Inorganic Chemistry

Syntheses and Surprising Regioselectivity of 5- and 6-Substituted Decaboranyl Ethers via the Nucleophilic Attack of Alcohols on 6- and 5-Halodecaboranes

William C. Ewing, Patrick J. Carroll, and Larry G. Sneddon*

Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, United States

Supporting Information

ABSTRACT:

The selective syntheses of new classes of decaboranyl ethers containing a range of functional groups substituted at the B5 or B6 positions were achieved through the reaction of alcohols with halodecaboranes. The surprising regioselectivity of the reaction, where the reaction of the 6-halodecaboranes (6-X- $B_{10}H_{13}$) with alcohols yielded the 5-substituted decaboranyl ethers (5-RO- $B_{10}H_{13}$) and the reaction with 5-halodecaboranes (5-X- $B_{10}H_{13}$) gave the 6-substituted decaboranyl ethers (6-RO- $B_{10}H_{13}$), was confirmed by NMR and X-ray crystallographic analyses. The crystallographic determinations also showed that the decaboranyl ethers had shortened B–O bonds and apparent sp² hybridization at oxygen indicating significant π -backbonding from oxygen to the cage boron. A possible substitution mechanism was computationally identified involving: (1) initial nucleophilic attack by the alcohol-oxygen at a site adjacent to the 5- or 6-halo-substituted boron, (2) movement of the terminal hydrogen at the point of attack to a bridging position, (3) formation of a 5-membered (B-O-H-Cl-B) cyclic transition state allowing the acidic methanolic-hydrogen to bond to the halogen, (4) release of HX, and finally (5) movement of a bridging hydrogen into the vacated terminal position. Deuterium labeling studies confirmed the movement of hydrogen from a bridging position of the halodecaborane into the halogen-vacated terminal position on the decaboranyl ether product. The relative reaction rates of the $6-X-B_{10}H_{13}$ compounds (X = F, Cl, Br, I) with alcohols were likewise found to be consistent with this mechanism.

INTRODUCTION

We recently reported the selective, high yield syntheses of both the 6-X-B₁₀H₁₃ (X = F, Cl, Br, I)¹ and 5-X-B₁₀H₁₃ (X = Cl, Br, I)² series of halodecaboranes from $closo-B_{10}H_{10}^{2-}$ salts. These syntheses make these halo-derivatives readily available as potential new starting materials for the construction of functional decaboranyl derivatives for use in either biomedical or materials applications. We report here that the 5- or 6-halodecaboranes can be selectively converted, with a surprising regioselectivity, to new classes of 6-RO- $B_{10}H_{13}$ (6OR) and 5-RO- $B_{10}H_{13}$ (5OR) decaboranyl ethers via their nucleophilic substitution reactions with alcohols.

The B-O-C ether linkage has previously been found in only a few polyhedral boranes and carboranes. Examples include a number of closo- $B_{12}H_{(12-x)}(OR)_x^{2-}$ and closo- $B_{10}H_{(10-x)}(OR)_x^{2-}$ derivatives that were obtained by electrophilic substitution of terminal hydrides on the $closo-B_{12}H_{12}^{2-}$ and $closo-B_{10}H_{10}^{2-}$ anions^{3,4} and the *p*-carborane ethers that were recently synthesized in good yields through the palladium mediated coupling of alkoxides and aryloxides with 2-iodo-*p*-carborane.⁵ Several isomers of the metallaborane ether, $L_2PtB_{10}H_{11}OR$ (R = Et, Me, iPr), have also been synthesized in good overall yield through the cageopening platination of *closo*- $B_{10}H_{10}^{2-}$ in alcoholic solutions.⁶

Only a few decaboranyl ethers have been reported. These have been obtained from the oxidation reactions of sodium decaborate $([Na^+][B_{10}H_{13}^-])$ using either I₂ in organic ethers, which gave low yields (<26%) of B₁₀H₁₃OR products of unconfirmed regiochemistry,⁷ or stannic chloride in diethyl ether, which produced a mix of 5- and $6-C_2H_5O-B_{10}H_{13}$ (15:85; **5OR**:6**OR**) in unreported yields.⁸ In contrast, the reactions presented in the following sections have now been shown to provide general

Received: December 22, 2010 Published: March 31, 2011

routes to a range of decaboranyl ethers with excellent control of regiochemistry.

