Reactions of $Ph₃Sb = S$ with Copper(I) Complexes Supported by N-Donor Ligands: Formation of Stable Adducts and S-Transfer **Reactivity**

Lei Yang, Jacqui Tehranchi, and William B. Tolman*

Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States

S Supporting Information

ABSTRACT: In the exploration of sulfur-delivery reagents useful for synthesizing models of the tetracopper-sulfide cluster of nitrous oxide reductase, reactions of $Ph_3Sb = S$ with $Cu(I)$ complexes of N, N, N', N' -tetramethyl-2R,3R-cyclohexanediamine (TMCHD) and 1,4,7-trialkyltriazacyclononanes (R_3 tacn; $R = Me$, Et, iPr) were studied. Treatment of $[(R_3tacn)Cu(NCCH_3)]SbF_6$ (R = Me, Et, or iPr) with 1 equiv of $S = S b P h_3$ in CH_2Cl_2 yielded adducts $[(R_3tacn)Cu(S=SbPh_3)]SbF_6 (1-3)$, which were fully characterized, including by X-ray crystallography. The adducts slowly decayed to $[(R_3 tacn)_2 Cu_2(\mu-\eta^2:\eta^2-\eta^3)]$ (S_2)]²⁺ species (4–6) and SbPh₃, or more quickly in the presence of additional

 $[(R_3tacn)Cu(NCCH_3)]SbF_6$ to 4-6 and $[(R_3tacn)Cu(SbPh_3)]SbF_6$ (7-9). The results of mechanistic studies of the latter process were consistent with rapid intermolecular exchange of $S=SbPh_3$ between $1-3$ and added $[(R_3tacn)Cu(NCCH_3)]SbF_6$, followed by conversion to product via a dicopper intermediate formed in a rapid pre-equilibrium step. Key evidence supporting this step came from the observation of saturation behavior in a plot of the initial rate of loss of 1 versus the initial concentration of $[(\text{Me}_3\text{tach})Cu(\text{NCCH}_3)]\text{SbF}_6$. Also, treatment of $[(\text{TMCHD})Cu(\text{CH}_3\text{CN})]\text{PF}_6$ with S=SbPh₃ led to the known tricopper cluster $[(TMCHD)₃Cu₃(\mu₃-S)₂](PF₆)₃$ in good yield (79%), a synthetic procedure superior to that previously reported (Brown, E. C.; York, J. T.; Antholine, W. E.; Ruiz, E.; Alvarez, S.; Tolman, W. B. J. Am. Chem. Soc. 2005, 127, 13752-13753).

INTRODUCTION

The environmentally important reduction of N_2O to N_2 is catalyzed enzymatically by nitrous oxide reductase, $\frac{1}{2}$ which has been shown on the basis of X-ray crystallography² and other spectroscopic techniques 3 to contain a unique tetracoppersulfide cluster supported by multiple histidine residues in its active site. The novel structure of this cluster and hypotheses for the mechanism of N_2O coordination and reduction at its copper centers⁴ have stimulated extensive efforts to create coppersulfur model complexes supported by N-donor ligands.^{5,6} These efforts have focused on the use of relatively few types of sulfurcontaining reagents (e.g., S_8 and Na_2S_2) in reactions with Cu(I) and Cu(II) species. Studies of the copper-sulfur compounds characterized so far have raised interesting bonding questions, $7,8$ and, in one instance, have led to the discovery of reactivity with $N₂O^o$ Nonetheless, only a limited array of N-donor ligated copper-sulfur motifs have been characterized, and an accurate model of the nitrous oxide active site has yet to be constructed.

In seeking to broaden the scope of available copper-sulfur complexes as a means to address mechanistic and electronic structural issues relevant to the enzyme active site, we are exploring reactions of copper precursors with an expanded array of sulfur-containing reagents. Several studies have shown that triphenyl antimony sulfide ($Ph₃Sb = S$) is useful for sulfur transfer reactions,⁹ including for the preparation of transition metal

PERINSITY
 **Ph₃Sb=S with Copper(I) Complexes Supported by

the state of Michael Society and William B. Television of Stable Adducts and S-Transfer

and contribute the microsofte cheme in the state of Michael Society a** sulfide complexes.^{10,11} The utility of $Ph₃SbS$ likely stems from the thermodynamic instability of the Sb-S bond, which is weaker than the related bonds in $R_3E= S$ (E = P or As) congeners.¹² Herein, we report the results of an investigation of the reactivity of Ph₃Sb=S with selected Cu(I) complexes of N,
N,N',N'-tetramethyl-2R,3R-cyclohexanediamine (TMCHD) N,N',N'-tetramethyl-2R,3R-cyclohexanediamine (TMCHD) and 1,4,7-trialkyltriazacyclononanes (R_3 tacn; $R = Me$, Et, iPr). Key findings include the isolation and structural characterization of novel $LCu(I)$ -S=SbPh₃ (L = R₃tacn; R = Me, Et, iPr) adducts, which are the first examples of transition metal complexes bound to $Ph_3Sb = S$ to be structurally characterized by X-ray crystallography.¹³ These complexes subsequently decay cleanly to $[Cu_2(\mu - \eta^2 \cdot \eta^2 - S_2)]^{2+}$ species, particularly when treated with additional $[(R_3tacn)Cu(CH_3CN)]SbF_6$, and mechanistic insights for this process were obtained through kinetics studies. In addition, by using, $Ph_3Sb = S$ an improved synthetic route to the $\left[\text{Cu}_3\text{S}_2\right]^{3+}$ core⁸ was discovered.

