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ABSTRACT: A new three-dimensional microporous metal—
organic framework Cu(BDC—OH)(4,4"-bipy) -G, (UTSA-1S;
H,BDC—OH = 2-hydroxy-benzenedicarboxylic acid, 4,4'-bipy =4,
4'-bipyridine, G = guest molecules) with functional —OH
groups on the pore surfaces was solvothermally synthesized
and structurally characterized. UTSA-1S features a three-di-
mensional structure having 2D intercrossed channels of about
4.1 x 7.8and 3.7 x 5.1 A% respectively. The small pores and the
functional —OH groups on the pore surfaces within the
activated UTSA-15a have enabled their strong interactions with CO, and C,H, which have been revealed in their large adsorption
enthalpies of 39.5 and 40.6 kJ/mol, respectively, highlighting UTSA-15a as the highly selective microporous metal—organic
framework for the CO,/CH, and C,H,/CH, gas separation with separation selectivity of 24.2 and 55.6, respectively, at 296 K.
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B INTRODUCTION

Separation of small gas molecules is an essential industrial
process because most gas molecules such as CO,, CHy, and C,H,
are very important raw chemicals in the chemical and petrochem-
ical industry, and high-purity such gases are highly in need."” In
addition, removal of some gas molecules such as CO, will also
have a significant environmental impact to minimize the global
warming effect. Traditional separation technology by cryogenic
distillation at low temperature is extremely energy consuming,
mainly because some gas chemicals have comparable volatility
and boiling points. The emergence of the microporous materials
having selective adsorption properties has significantly reduced
the cost for the separation and purification of these small gas
molecules as exemplified by a carbon molecular sieve adsorbent
for air separation (to produce nitrogen) during the late 1970s>
and by ETS-4 for removal of nitrogen from natural gas (mainly
methane) during the 1990s.*

Microporous metal—organic framework (MOF) materials are
anew type of porous materials constructed from metal ions and/
or metal-containing clusters and organic bridging linkers.”> The
capacities to systematically tune the pore sizes to maximize their
size-exclusive effects in which smaller molecules can go through
the microporous channels while larger substrates are blocked and
to immobilize functional sites such as open metal sites and
functional NH,, NO,, OH, and CN groups, etc., to direct their
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differential interactions with the gas molecules have led to a series
of new microporous MOF materials as very promising media for
practical gas adsorptive separation.®”** It is expected that the gas
separation selectivity can be enhanced and optimized by making
use of both the size-exclusive effects and the immobilized
functional sites within such microporous MOFs. Herein, we
report a new 3D microporous MOF Cu(BDC—OH) (4,4’ -bipy) -
G, (UTSA-15, UTSA = University of Texas at San Antonio;
H,BDC—OH = 2-hydroxy-benzenedicarboxylic acid, 4,4'-bipy =4,
4'-bipyridine, G = guest molecules) and immobilized —OH
groups on the pore surfaces for its highly selective gas sorption
of C,H,/CH, and CO,/CH, at room temperature.

B EXPERIMENTAL SECTION

Materials and Measurements. All reagents and solvents were
used as received from commercial suppliers without further purification.
Thermogravimetric analyses (TGA) were performed on a Mettler
Toledo TGA/SDTAS8S1 analyzer in air with a heating rate of S K- min !
from 30 to 800 °C. X-ray powder diffraction (XRD) patterns were
measured using a Bruker D8 Advance powder diffractometer at 40 kV,
40 mA for Cu Kot radiation (4 = 1.5418 A), with a scan speed of 0.2 s/step
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Table 1. Crystal Data and Structure Refinement for UTSA-15

empirical formula
formula weight

temp.

wavelength

cryst syst, space group

unit cell

volume

Z, caled density

abs coeff

F(000)

cryst size

theta range for data
collection

limiting indices

no of reflns collected/unique
completeness to theta =58.34
abs corr

max and min transmission
refinement method
data/restraints/parameters
goodness-of-fit on F>

tinal R indices [I > 20(I)]