EXPERIMENTAL SECTION

Materials. The 5-X-B₁₀H₁₃ (**5X**) and 6-X-B₁₀H₁₃ (**6X**) (X = F, Cl, Br, I) compounds were synthesized according to literature procedures.^{1,2} All alcohols, phenols, thiols, phenylthiols, deuterated alcohols (from Aldrich) and toluene, NaHCO₃, CH₂Cl₂, hexanes, pentane, CDCl₃, and D₂O (from Fisher) were used as received. Silica gel (Fisher) was acidified according to the literature method prior to use.⁹

Physical Methods. ¹¹B NMR at 128.3 MHz and ¹H NMR at 400.1 MHz spectra were obtained on a Bruker DMX-400 spectrometer equipped with appropriate decoupling accessories. All ¹¹B chemical shifts were referenced to BF₃ · OEt₂ (0.0 ppm), with a negative sign indicating an upfield shift. All proton chemical shifts were measured relative to internal residual protons from the lock solvents (99.9% CDCl₃) and then referenced to (CH₃)₄Si (0.0 ppm). High- and low-resolution mass spectra employing chemical ionization with negative ion detection were obtained on a Micromass AutoSpec high-resolution mass spectrometer. IR spectra were obtained on a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Melting points were determined using a standard melting point apparatus and are uncorrected. Elemental analyses were obtained at Robertson Microlit Laboratories, Madison, NJ.

General Reaction Methods. Reactions were carried out in sealable 100 mL flasks, equipped with a stir bar, side arm, and Teflon stopcock (without a rubber O-ring), and were stirred after being sealed under N₂ at atmospheric pressure. Reactions were monitored by ¹¹B NMR; upon completion, the mixtures were diluted with hexanes and filtered, and the solvent was vacuum-evaporated. The products were isolated from the crude reaction mixture by initial flash filtration through a small plug of acidified silica gel, followed by either crystallization from cold pentanes or column-chromatography on acidified silica gel using a CH₂Cl₂/hexanes eluent. In cases where chromatography was employed, three materials were isolated: (1) residual starting material, (2) the desired isomer (5- or 6-RO- $B_{10}H_{13}$) as the major product, and (3) the other isomer as a minor product. The order of elution was always the starting material, then $6\text{-RO-B}_{10}H_{13}$, and last $5\text{-RO-B}_{10}H_{13}$. Isolated yields are given in Table 2. Detailed descriptions of the syntheses and spectroscopic data for the 6-(CH₃O)- and 5-(CH₃O)-decaboranyl ethers are presented below. Full experimental and spectroscopic details for all products are given in the Supporting Information.

6-(CH₃O)-B₁₀H₁₃ (6OMe). A mixture containing methanol (31 mg, 0.94 mmol), 5Br (150 mg, 0.75 mmol), and NaHCO₃ (63 mg, 0.75 mmol) in 7 mL of CH2Cl2 was stirred at 70 °C for 15 h. Additional methanol (15 mg, 0.26 mmol) was then added, and the reaction was stirred another 12 h at 65 °C. The reaction was diluted with 7 mL of hexanes and filtered. The filtrate solvent was vacuum evaporated at 0 °C to give a clear oil that was then taken up in a minimal amount of a 10% CH₂Cl₂ in hexanes solution and chromatographed on acidic silica gel using the same eluent. For 60Me: 58 mg (0.38 mmol, 51%); clear oil; HRMS: m/z calcd for ${}^{12}C^{1}H_{16}^{-11}B_{10}^{-16}O$ 154.2131, found 154.2152. ${}^{11}B$ NMR (128.3 MHz, J = Hz, CDCl₃): δ 25.8 (s, 1B), 3.7 (d, $J = \sim 125, 3B$), 2.9 (d, *J* = ∼125, 2B), −16.2 (d, *J* = 150, 2B), −32.6 (d, *J* = 158, 1B), -44.3 (d, J = 160, 1B). ¹H{¹¹B} NMR (400.1 MHz, $J = Hz, CDCl_3$): δ 3.91 (s, 1CH₃,1BH), 3.83 (s, 1BH), 3.23 (s, 4BH), 2.15 (s, 2BH), 1.42 (s, 1BH), 0.25 (s, 1BH), -0.52 (s, 2BHB), -1.81 (s, 2BHB). IR (KBr, cm⁻¹) 3004 (w), 2951 (w), 2858 (w), 2579 (vs), 1556 (w), 1466 (s), 1327 (s), 1292 (s), 1265 (s), 1173 (w), 1114 (w), 1037 (w), 1004 (m), 994 (m), 959 (w), 927 (w), 913 (w), 881 (w), 841 (w), 805 (w), 734 (w), 718 (w), 703 (w), 684 (w), 639 (w), 578 (w).