EXPERIMENTAL SECTION

General Considerations. All solvents and reagents were obtained from commercial sources and used as received unless otherwise

Published: February 21, 2011 Received: December 7, 2010 noted. The solvents CH_2Cl_2 , pentane, and Et_2O were dried over CaH2 and distilled under vacuum or passed through solvent purification columns (Glass Contour, Laguna, CA). The complexes $[(R_3tacn)Cu(CH_3CN)]SbF_6$ $(R = Me, ^{14}Et, ^{15}ipr^{16})$ $[(R_3tacn)Cu(CH_3CN)]SbF_6$ $(R = Me, ^{14}Et, ^{15}iPr^{16}),$ $[(R_3tacn)Cu(CH_3CN)]BPh_4 (R = Et^{15} or iPr^{17})$, $[(Me_3tacn)_2Cu_2$ - $(S_2)](SbF_6)_2$ ¹⁴ and $[(TMCHD)Cu(CH_3CN)]PF_6^{18}$ were prepared according to published procedures. All metal complexes were prepared and stored in a glovebox under a dry N_2 atmosphere. Triphenylantimony sulfide ($Ph₃Sb=S$) and 2,3-dimethylbutadiene were purchased from Strem and Aldrich, respectively, and were used without purification. NMR spectra were recorded on either Varian VI-300 or VXR-300 spectrometers at ∼20 °C. Chemical shifts (δ) were referenced to residual solvent signal and integrated intensities compared to 1,3,5 trimethyloxybenzene added as an internal standard. UV-vis spectra were recorded on an HP8453 (190-1100 nm) diode-array spectrophotometer. Elemental analyses were performed by Robertson Microlit Laboratory (Ledgewood, NJ). Electrospray ionization mass spectra (ESI-MS) were recorded on a Bruker BioTOF II instrument. IR spectra were obtained using a ThermoNicolet Avatar 370 FT-IR.

[(R₃tacn)Cu(S=SbPh₃)]SbF₆ (R = Me (1), Et (2), or iPr (3)). All three complexes were prepared according to this illustrative procedure: In an inert atmosphere, to a solution of the $S=SbPh₃$ $(32 \text{ mg}, \text{ 0.083 mmol})$ in CH_2Cl_2 (4 mL) was added $[(Me₃tacn)Cu(NCCH₃)]SbF₆ (43 mg, 0.083 mmol) in CH₂Cl₂$ (1 mL). After stirring for 1 h, the mixture was filtered and the volume of the filtrate was reduced to ∼1 mL, and Et₂O (15 mL) was added, resulting in formation of a yellow precipitate. The supernatant was decanted, and the yellow powder was washed with Et_2O (3 \times 6 mL). The product was isolated in crystalline form by layering $Et₂O$ onto a concentrated tetrahydrofuran (THF) solution at $-20\degree$ C (65 mg, 92%). Analogous procedures were used to isolate 2 and 3 as yellow crystals in 41% and 32% yields, respectively. 1: ¹H NMR (300 MHz, CD_2Cl_2): δ = 7.77–7.61 (m, 15H), 2.59–2.53 Hz (m, 12H), 2.38 (s, 9H) ppm; ${}^{13}C(^{1}H)$ NMR: (75 MHz, CD₂Cl₂): δ = 134.37, 133.44, 130.97, 55.03, 49.02 ppm. UV-vis $[\lambda_{\text{max}} \text{ nm} (\varepsilon, M^{-1} \text{ cm}^{-1}) \text{ in } CH_2Cl_2]$: 356 (2100). Anal. Calcd for $C_{27}H_{36}CuF_6N_3S5b_2$: C, 37.90; H, 4.24; N, 4.91. Found: C, 37.77; H, 4.24; N, 4.99. ESI-MS: $\lbrack Cu(Me_3tacn)(S=SbPh_3)\rbrack^+$ calc. m/z 620.0, found 620.3. FT-IR: 2859.2, 1480.5, 1460.1, 1437.5, 1363.4, 1300.0, 1152.8, 1130.2, 1089.4, 1065.5, 1017.0, 966.3, 984.1, 889.5, 773.5, 751.3, 735.4, 692.4, 656.4 cm^{-1} . 2: ¹H NMR (300 MHz, CD₂Cl₂): δ = 7.74-7.60 (m, 15H), 2.60-2.53 Hz (m, 18H), 1.10 (t, $J = 6.0$ Hz, 9H) ppm; ¹³C{¹H} NMR (75 MHz, CD₂Cl₂): $\delta = 134.6$, 133.4, 130.9, 55.3, 53.3, 13.0 ppm. UV-vis $[\lambda_{\text{max}} \text{ nm} (\varepsilon, M^{-1} \text{ cm}^{-1}) \text{ in}$ CH_2Cl_2]: 356 (2300). Anal. Calcd for $C_{30}H_{42}CuF_6N_3S5b_2$: C, 40.13; H, 4.72; N, 4.68. Found: C, 39.76; H, 4.70; N, 4.65. ESI-MS: $[Cu(Et_3tacn)(S=SbPh_3)]^+$ calc. m/z 662.0, found 662.2. FT-IR: 2972.4, 1479.3, 1437.6, 1378.9, 1347.9, 1315.0, 1136.6, 1124.9, 1067.4, 1041.1, 1031.4, 995.7, 928.8, 897.9, 876.2, 860.3, 851.7, 827.1, 812.7, 796.8, 751.0, 739.1 cm⁻¹. 3: ¹H NMR (300 MHz, CD₂Cl₂): δ = 7.73-7.59 (m, 15H), 2.66-2.61 Hz (m, 9H), 2.47-2.44 Hz (m, 6H), 1.13 (d, J = 6.0 Hz, 18H) ppm; ${}^{13}C({}^{1}H$ } NMR (75 MHz, CD₂Cl₂): δ = 138.75, 134.69, 133.38, 130.91, 58.29, 50.83, 19.70 ppm. UV-vis $[\lambda_{\text{max}}]$ nm $(\varepsilon, M^{-1} \text{ cm}^{-1})$ in CH_2Cl_2]: 356 (2300). Anal. Calcd for C₃₃H₄₈CuF₆N₃SSb₂: C, 42.17; H, 5.15; N, 4.47. Found: C, 42.11; H, 5.23; N, 4.46. ESI-MS: $[Cu(iPr_3tacn)(S=SbPh_3)]^+$ calc. m/z 704.1, found 704.3. FT-IR: 2965.7, 1491.5, 1478.4, 1437.0, 1386.8, 1368.5, 1351.5, 1299.1, 1265.1, 1167.0, 1129.4, 1067.2, 1020.3, 995.7, 968.1, 856.7, 841.0, 750.3, 737.9, 721.3, 692.6, 656.5 cm⁻¹. .