R indices (all data)

extinction coefficient

C5H,CuN,O5
399.84

296(2) K

1.54178 A
orthorhombic, Pbam
a=21.073(4) A
b=13.061(3) A
c=11.123(2) A
3061.5(10) A®
4,0.865 Mg/m®
1.171 mm "

808

0.12 X 0.05 x 0.04 mm
3.97-58.34°

—19<h=<23—14<k< 14,
—11=<1=<10

9152/2193 [R(int) = 0.0303]

95.6%

semiempirical from equivalents

0.9547 and 0.8723

full-matrix least-squares on F

2193/0/140

1.168

R1=0.0933, wR2 = 0.2688

R1 = 0.0996, wR2 = 0.2817

0.0016(4)

largest diff. peak and hole 0.971 and —0.565

and a step size of 0.02° (26). IR spectrum of CO,-loaded UTSA-15a was
carried out on a Bruker Vector 22 FT-IR spectrometer as KBr pellets.

Gas Sorption Measurements. A Micromeritics ASAP 2020
surface area analyzer was used to measure gas adsorption. In order to
remove guest solvent molecules in the framework, A freshly prepared
sample of UTSA-15 was activated at 423 K under high vacuum for 12 h
until the outgas rate was <5 ymHg/min prior to measurements. The
sorption measurement was maintained at 77 K with liquid nitrogen and
273 K with an ice—water bath (slush), respectively. As the center-
controlled air condition was set up at 22.0 °C, a water bath 0f22.0 °C was
used for adsorption isotherms at 295.0 K.

Virial Graph Analyses. Isotherm data were analyzed using the
virial equation®

In(n/P) = Ao+ Ayn+ Apn* + ...

where p is pressure, 7 is the amount adsorbed, and Ay, A,, etc., are virial
coefficients. A is related to adsorbate—adsorbent interactions, whereas
A, describes adsorbate—adsorbate interactions. The Henry’s Law con-
stant (Kyy) is equal to exp(A,), and the selectivity can be obtained from
the constant Kyy. The virial parameters are given in Table 2.
Synthesis of UTSA-15. Cu(OAc),-H,O (0.1130 g, 0.6 mmol),
4,4'-bpy (0.0774 g, 0.5 mmol), and H,BDC—OH (0.0836 g, 1.1 mmol)
were dissolved in mixed solvents of DMF (20 mL) and EtOH (20 mL).
Then eight drops of HCOOH was added, and the mixture was
transferred into four screw-capped vials. The vials were capped and
placed in an oven at 120 °C for 24 h. Blue column single crystals were
obtained and washed with EtOH several times to give UTSA-15
(Cu(BDC—OH)(4,4'-BPY) - (H,0),,(DMF),s, 0.1256 g, yield

63.0%). Anal. Calcd for Cy95H;79N, sCuOg-: C, 51.13; H, 3.94; N,
7.64. Found: C, 51.05; H, 3.63; N, 7.59.

Single-Crystal X-ray Structure Determination. Intensity data
for the reported UTSA-15 were collected at 296 K on a Bruker APEX
DUO diffractometer equipped with triumph-monochromated Cu Ka
radiation (4 = 1.54178 A) using the p- and w-scan technique. The
structure was solved by direct methods and refined using the SHELXTL
software package. The H atoms on the ligand were placed in idealized
positions and refined using a riding model. The solvent of DMF could not
be located; we employed PLATON/SQUEEZE to calculate the diffrac-
tion contribution of the solvent molecules, thereby producing a set of
solvent-free diffraction intensities. CCDC-781997 contains the supple-
mentary crystallographic data for UTSA-1S. The data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via
www.ccde.cam.ac.uk/data_request/cif. Detailed crystallographic data are
shown in Table 1.