5-(CH₃O)-B₁₀H₁₃ (50Me). A mixture containing methanol (31 mg, 0.94 mmol), **6Br** (80 mg, 0.40 mmol), and NaHCO₃ (33 mg, 0.4 mmol) in 7 mL of CH₂Cl₂ was stirred for 12 h at room temperature. The

mixture was diluted with 7 mL of hexanes and filtered. The filtrate was concentrated at 0 °C to give a yellowish oil that was then taken up in a minimal amount of a 50% CH₂Cl₂ in hexanes solution and quickly filtered through a plug of acidic silica gel. The filtrate solvent was vacuum evaporated at 0 °C to give a clear oil that was then recrystallized from \sim 2 mL of pentane at -20 °C. For **50Me**: 54 mg (0.36 mmol, 90%); white solid; mp 57–59 °C; Anal. Calcd.: C, 7.99%, H, 10.52%. Found: C, 7.17%, H, 11.14%; HRMS: m/z calcd for ${}^{12}C^{1}H_{16}{}^{11}B_{10}{}^{16}O$ 154.2131, found 154.2312. ¹¹B NMR (128.3 MHz, *J* = Hz, CDCl₃): δ 21.8 (s, 1B), 12.6 (d, J = 149, 1B), 10.5 (d, J = 162, 1B), 2.5 (d, $J = \sim 115, 1B$), 2.0 (d, $J = \sim 150, 1B$, -3.4 (d, J = 172, 1B), -6.5 (d, J = 161, 1B), -11.3 (d, J150, 1B), -38.9 (d, J = 155, 2B). ¹H{¹¹B} NMR (400.1 MHz, J = Hz, CDCl₃): δ 3.99 (s, 1BH), 3.76 (s, CH₃), 3.66 (s, 1BH), 3.31 (s, 3BH), 2.76 (s, 1BH), 2.71 (s, 1BH), 0.99 (s, 1BH), 0.53 (s, 1BH), 0.34 (s, 1BHB), -1.98 (s, 1BHB), -2.22 (s, 1BHB), -2.38 (s, 1BHB). IR (KBr, cm⁻¹) 2995 (m), 2944 (m), 2849 (m), 2579 (vs), 1894 (br,w), 1549 (w), 1461 (s), 1258 (vs), 1170 (s), 1104 (w), 1068 (w), 1047 (w), 1012 (s), 980 (m), 932 (w), 913 (w), 859 (w), 816 (m), 781 (m), 716 (m), 682 (w), 620 (w).

Reactions of 6F, 6Cl, and 6I with CH₃OH. In three separate reactions, **6F, 6Cl, and 6I** (50 mg each, 0.36, 0.32, and 0.20 mmol, respectively) were reacted with methanol (1.3 equiv.) at room temperature while being monitored by ¹¹B NMR. The reaction with **6F** showed no change after 2 days. The reaction with **6Cl** was 25% complete after 2 days. The reaction with **6I** was complete after ~12 h.

Reactions of 6Br with Phenol, 4-Methoxyphenol, Thiophenol, and 1-Octanethiol. 6Br (50 mg, 0.25 mmol) was separately reacted with phenol (28 mg, 0.30 mmol), 4-methoxyphenol (37 mg, 0.30 mmol), thiophenol (33 mg, 0.30 mmol), and 1-octanethiol (44 mg, 0.30 mmol) at both room temperature and at 70 °C in CH₂Cl₂ for at least 20 h. No reaction, other than trace isomerization from 6Br to 5Br, was observed by ¹¹B NMR for any of the reactions at either temperature.

Syntheses of μ -D₄-5-Br-B₁₀H₉ (μ -D₄-5Br) and μ -D₄-6-Br-B₁₀H₉ (μ -D₄-6Br). In separate reactions, 5Br (50 mg, 0.25 mmol) and 6Br (50 mg, 0.25 mmol) were stirred in a biphasic mixture of 2 mL of CDCl₃ and 0.5 mL of D₂O at room temperature. After 4 h, the ¹H{¹¹B} NMR spectra of the CDCl₃ layers showed the disappearance of the high-field signals for all four bridging positions (Figures S1 and S2, Supporting Information). Neither ¹¹B NMR spectrum showed any change. The phases were separated, and the CDCl₃ layers containing the deuterated-decaborane products were then used without further workup in the subsequent experiments with CD₃OD and CH₃OH.