 $[(Et₃tacn)₂Cu₂(\mu-S₂)](BPh₄)₂$ (5). Elemental sulfur (1.8 mg, 0.007 mmol) was added to a solution of $[(Et₃tan)Cu(NCCH₃)]$ BPh_4 (36 mg, 0.056 mmol) in CH_2Cl_2 (4 mL). After stirring for 2 h, solvent was removed under reduced pressure to yield a brown solid. The brown solid was washed with Et_2O (2 \times 6 mL), extracted with dimethylformamide (DMF, 2 mL), and then filtered. Slow diffusion of $Et₂O$ into the dark brown filtrate at room temperature afforded the product as deep green crystals (16 mg, 46%). $^{1}{\rm H}$ NMR (300 MHz, d_{7} -DMF): δ = 7.32 (s, 16H), 6.96 (t, 16H), 6.81 (t, 8H), 3.16–3.09 Hz (m, 36H), 1.36 (t, $J = 6.0$ Hz, 18H) ppm; ¹³C{¹H} NMR (75 MHz, d_7 -DMF): δ = 137.11, 135.71, 126.33, 122.62, 93.84, 56.04, 54.64, and 12.39 ppm. UV-vis $[\lambda_{\text{max}}$ nm (ε, M⁻¹ cm⁻¹) in DMF]: 410 (7400), 378 (7600). Anal. Calcd for $C_{72}H_{94}B_2Cu_2N_6S_2$: C, 68.83; H, 7.54; N, 6.69. Found: C, 68.45; H, 7.42; N, 6.70. FT-IR: 3052.7, 2978.9, 1579.6, 1478.5, 1465.9, 1386.9, 1270.4, 1258.5, 1144.8, 1122.9, 1069.9, 1033.3, 1018.3, 999.5, 921.0, 862.4, 842.3, 821.8, 792.9, 771.5, 742.3, 732.0, 710.1, 700.6, 668.2 cm⁻¹. .

 $[(iPr₃tacn)₂Cu₂(\mu-S₂)](BPh₄)₂$ (6). A similar procedure to that used for the preparation of 5 was followed, except THF was used as the reaction solvent and the product was isolated as dark red crystals from CH₂Cl₂ at -20 °C (37% yield). ¹H NMR (300 MHz, CD₂Cl₂): δ = 7.33 $(s, 15H)$, 7.04 $(t, J = 6.0$ Hz, 14H), 6.89 $(t, J = 6.0$ Hz, 11H), 3.15–3.06 Hz (m, 5H), 2.95-2.74 (m, 4H), 2.65-2.46 (m, 11H), 2.33-2.20 (m, 10H), 1.26 – 1.08 (d, J = 6.0 Hz, 36H) ppm; ${}^{13}C(^{1}H)$ NMR (75 MHz, CD₂Cl₂): δ = 136.44, 126.22, 122.42, 60.47, 51.75, 45.10, 19.79, and 18.46 ppm. UV-vis $[λ_{max}$ nm $(ε, M^{-1}$ cm⁻¹) in CH₂Cl₂]: 476 (7200), 380 (11000). Anal. Calcd for C₇₈H₁₀₆B₂Cu₂N₆S₂: C, 69.88; H, 7.97; N, 6.27. Found: C, 69.91; H, 7.78; N, 6.24. FT-IR: 3053.5, 2978.0, 1579.8, 1480.7, 1467.0, 1451.0, 1426.7, 1390.1, 1369.2, 1347.1, 1291.9, 1268.7, 1166.3, 1141.9, 1129.4, 1067.3, 1046.6, 1033.5, 962.4, 943.1, 841.7, 761.0, 749.3, 734.1, 705.6, 680.6, 668.1 cm⁻¹. .

 $[(R_3\text{tach})Cu(SbPh_3)]SbF_6$ (7, R = Me; 8, R = Et; 9, R = iPr). These complexes were prepared similarly, according to the following representative procedure for 7. In an inert atmosphere, to a solution of SbPh₃ (40.0 mg, 0.113 mmol) in CH_2Cl_2 (4 mL) was added $[(Me₃tacn)Cu(NCCH₃)]SbF₆ (58.0 mg, 0.113 mmol)$ in CH₂Cl₂ (1 mL). The mixture was stirred 3 h, filtered, and the volume of the filtrate was reduced to \sim 1 mL under reduced pressure. A portion of Et₂O (15 mL) was added to yield a white precipitate. The supernatant solution was decanted, and the white powder was washed three times with $Et₂O$ $(3 \times 6 \text{ mL})$. The white product was recrystallized by diffusion of Et₂O into a concentrated CH_2Cl_2 solution at room temperature to generate the product as colorless crystals (71 mg, 76%). 7: ¹H NMR (300 MHz, CD₂Cl₂): δ = 7.48–7.43 (m, 15H), 2.90 Hz (s, 12H), 2.73 (s, 9H) ppm;
¹³C{¹H} NMR (75 MHz, CD₂Cl₂): δ = 135.87, 130.89, 130.27, 55.98, 50.69 ppm. Anal. Calcd for C₂₇H₃₆CuF₆N₃Sb₂: C, 39.37; H, 4.41; N, 5.10. Found: C, 38.87; H, 4.61; N, 4.86. ESI-MS: $[Cu(Me_3tacn)(SbPh_3)]^+$ calc. m/z 588.0, found 588.1. FT-IR: 1463.1, 1434.1, 1363.8, 1299.2, 1153.8, 1127.8, 1085.8, 1069.8, 1057.1, 1015.0, 1000.3, 985.9, 768.3, 737.6, 697.7 cm⁻¹. 8 (68% yield):
¹H NMP (200 MHz, CD, CL): δ - 7.48-7.41 (m, 15H) 2.90-2.85 Hz ¹H NMR (300 MHz, CD_2Cl_2): δ = 7.48 – 7.41 (m, 15H), 2.90 – 2.85 Hz (m, 18H), 1.15 (t, J = 6.0 Hz, 9H) ppm; ${}^{13}C({}^{1}H)$ NMR (75 MHz, CD₂Cl₂): δ = 135.85, 130.88, 130.26, 56.87, 54.68, 14.46 ppm. Anal. Calcd for $C_{30}H_{42}CuF_6N_3Sb_2$: C, 41.62; H, 4.89; N, 4.85. Found: C, 41.50; H, 5.20; N, 4.92. ESI-MS: $\left[Cu(Et_3tacn)(S=SbPh_3) \right]^{+}$ calc. m/z 662.0, found 662.2. FT-IR: 1434.2, 1375.8, 1338.5, 1121.2, 1067.2, 1037.6, 999.7, 931.38, 768.2, 737.3, 699.67 cm⁻¹. 9 (70% yield): ¹H NMR (300 MHz, CD_2Cl_2): δ = 7.49-7.41 (m, 15H), 3.15-3.11 (m, $3H$), 2.93-2.89 Hz (m, 6H), 2.80-2.75 Hz (m, 6H), 1.13 (d, J = 6.0 Hz, 18H) ppm; ${}^{13}C({}^{1}H)$ NMR (75 MHz, CD₂Cl₂): δ = 135.9, 130.85, 130.25, 59.69, 51.77, 20.13 ppm. Anal. Calcd for $C_{33}H_{48}CuF_6N_3Sb_2$: C, 43.66; H, 5.33; N, 4.63. Found: C, 43.30; H, 5.72; N, 4.62. ESI-MS: $[Cu(iPr_3tacn)(SbPh_3)]^+$ calc. m/z 672.1, found 672.2. FT-IR: 1434.4, 1389.4, 1367.0, 1347.1, 1161.7, 1123.2, 1066.5, 997.3, 964.31, 756.2, 739.2, 720.6, 699.6 cm^{-1} . .