Il RESULTS AND DISCUSSION

UTSA-15 was synthesized by the solvothermal reaction of
Cu(OAc),+H,0, H,BDC—OH, and 4,4-bpy in a mixture
solvent of DMF/C,HsOH with addition of a small amount of
HCOOH at 120 °C for 24 h as blue column single crystals. The
structure was characterized by single-crystal X-ray diffraction
studies, and the phase purity of the bulk material was indepen-
dently confirmed by powder X-ray diffraction (PXRD) (Support-
ing Information, Figure S1) and thermogravimetric analysis
(TGA) (Supporting Information, Figure S2).

Single-crystal X-ray diffraction analysis reveals UTSA-1S crys-
tallizes in an orthorhombic space group of Pbam. The asymmetric
unit of UTSA-1S contains one Cu atom, one BDC—OH with half
occupation, and one-half 4,4'-bipy. Each copper ion is in a N,O3
trigonal bipyramidal coordination environment surrounded by
one monodentate carboxylate oxygen atom and two bridging
carboxylate oxygen atoms in the equatorial positions (Cu—O
bond lengths = 1.959(5), 1.987(5), and 2.349(6) A) and two equal
4,4’ -bipy nitrogen atoms in axis positions (Cu—N = 2.030(6) A).
Two copper atoms are linked by the bridging carboxylate groups
to form the binuclear Cu,N,Oy4 second building unit (SBU)
(Figure la).

The binuclear copper SBUs as the six-connected nodes
(Figure 1a) are bridged by BDC—OH linkers to form 2D (4,4)
square sheets which are further pillared by 4,4-bipy to result in a
3D framework of distorted Q-Po cubic net with the Schlafli
symbol of (4'%6°) (Figure 1b). There exist two types of inter-
crossed micropores of about 4.1 x 7.8 A” along the b direction
(Figure 1c) and 3.7 x 5.1 A” along the ¢ direction (Figure 1d),
respectively, taking into account the van der Waals radii. The
effective free volume in UTSA-1S is 56.6% calculated by the
program PLATON.*

Thermogravimetric analysis (TGA) of UTSA-15 showed that
approximately 7.80% weight loss occurred from 23 to 350 °C,
which is attributed to release of solvent molecules (Figure S2,
Supporting Information). PXRD studies indicate that the acti-
vated UTSA-15 (UTSA-15a) at 150 °C under high vacuum
overnight keeps the crystalline feature whose pattern is
slightly right shifted because of the flexibility of the framework
(Figure S3, Supporting Information), indicating that the frame-
work of UTSA-15a might have even smaller pore sizes than that
of the as-synthesized UTSA-1S. The CO, sorption isotherm at
196 K shows that UTSA-15a displays ty;)ical Type-I sorption
behavior with a BET surface area of 553 m*“/g (Langmuir surface
area, 761 m” gfl).
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Table 2. Virial Graph Analyses Data for UTSA-15a and Its CO,/CH, and C,H,/CH, Separation Selectivities

adsorbate T/K Kyy/mol g ' Pa ' Ao/In(mol g ' Pa™ ")
CH, 273 3274 %1077 —19.537
296 2.059 x 1077 —20.001
CO, 273 1.978 x 1077 —15.436
296 4983 x10°° —16.815
C,H, 273 4385 x 1077 —14.639
296 1.146 x 10”7 —15.982

A/g mol ! R* S Q./kJ mol !
—661.199 0.936 13.6

—4341.122 0.983

—1254.712 0.999 60.4 40.6

—1113.244 0.999 24.2

—2179.940 0.999 133.9 39.5

—1389.266 0.995 55.6

“The Henry’s law selectivity for gas component i over CH, at the speculated temperature is calculated based on the equation S; = Kg(i)/Kg(CH,)

?i.
A

Figure 1. X-ray single-crystal structure of UTSA-15 (a) indicating the coordination environments and the binuclear copper SBU as the six-connected
node, (b) to form the 3D @-Po cubic net, with two types of intercrossed pores of about (c) 4.1 x 7.8 A? along the b direction and (d) 3.7 x S.1 A? along
the ¢ direction (Cu, green; C, gray; O, red; H, white; the OH oxygen atoms are highlighted in purple).