Reaction of μ -D₄-6Br with CD₃OD and CH₃OH. In two separate experiments, CD₃OD (~12 mg, 0.33 mmol) and CH₃OH (~10 mg, 0.33 mmol) were added to a solution of ~50 mg of μ -D₄-6Br in ~3 mL of CDCl₃ at room temperature. After the solution was stirred at room temperature for 10 h, ¹¹B NMR analysis indicated >90% conversion to μ -D₃-6-D-5-(CD₃O)-B₁₀H₉ and μ -D₃-6-D-5-(CH₃O)-B₁₀H₉, respectively. The CDCl₃ was vacuum evaporated at 0 °C. The products were then purified by recrystallization from pentane at -78 °C.

Reaction of 6Br with CD₃OD. CD₃OD (\sim 12 mg, 0.33 mmol) was added to a solution of \sim 50 mg of **6Br** in 2 mL of CDCl₃. After the solution was stirred at room temperature for 10 h, ¹¹B NMR analysis indicated >90% conversion to 5-(CD₃O)-B₁₀H₁₃. The CDCl₃ was vacuum evaporated at 0 °C. The product was then purified by recrystallization from pentane at -78 °C.

Reaction of μ -D₄-5Br with C₂D₅OD. C₂D₅OD (~12 mg, 0.33 mmol) was added to a solution of ~50 mg of μ -D₄-5Br in ~3 mL of CDCl₃. After the solution was stirred at 70 °C for 10 h, ¹¹B NMR analysis indicated near quantitative conversion to μ -D₃-5-D-6-(C₂D₅O)-B₁₀H₉. The CDCl₃ was vacuum evaporated at 0 °C to give an oil that was then taken up in a minimal amount of a 10% solution of CH₂Cl₂ in hexanes and chromatographed on acidic silica gel using the same

eluent. The solvent from the fractions containing the μ -D₃-5-D-6-(C₂D₅O)-B₁₀H₉ product was vacuum evaporated at 0 °C.

Computational Methods. Density functional theory (DFT) calculations were performed using the Gaussian 03 package.¹⁰ The optimized ground-state, transition-state, and intermediate geometries and both the electronic and free energy values were obtained at the B3LYP/6-311G(d) level without constraints for all H, C, B, and Cl atoms. Both the B3LYP/6-311G(d) level and B3LYP/SDD pseudopotential were used for Br atoms (separate calculations), but only the B3LYP/SDD pseudopotential was used for the I atoms. The NMR chemical shifts were calculated at the B3LYP/6-311G(d) level using the GIAO option within Gaussian 03 and are referenced to $BF_3 \cdot O(C_2H_5)_2$ using an absolute shielding constant of 102.24 ppm. Harmonic vibrational analyses were carried out on the optimized geometries at the same level to establish the nature of stationary points. True first-order saddle points possessed only one imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were carried out in both the forward and reverse directions to confirm the reaction pathways from the located transition states.

Crystallographic Data. All crystals were grown from cold pentane or by slow evaporation from heptane solution at -30 °C.

Collection and Reduction of the Data. Crystallographic data and structure refinement information are summarized in Table 1. X-ray intensity data for 6-(ClC₂H₄OC₂H₄O)-B₁₀H₁₃ (Penn3371), 5-(ClC₂H₄-OC₂H₄O)-B₁₀H₁₃ (Penn3367), 5-(CH₃O)-B₁₀H₁₃ (**5OMe**, Penn3364), and 5-(CH₃C≡CCH₂O)-B₁₀H₁₃ (Penn3369) were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo K α radiation. Rotation frames were integrated using SAINT,¹¹ producing a list of unaveraged F^2 and $\sigma(F^2)$ values which were then passed to the SHELXTL¹² program package for further processing and structure solution on a Dell Pentium 4 computer. The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS.¹³

The data for 6-((CH₃)₃CO)-B₁₀H₁₃ (Penn3349) and 6,6'-(OC₆-H₁₀O)-(B₁₀H₁₃)₂ (Penn3351) were collected on a Rigaku Mercury CCD area detector employing graphite-monochromated Mo K α radiation. Rotation frames were integrated using CrystalClear,¹⁴ producing a list of unaveraged F^2 and $\sigma(F^2)$ values which were then passed to the CrystalStructure¹⁵ program package for further processing and structure solution on a Dell Pentium 4 computer. The intensity data were corrected for Lorentz and polarization effects and for absorption using REQAB.¹⁶

Solution and Refinement of the Structures. The structures were solved by direct methods (SIR97¹⁷). Refinement was by full-matrix least-squares based on F^2 using SHELXL-97.¹⁸ All reflections were used during refinement (values of F^2 that were experimentally negative were replaced with $F^2 = 0$). For 6-(ClC₂H₄OC₂H₄O)-B₁₀H₁₃, 5-(ClC₂H₄O C₂H₄O)-B₁₀H₁₃, **5OMe**, 6-((CH₃)₃CO)-B₁₀H₁₃, and 6,6'-(OC₆H₁₀O) -(B₁₀H₁₃)₂, all nonhydrogen atoms were refined anisotropically and hydrogen which were refined using a riding model.