 $[(TMCHD)₃Cu₃(S)₂](PF₆)₃$ (12). In an inert atmosphere, to a solution of the $[(TMCHD)Cu(NCCH₃)]PF₆$ (31 mg, 0.073 mmol) in CH_2Cl_2 (3 mL) was added S=SbPh₃ (29 mg, 0.049 mmol) in CH_2Cl_2 (1 mL). After the mixture was stirred for 2 h, it was filtered, and the solvent was removed from the filtrate under vacuum to yield a deep

Scheme 1. Reactions of $Cu(I)$ -S=SbPh₃ Adducts

green solid, which was washed with $Et_2O(3 \times 6 \text{ mL})$. The deep green powder obtained was crystallized from CH_2Cl_2 at -20 °C to form dark amber crystals of the product (28 mg, 79%). The product was identified by its X-ray crystal structure and by the similarity of its UV-vis spectrum to previously reported data.^{8a}

General Procedures for NMR Kinetics. In a glovebox, appropriate volumes of starting materials in CD_2Cl_2 were mixed in a vial and the volumes were quickly adjusted to 1 mL so that the concentrations of adducts $1-3$ and $[(R_3tacn)Cu(CH_3CN)]SbF_6$ were 4.7 mM and 47 mM, respectively. The solution was then quickly transferred to a J. Young NMR tube that was removed from glovebox and placed in the spectrometer probe. The progress of the reaction was monitored by ${}^{1}H$ NMR spectroscopy at room temperature with 1,3,5-trimethoxybenzene as an internal standard. The initial rates were determined in experiments in which the first $5-10\%$ of the reaction was followed; the rate constants were obtained by linear fitting of the initial rate change. In the experiments with 2,3-dimethylbutadiene, identical procedures were used except 20 equiv of 2,3-dimethylbutadiene was added to the mixture. Data analysis and graphical representations were performed using the program Kaleidagraph.

RESULTS AND DISCUSSION

Synthesis and Characterization of $LCu(I)-S=SbPh₃$ Adducts and $[L_2Cu_2(S_2)]^{2+}$ Decay Products. Reaction of $[(R_3tacn)Cu(NCCH_3)]SbF_6$ (R = Me, Et, or iPr) with 1 equiv of S=SbPh₃ in CH₂Cl₂ yielded adducts $1-3$, respectively, as yellow crystalline solids (Scheme 1). The complexes are stable in the solid state when stored under nitrogen, but in solution they decompose slowly (see below). The formulations of $1-3$ are based on NMR, UV-vis, and FT-IR spectroscopy, CHN analysis, ESI-MS, and X-ray crystallography. Notable identifying features include (a) ${}^{1}H$ NMR spectra with sharp peaks in the diamagnetic region and multiplets for the $Ph_3Sb = S$ hydrogen atoms shifted ∼0.2-0.3 ppm downfield from uncomplexed $Ph₃SB=S$ (Supporting Information, Figure S1), (b) a shoulder in UV—vis spectra with λ_{max} at ∼350 nm (ε = ∼2100—2300 M⁻¹cm⁻¹),

Figure 1. Representation of the X-ray crystal structure of 1, showing the cationic portion with all non-hydrogen atoms as 50% thermal ellipsoids (H atoms omitted for clarity, only heteroatoms labeled).

Table 1. Selected Bond Distances (Å) and Angles (deg) for the X-ray Structures of $1-3^a$

	$\mathbf{1}$	$\overline{2}$	3
$Cu1-N1$	2.160(2)	2.006(6)	2.178(2)
$Cu1-N2$	2.107(2)	2.030(8)	2.161(2)
$Cu1-N3$	2.199(2)	2.157(4)	2.166(2)
$Cu1-S1$	2.1671(8)	2.1813(10)	2.2027(7)
$S1 - Sb1$	2.2832(7)	2.2735(9)	2.2812(7)
$Cu1 \cdots Sb1$	3.411	3.490	3.547
$N1-Cu1-N2$	84.96(9)	91.3(3)	84.52(8)
$N1-Cu1-N3$	83.41(8)	71.1(2)	84.08(8)
$N2-Cu1-N3$	83.96(9)	82.2(3)	84.39(8)
$N1-Cu1-S1$	114.17(6)	115.8(2)	127.05(6)
$N2-Cu1-S1$	148.91(7)	150.2(2)	143.48(6)
$N3-Cu1-S1$	120.92(6)	117.09(10)	113.59(6)
$Cu1-S1-Sb1$	100.06(3)	103.14(4)	104.55(3)
^a Estimated standard deviations indicated in parentheses.			

and (c) parent ions $[(R_3tacn)Cu(SSbPh_3)]^+$ with appropriate isotope patterns in ESI mass spectra (Supporting Information, Figure S2).