Establishment of the permanent porosity of UTSA-15a en-
courages us to examine its potential application on selective gas
separation. As shown in Figure 3, UTSA-15a can take a moderate
amount of C,H, (34 cm®/ g) and CO, (31 cm®/ g) but basically a
negligible amount of CH, (2.5 cm’/ g) at 1 atm and 296 K,
highlighting UTSA-15a as a promising material for highly selective
separation of C,H,/CH, and CO,/CH, at room temperature.

The coverage-dependent adsorption enthalpies of UTSA-15a
to these three gases were calculated based on the virial method, a
well-established and reliable methodology from fits of their
adsorption isotherms at 273 and 296 K. The enthalpies at zero
coverage are 39.5,40.6, and 13.6 kJ/mol for C,H,, CO,, and CH,,
respectively. The adsorption enthalpies for C,H, (39.5 kJ/mol)
and CO, (40.6 kJ/mol) in UTSA-15a are systematically higher
than those of 25.7 and 26.2 kJ/mol in Cu(BDC—OH),>'* which
might be attributed to the smaller pores along the ¢ axis with the
immobilized —OH in UTSA-15a for their stronger interactions
with C,H, and CO,. The fact that the adsorption enthalpies for
C,H, and CO, in UTSA-15a are even slightly higher than those
of 37.3 and 37.8 kJ/mol in our recently reported MOF Zns-
(BTA)s(TDA), (HBTA = 1,2,3-benzenetriazole; H,TDA =
thiophene-2,5-dicarboxylic acid)*'® with small pores and open
metal sites indicates that the immobilized functional —OH groups
on the pore surfaces of UTSA-15a do significantly enhance their
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Figure 2. CO, adsorption isotherm of UTSA-15a at 196 K.

interactions with C,H, and CO,, presumably by the
H—C=C—H:-+O(H)-BDCCUTSA-15a hydrogen-bonding
and OZC(§+ R Oé’(H)fBDCCUTSA-ISa electrostatic interac-
tions, respectively.”® Such strong interactions have enabled
UTSA-15a to be highly selective for C,H,/CH, and CO,/CH,
separation with Henry’s law selectivities of 55.6 and 24.2,
respectively, at 296 K, which were calculated based on the
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Figure 3. Adsorption isotherms of C,H, (blue), CO, (red), and CH,
(green) for UTSA-15a at 296 K.

equation S;; = Ky;(i) /Ky (CH,). To the best of our knowledge, the
C,H,/CH, separation selectivity of 55.6 is the highest one ever
reported, while the CO,/CH, separation selectivity of 24.2 is
among the few highest ones reported in the literature.” The highly
selective sorption of UTSA-15a for C,H,, CO,, and CH, features
the promise of this new microporous MOF for practical C,H,/
CH, and CO,/CH, separation in the near future.

In conclusion, we successfully synthesized one new micro-
porous metal—organic framework Cu(BDC—OH)(4,4'-bipy)
(UTSA-15a) with immobilized —OH functional groups on the
pore surfaces. Such functional —OH groups induce their much
stronger interactions with C,H, and CO, than CH,, featuring
UTSA-15a as the highly selective microporous MOF for the
industrially important separation of C,H,/CH, and CO,/CH,.
The uniqueness of the MOF approach to systematically tune the
micropores and immobilize functional groups to induce their
differential interactions with gas molecules has enabled MOFs as
the most promising microporous materials for adsorptive separa-
tion of gas molecules. It is expected that some such microporous
MOFs will be eventually implemented in the industrial separa-
tion of gas molecules in the future.

B ASSOCIATED CONTENT

© Supporting Information. X-ray single crystal structure in
cif format, powder XRD patterns, TGA, adsorption isotherms of
UTSA-15a at 273 K, and FT-IR of UTSA-15a loaded with CO,.
This material is available free of charge via the Internet at http://
pubs.acs.org.
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