandí, G.; Fronczek, F. R.; Maverick, A. W. Angew. Chem., Int. Ed. 2007, 46, 6305.

(4) (a) Zangrando, E.; Casanova, M.; Alessio, E. Chem. Rev. 2008, 108, 4979. (b) Bar, A. K.; Chakrabarty, R.; Mukherjee, P. S. Inorg. Chem. 2009, 48, 10880. (c) Willison, S. A.; Krause, J. A.; Connick, W. B. Inorg. Chem. 2008, 47, 1258. (d) Derossi, S.; Casanova, M.; Iengo, E.; Zangrando, E.; Stener, M.; Alessio, E. Inorg. Chem. 2007, 46, 11243. (e) Ghosh, S.; Turner, D. R.; Batten, S. R.; Mukherjee, P. S. Dalton Trans. 2007, 1869. (f) Chand, D. K.; Biradha, K.; Kawano, M.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Chem. Asian J. 2006, 1, 82. (g) Qin, Z.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2002, 41, 3967. (h) Sun, S. S.; Lees, A. J. Inorg. Chem. 1999, 38, 4181. (i) Schnebeck, R. D.; Randaccio, L.; Zangrando, E.; Lippert, B. Angew. Chem., Int. Ed. 1998, 37, 119.

(5) (a) Uehara, K.; Kasai, K.; Mizuno, N. Inorg. Chem. 2007, 46, 2563.
(b) Cotton, F. A.; Murillo, C. A.; Yu, R. M. Dalton Trans. 2006, 3900.
(c) Schweiger, M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. Inorg. Chem. 2002, 41, 2556.
(d) Sautter, A.; Schmid, D. G.; Jung, G.; Würthner, F. J. Am. Chem. Soc. 2001, 123, 5424.

(6) Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307.

(7) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. **1999**, *32*, 115.

(8) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.

(9) Spek, A. L. Acta Crystallogr. Sect. D 2009, 65, 148.

(10) Ramirez, F.; Bhatia, S. B.; Patwardhan, A. V.; Smith, C. P. J. Org. Chem. **1967**, 32, 3547.

(11) APEX2; Bruker AXS Inc.: Madison, WI, 2006.

(12) The crystal structures were determined on the basis of lowtemperature data, while the color observations and spectral measurements were performed at room temperature. However, we saw no evidence for phase changes upon cooling the crystals for data collection. Thus, we believe the low-temperature structures give good indications of the presence or absence of intermolecular interactions in the solids at room temperature.