The X-ray crystal structures of complexes $1-3$ are shown in Figure 1 (1) and Supporting Information, Figure S3 (2 and 3), with selected bond distances and angles listed in Table 1. To our knowledge, they represent the first such structures with $Ph_3Sb = S$ coordinated to a metal center.¹⁹ They contain similar four-coordinate Cu(I) centers with highly distorted tetrahedral geometries characterized by τ_4 values: 0.640 (1), 0.657 (2), and 0.634 (3).²⁰ Essentially, the distortion involves perturbation of the Cu-S bonds from the idealized trigonal axis toward coplanarity with two of the N-donor atoms on the supporting ligand (N2 and N3 for 1, Figure 1), presumably as a result of steric interactions between the N-donor ligand substituents and the phenyl rings of the coordinated $Ph_3Sb = S$ moiety. These steric effects also appear to influence the $Cu \cdots Sb$ distance, which increases as the size of the R group of the ligand increases from 3.411 Å (1) , 3.490 Å (2) , to 3.547 Å (3) . The Cu-S-Sb moiety adopts a "bent" conformation with $Cu-S-Sb$ bond angles between 100.1 and 104.6 $^{\circ}$. The average Cu-N bond lengths range between 2.06 and 2.17 Å, comparable to those in other copper(I) complexes of R₃tacn ligands.^{17,21} The Cu-S distances of complexes $1-3$ $(2.167-2.203 \text{ Å})$ are shorter than typical

Figure 2. Representation of the X-ray structure of 5 $(BPh_4^-$ salt), showing the dicationic portion with all non-hydrogen atoms as 50% thermal ellipsoids (H atoms omitted for clarity, only heteroatoms labeled). Selected bond distances (Å) and angles (deg) are as follows: $Cu1-N1, 2.202(3); Cu1-N2, 2.017(2); Cu1-N3, 2.003(2); Cu1-S1,$ $2.2152(8)$; S1-S1', 2.1501(14); Cu1 \cdots Cu1', 3.876; N1-Cu1-N2, 86.17(10); N1-Cu1-N3, 86.13(10); N2-Cu1-N3, 88.50(10); N1- Cu1-S1, $108.49(7)$; N2-Cu1-S1, $160.58(7)$; N3-Cu1-S1, $104.76(8)$; S1-Cu1-S1', 58.03(3).

copper(I)-thioether sulfur interactions (\sim 2.30 Å),²² and longer than copper(I)-thiolate interactions $(2.13-2.18 \text{ Å})^{23}$ but comparable to known Cu(I)-S=PPh₃ complexes $(2.21-2.27 \text{ Å})$.²⁴ Complexation of $Ph_3Sb = S$ to the copper center induces little if any change in the S-Sb bonding, as the S-Sb distances in $1-3$ $(2.281-2.283 \text{ Å})$ are only slightly longer than that in free S=SbPh₃ (2.244(1) Å).²⁵

By monitoring solutions of 1 in CD_2Cl_2 by ¹H NMR spectroscopy with an internal standard (Supporting Information, Figure S4) at 20 °C the slow decay ($t_{1/2}$ ~12 h) of 1 to SbPh₃ and the disulfido-dicopper(II) species $((\text{Me}_3\tan)_{2}\text{Cu}_2(\mu-\eta^2;\eta^2))$ (S_2)](SbF₆)₂ (4) was observed in accordance with the stoichiometry shown in Scheme 1. A similar decay reaction of 2 occurred to yield the respective disulfido-dicopper(II) complex (5, with $\text{SbF}_6^{\prime -}$ counterion), but at a significantly slower rate $(t_{1/2})$ \sim 2 d). Complex 3 decayed at a similar rate as 2, but the nature of the $product(s)$ in this case was not clear. The disulfido-dicopper- (II) complexes $4-6$ formed much more rapidly and with higher yields/conversions upon addition of $[(R_3tacn)Cu(CH_3CN)]$ - SbF_6 to solutions of $1-3$, but in these reactions the adducts $[(R_3 tacn)Cu(SbPh_3)]SbF_6$ (7, R = Me; 8, R = Et; 9, R = iPr) formed instead of free SbPh₃ (Scheme 1).

The disulfido-dicopper(II) complexes $4-6$ were identified by comparison of ¹H NMR spectra with data reported previously (4)¹⁴ or obtained from independently prepared samples of the variants 5 and 6. These latter complexes were isolated as $\text{BPh}_4^$ salts by treating $[(R_3tacn)Cu(CH_3CN)]BPh_4$ with S_8 and were fully characterized by CHN analysis and NMR, FTIR, and UVvis spectroscopy. Complexes $4-6$ share similarly sharp 1 H NMR features in the diamagnetic region, consistent with singlet ground states arising from disulfide-mediated antiferromagnetic coupling between the Cu(II) ions. They also share diagnostic S_2^2 \rightarrow Cu(II) LMCT transitions in UV $-$ vis spectra at λ_{max} 380 $-$ 400 nm $(\varepsilon \sim 8000-14,000)$.^{26,7b} In addition, the X-ray structure of 5 was solved (Figure 2). The X-ray structure of 5 is similar to that previously reported for 4,¹⁴ as illustrated by analogous S-S (4: 2.165(4) Å; 5: 2.150(1) Å) and Cu-Cu (4: 3.84 Å; 5: 3.88 Å) distances and square pyramidal coordination geometries (τ_5 = 0.03 for 4 and 0.01 for 5).²⁷

Figure 3. Plot of the initial rate of decay (¹H NMR) of 1 vs $[[(Me₃tacn)Cu(CH₃CN)]SbF₆]₀$ for the reaction of 1 with [(Me₃tacn)Cu(CH₃CN)]SbF₆ to yield 4 and 7 in CD₂Cl₂ at 20 °C. Each data point is an average of data for 3 replicate runs. Error bars span the range of values for the replicate runs. The line is a fit of the data to eq 1 ($R = 0.95$).

The adducts $[(R_3tacn)Cu(SbPh_3)]SbF_6 (7, R = Me; 8, R = Et;$ 9, $R = iPr$ formed in the reactions of $1-3$ with $[(R_3tacn)Cu(CH_3CN)]SbF_6$ also were identified by comparison of ^IH NMR spectra with data obtained from independently prepared samples. These samples were synthesized in good yield $(\sim 70\%)$ from the reaction of SbPh₃ with [(R₃tacn)- $Cu(CH₃CN)$]SbF₆. They were isolated as colorless crystalline solids and were fully characterized by CHN analysis, NMR and FTIR spectroscopy, and ESI-MS. Notably, the mass spectrum for each complex exhibits a parent ion with the appropriate isotope pattern for $[(R_3tacn)Cu(SbPh_3)]^+$ (illustrated for R = Me in Supporting Information, Figure S5).

Mechanistic Studies. A series of experiments were performed to gain insight into the reactions of the adducts $1-3$ with $[(R_3tacn)Cu(CH_3CN)]SbF_6$ to yield the disulfidodicopper(II) complexes $4-6$ and the SbPh₃ adducts $7-9$ (Supporting Information, Figure S6). First, the reactions of the complexes with identical supporting ligands under pseudofirst-order conditions (i.e., $1 + 10$ equiv of $[(Me₃tan) Cu(CH_3CN)$]SbF₆, 2 + 10 equiv of [(Et₃tacn)Cu(CH₃CN)]- SbF_6 , and 3 + 10 equiv of $[(iPr_3tacn)Cu(CH_3CN)]SbF_6$) in CD_2Cl_2 were monitored as a function of time by ${}^{1}H$ NMR spectroscopy. At initial concentrations $\left[1-3\right]_0 = 4.7$ mM at 20 °C, the consumption of $1-3$ followed first-order kinetics (Supporting Information, Figures S6 and S7). The rates measured for the reactions of 2 and 3 are similar, with both being >∼10 times slower than that of 1, as reflected by the measured k_{obs} values (averages from 3 replicate runs) of 6.6(5) \times 10⁻⁴ s⁻¹ (1), 8.4(1) \times 10⁻⁵ s⁻¹ (2), and 6.0(4) \times 10⁻⁵ s⁻¹ (3). The results are roughly consistent with the relative steric profiles of the reactant pairs $(1 < 2 \sim 3)$ and support a mechanism wherein steric interactions among the reactant pairs influence the rate (e.g., involving interaction of the $Cu(I)$ -S=SbPh₃ adduct with the added $Cu(I)$ reactant).

To further test this hypothesis, reactions of (Me_3tacn) - $Cu(CH₃CN)$]SbF₆ with 1 were examined by measuring initial reaction rates of disappearance of 1 as a function of $[[(Me₃tacn)Cu(CH₃CN)]SbF₆]$ ₀ (Figure 3). The initial rate saturates as the initial concentration of the added $Cu(I)$ reagent increases. This finding is consistent with a mechanism (Scheme 2) involving an initial rapid pre-equilibrium (K_{eq})

Scheme 2. Proposed Mechanism for the Formation of 4 from the Reaction of 1 with $[(Me₃tan)Cu(CH₃CN)]SbF₆$

involving formation of a dicopper intermediate (A) followed by a rate-determining product formation step (k_2) . The fit of the data to the corresponding eq 1 is shown in Figure 3 (solid line), yielding $K_{\text{eq}} = 200 \text{ M}^{-1}$ and $k_2 = 1.2 \times 10^{-4} \text{ s}^{-1}$. The proposed structure for A is speculative, as it was not observed directly. While the product formation process from $A(k_2)$ must involve multiple steps, including a step in which a second sulfur atom is added, the decay of 1 is first order in $\begin{bmatrix} 1 \end{bmatrix}$ (see above) which implies that a unimolecular reaction of A is rate-controlling (e.g., cleavage of the $S-Sb$ bond).

$$
rate = \frac{k_2[1][Cu(I)]}{K_{eq}^{-1} + [Cu(I)]}
$$
 (1)

We also considered the possibility that the reactions of $1-3$ to form the disulfido-dicopper(II) complexes $4-6$ might involve decomposition of $S = SbPh_3$ to S_2 . This decomposition was reported to occur in CS_2 via a second-order process with a rate constant of 0.014(2) M^{-1} s⁻¹ at 35 °C, with the release of S₂ suggested by the formation of cyclic sulfides 10 and 11 when 2,3 dimethylbutadiene was used as a trapping reagent (Scheme 3). We found that mixtures of $S=SbPh₃$ (4.7 mM) and 2,3dimethylbutadiene (20 equiv) in CD_2Cl_2 at 20 °C were unchanged after \sim 3 d, with no evidence for formation of 10 or 11. In a second experiment, ¹H NMR spectroscopic monitoring of a mixture of 1 and 2,3-dimethylbutadiene (20 equiv) revealed slow generation of 10 and loss of 1 via a first-order process with a rate constant equal to $1.4(4) \times 10^{-5}$ s⁻¹ (t_{1/2} = ∼14 h). There was no evidence for the presence of the disulfido-dicopper(II) complex 4 during this process. Interestingly, under identical conditions 4 also decayed in the presence of 2,3-dimethylbutadiene to yield 10. This reaction of 4 is characterized by a firstorder rate constant of $1.7(3) \times 10^{-4} \text{ s}^{-1}$, corresponding to a rate Scheme 3. Decay of $S = SbPh_3$ to S_2 as Determined by Trapping with 2,3-Dimethylbutadiene

Scheme 4. Equilibration of $Cu(I)-S=SbPh₃$ and $Cu(I)-Cc$ NCCH3 Complexes

approximately 10 times faster than that of the reaction of 1 to yield 10. The rate of decay of 1 to yield 10 in the presence of 2,3 dimethylbutadiene is similar to that observed for the decay of 1 to 4 in its absence, suggesting that S_2 formation cannot be ruled out in the pathways of both reactions. However, these reactions are significantly slower than that for the reaction of 1 with $[(Me₃tacn)Cu(CH₃CN)]SbF₆$ to give 4 and 7. On this basis and in view of the kinetic data described above, it appears unlikely that S_2 formation is important in the reaction of 1 with $[(Me₃tacn)Cu(CH₃CN)]SbF₆.$

This latter reaction is further complicated by exchange of the $S = SbPh_3$ unit between the Cu(I) centers. This exchange was identified by ¹H NMR spectroscopy and ESI-MS analysis of the reaction of 1 with $[(R_3tacn)Cu(CH_3CN)]SbF_6$ $(R = Et \text{ or } iPr)$. Shortly after mixing, the ¹H NMR spectrum showed peaks due to all four species in the equilibrium shown in Scheme 4. From the relative integrations after equilibrium was reached (\sim 10 min), K'_{eq} values of 0.41 (R = Et) or 0.054 (R = iPr) were measured. These results were corroborated by ESI-MS (Supporting Information, Figure S8), where parent ion peak envelopes for the cationic portions of 1 and 2 (R = Et, \sim 1:1 ratio) or 1 and 3 (R = iPr, ∼6:1 ratio) were observed immediately after mixing of the respective reagents. The trend in $K{'}_{\text{eq}}$ values correlates inversely with the degree of steric interactions between the ligand substituents and the bound S=SbPh₃ moiety (K'_{eq} decreases as the

steric interactions increase, $R = Et < iPr$). Importantly, equilibration is rapid relative to the decay to the disulfido-dicopper (II) complexes, and thus occurs prior to the suggested pathway for the decay reaction shown in Scheme 2.

Reaction of $S=SBPh_3$ with [(TMCHD)Cu(NCCH₃)]PF₆. In contrast to the reactions with the $Cu(I)$ complexes of R₃tacn ligands that led to isolable $Cu(I)$ -S=SbPh₃ adducts, no such adducts were identified when the $Cu(I)$ complex of the bidentate diamine TMCHD was treated with $S = SbPh_3$. Instead, the known tricopper cluster $[(\text{TMCHD})_3\text{Cu}_3(\text{S})_2](\text{PF}_6)$ ₃ (12) was isolated cleanly in good yield (79%). This procedure for the synthesis of 12 is superior to that previously reported involving use of S_8 , 8a facilitating advanced spectroscopic studies of the cluster aimed at addressing contentious bonding and oxidation state issues.⁸ Presumably, an initial Cu(I)-S=SbPh₃ adduct forms in the reaction, but because of its lower coordination number is more prone to oligomerization than the analogues supported by the tridentate R_3 tacn ligands.

SUMMARY AND CONCLUSIONS

In explorations ultimately aimed at preparing copper-sulfur complexes to model the active site of nitrous oxide reductase, we have found that $Ph_3Sb=S$ forms stable adducts $[(R_3tacn) Cu(S=SbPh₃)]SbF₆$ (1-3), the first examples of which have been structurally characterized by X-ray crystallography. These adducts undergo slow decay in solution to form $[(R_3\tan)_{2}Cu_2(\mu-\eta^2;\eta^2-S_2)]^{2+}$ species $(4-6)$ and SbPh₃. Conversion to $4-6$ is accelerated by addition of $[(R_3tacn)Cu(NCCH_3)]SbF_6$ to 1-3, and yield $[(R_3tacn) Cu(SbPh₃)$]SbF₆ (7-9) as coproduct instead of free SbPh₃. Mechanistic studies of this reaction revealed rapid exchange of $Ph₃Sb = S$ between the Cu(I) sites and pre-equilibrium formation of a dicopper intermediate. We speculate that the dicopper intermediate contains a bridging $Ph₃Sb = S$ moiety and that the rate-controlling step in the reaction involves loss of Ph₃Sb from that intermediate. Subsequent more rapid events that ultimately result in $\left[\mathrm{Cu}_2(\mu \cdot \eta^2 \cdot \eta^2 \cdot \mathcal{S}_2)\right]^{2+}$ core formation remain unclear. Reaction of $[(TMCHD)Cu(CH₃CN)]PF₆$ with S=SbPh₃ did not lead to an observable adduct, and instead led to the known tricopper cluster $[(TMCHD)_3Cu_3(\mu_3-S)_2](PF_6)_3$ in good yield. Overall, the results demonstrate the utility of $Ph_3Sb = S$ for delivering sulfur to $Cu(I)$ centers supported by N-donor ligands, cleanly yielding thermodynamically stable $\left[\frac{\text{Cu}_2(\mu - \eta^2 - \eta^2 - \text{S}_2)}{2} \right]^{2+}$ and $[\text{Cu}_3\text{S}_2]^{3+}$ cores.

ASSOCIATED CONTENT

6 Supporting Information. Illustrative experimental procedures, spectra, and kinetics results, and representions of the X-ray crystal structures of complexes 2 and 3 (PDF); X-ray structural data (CIFs). This material is available free of charge via the Internet at http://pubs.acs.org.

NO AUTHOR INFORMATION

Corresponding Author

*E-mail: wtolman@umn.edu.

ACKNOWLEDGMENT

We thank the NIH (R37 GM47365 to W.B.T.) for financial support of this research and Victor G. Young, Jr., for assistance with the X-ray crystallography.

REFERENCES

(1) Zumft, W. G.; Kroneck, P. M. H. Adv. Microb. Phys. 2007, 52, 107–227.

(2) (a) Brown, K.; Tegoni, M.; Prud^encio, M.; Pereira, A. S.; Besson, S.; Moura, J. J.; Moura, I.; Cambillau, C. Nat. Struct. Biol. 2000, 7, 191–195. (b) Brown, K.; Djinovic-Carugo, K.; Haltia, T.; Cabrito, I.; Saraste, M.; Moura, J. J.; Moura, I.; Tegoni, M.; Cambillau, C. J. Biol. Chem. 2000, 275, 41133–41136. (c) Paraskevopoulos, K.; Antonyuk, S. V.; Sawers, R. G.; Eady, R. R.; Hasnain, S. S. J. Mol. Biol. 2006, 362, 55–65.

(3) (a) Rasmussen, T.; Berks, B. C.; Sanders-Loehr, J.; Dooley, D. M.; Zumft, W. G.; Thomson, A. J. Biochemistry 2000, 39, 12753–12756. (b) Chen, P.; Cabrito, I.; Moura, J. J. G.; Moura, I.; Solomon, E. I. J. Am. Chem. Soc. 2002, 124, 10497–10507. (c) Alvarez, M. L.; Ai, J.; Zumft, W.; Sanders-Loehr, J.; Dooley, D. M. J. Am. Chem. Soc. 2001, 123, 576–587. (d) Ghosh, S.; Gorelsky, S. I.; DeBeer George, S.; Chan, J. M.; Cabrito, I.; Dooley, D. M.; Moura, J. J. G.; Moura, I.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 3955–3965. (e) Oganesyan, V. S.; Rasmussen, T.; Fairhurst, S.; Thomson, A. J. Dalton Trans. 2004, 996–1002.

(4) (a) Chen, P.; Gorelsky, S. I.; Ghosh, S.; Solomon, E. I. Angew. Chem., Int. Ed. 2004, 43, 4132–4140. (b) Solomon, E. I.; Sarangi, R.; Woertink, J. S.; Augustine, A. J.; Yoon, J.; Ghosh, S. Acc. Chem. Res. 2007, 40, 581–591.

(5) York, J. T.; Bar-Nahum, I.; Tolman, W. B. Inorg. Chim. Acta 2008, 361, 885–893, and references cited therein.

(6) Bar-Nahum, I.; Gupta, A. K.; Huber, S. M.; Ertem, M. Z.; Cramer, C. J.; Tolman, W. B. J. Am. Chem. Soc. 2009, 131, 2812–2814.

(7) (a) Sarangi, R.; York, J. T.; Helton, M. E.; Fujisawa, K.; Karlin, K. D.; Tolman, W. B.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. J. Am. Chem. Soc. 2008, 130, 676–686. (b) Chen, P.; Fujisawa, K.; Helton, M. E.; Karlin, K. D.; Solomon, E. I. J. Am. Chem . Soc. 2003, 125, 6394–6408.

(8) (a) Brown, E. C.; York, J. T.; Antholine, W. E.; Ruiz, E.; Alvarez, S.; Tolman, W. B. J. Am. Chem. Soc. 2005, 127, 13752–13753. (b) Mealli, C.; Ienco, A.; Poduska, A.; Hoffmann, R. Angew. Chem., Int. Ed. 2008, 47, 2864–2868. (c) Alvarez, S.; Hoffmann, R.; Mealli, C. Chem.—Eur. J. 2009, 15, 8358–8373. (d) Berry, J. F. Chem.—Eur. J. 2010, 16, 2719–2724.

(9) (a) Jason, M. E. Inorg. Chem. 1997, 36, 2641–2646. (b) Baechler, R. D.; Stack, M.; Stevenson, K.; Vanvalkenburgh, V. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 48, 49–52.

(10) (a) Bauer, A.; Capps, K. B.; Wixmerten, B.; Abboud, K. A.; Hoff, C. D. Inorg. Chem. 1999, 38, 2136–2142. (b) Zuo, J.-L.; Zhou, H.-C.; Holm, R. H. Inorg. Chem. 2003, 42, 4624–4631. (c) Groysman, S.; Holm, R. H. Inorg. Chem. 2007, 46, 4090–4102. (d) Groysman, S.; Wang, J.-J.; Tagore, R.; Lee, S. C.; Holm, R. H. J. Am. Chem. Soc. 2008, 130, 12794–12807.

(11) Donahue, J. P. Chem. Rev. 2006, 106, 4747–4783.

(12) Capps, K. B.; Wixmerten, B.; Bauer, A.; Hoff, C. Inorg. Chem. 1998, 37, 2861–2864.

(13) Lobana, T. S. Prog. Inorg. Chem. 1989, 37, 495–588.

(14) Bar-Nahum, I.; York, J. T.; Young, V. G., Jr.; Tolman, W. B. Angew. Chem., Int. Ed. 2008, 47, 533–536.

(15) See Supporting Information.

(16) (a) Haselhorst, G.; Stoetzel, S.; Strassburger, A.; Walz, W.; Wieghardt, K.; Nuber, B. J. Chem. Soc., Dalton Trans. 1993, 83–90. (b) Cahoy, J.; Holland, P. L.; Tolman, W. B. Inorg. Chem. 1999, 38, 2161–2168.

(17) Mahapatra, S.; Halfen, J. A.; Wilkinson, E. C.; Pan, G.; Wang, X.; Young, V. G., Jr.; Cramer, C. J.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11555–11574.

(18) Mahadevan, V.; Hou, Z.; Cole, A. P.; Root, D. E.; Lal, T. K.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 1997, 119, 11996–11997.

(19) Transition metal complexes of $S=SbPh₃$ have been reported, although none have been characterized structurally by X-ray crystallography: (a) King, M. G.; McQuillan, G. P. J. Chem. Soc., A 1967, 898–901. (b) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1986, 304, 181–193. (c) Hieber, W.; John, P. Chem. Ber. 1970, 103, 2161–2177.

(20) Yang, L.; Powell, D.; Houser, R. Dalton Trans. 2007, 955–964. (21) (a) Lam, B. M. T.; Halfen, J. A.; Young, V. G., Jr.; Hagadorn,

J. R.; Holland, P. L.; Lledós, A.; Cucurull-Sánchez, L.; Novoa, J. J.; Alvarez, S.; Tolman, W. B. Inorg. Chem. 2000, 39, 4059–4072. (b) Halfen, J. A.; Young, V. G., Jr.; Tolman, W. B. Inorg. Chem. 1998, 37, 2102–2103. (c) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A. J.; Young, V. G., Jr.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 763–776. (d) Halfen, J. A.; Mahapatra, S.; Olmstead, M. M.; Tolman, W. B. J. Am. Chem. Soc. 1994, 116, 2173–2174.

(22) Ohrenberg, C.; Liable-Sands, L. M.; Rheingold, A. L.; Riordan, C. G. Inorg. Chem. 2001, 40, 4276–4283, and references cited therein..

(23) Melzer, M. M.; Li, E.; Warren, T. H. Chem. Commun. 2009, 5847–5849, and references cited therein..

(24) Reigle, R.; Casadonte, D.; Bott, S. J. Chem. Crystallogr. 1994, 24, 769–773.

(25) (a) Weller, F.; Dehnicke, K. Naturwissenschaften 1981, 68, 523–524. (b) Pebler, J.; Weller, F.; Dehnicke, K. Z. Anorg. Allg. Chem. 1982, 492, 139–147.

(26) Brown, E. C.; Bar-Nahum, I.; York, J. T.; Aboelella, N. W.; Tolman, W. B. Inorg. Chem. 2007, 46, 486–496.

(27) Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn J. van; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.