RESULTS AND DISCUSSION

Syntheses. The only published account of the reaction of decaborane with alcohols reported degradation of the cage to $B(OR)_3$ compounds.¹⁹ On the other hand, the reactions of the 5and 6-halodecaboranes with alcohols led to the formation of decaboranyl ethers, with the loss of hydrogen halide. However, the observed regioselectivity was surprising, as the reactions with 6-X-B₁₀H₁₃ (**6X**) yielded 5-RO-B₁₀H₁₃ (**5OR**) products, while the reactions with 5-X-B₁₀H₁₃ (**5X**) produced the 6-RO-B₁₀H₁₃ (**6OR**) isomers (eqs 1 and 2). A variety of alcohols were employed as nucleophiles, resulting in the production of a range of decaboranyl ether derivatives (Table 2).

The syntheses of the 5-RO- $B_{10}H_{13}$ derivatives were generally faster and required less purification than their 6-RO-B₁₀H₁₃ counterparts. Reactions with 6Br proceeded quickly at room temperature, while those with **5Br** required heating (70 $^{\circ}$ C) to achieve completion. We have previously reported² that 5X and 6X undergo base-catalyzed isomerization to produce equilibrium mixtures of the two isomers favoring 5X. Since alcohols are only mildly basic, the rate of the base-catalyzed isomerizations of 5X and 6X in alcohols at room temperature was found to be slow compared to the halide substitution rate. Accordingly, the room temperature reactions of 6Br with alcohols afforded almost exclusively 5OR products that could be easily purified. In contrast, the 5Br/6Br isomerization rate for the 5Br-alcohol reactions at 70 °C was found to be competitive with the 5Br substitution rate, with, for example, the ¹¹B NMR spectra of the reactions of 5Br with alcohols at 70 °C displaying small resonances for the **6Br** isomer after \sim 1 h. As a consequence of the higher temperature required for the 5Br substitution reactions, a 6OR/5OR isomer mix was produced. Although 6OR was the major product, its isolation from this mixture required chromatographic separation in most cases.

Best yields were found when the products could be purified via crystallization. In agreement with a previous finding that decaboranyl ethers degrade on silica gel,⁸ chromatographic separations resulted in decreased yields, especially when used to isolate **5OR**, as these compounds were both less stable and had longer retention times than the **6OR** isomers. If the silica gel was not acidified⁹ prior to use, complete **5OR** degradation was observed during chromatography. Both **5OR** and **6OR** slowly degraded when left exposed to air for prolonged periods.

6Br showed no evidence of reaction with phenol at temperatures up to 90 °C, probably as a result of the decreased basicisity (i.e., nucleophilicity) of the phenolic oxygen compared to alcohol oxygens. Even with the more strongly Lewis-basic p-methoxyphenol, no reaction was observed. The role of the relative basicity of the alcohol-oxygen was further examined through comparisons of the reaction rates of a series of β -halogenated alcohols with 6Br, where the relative halogen electronegativities were used to inductively alter the alcohol-oxygen electron density and Lewis basicity. In line with their predicted²⁰ Lewis basicities (C₂H₅OH > IC₂H₄OH> BrC₂H₄-OH> $ClC_2H_4OH>FC_2H_4OH$), the reaction of **6Br** with ethanol was largely complete after 12 h at room temperature, but reactions with 2-iodoethanol (~20 h), 2-bromoethanol (~40 h), 2-chloroethanol (\sim 100 h), and 2-fluoroethanol (\sim 125 h) all took increasingly longer times.

Table 1. Crystallographic Data

	$6-(ClC_2H_4O-C_2H_4O)-B_{10}H_{13}$	$5-(ClC_2H_4O-C_2H_4O)-B_{10}H_{13}$	5-(CH ₃ O)-B ₁₀ H ₁₃
empirical formula	$C_4B_{10}H_{21}O_2Cl$	$C_4 B_{10} H_{21} O_2 Cl$	CB10H16O
formula weight	244.76	244.76	152.24
crystal class	monoclinic	triclinic	monoclinic
space group	$P2_1/n$	$P\overline{1}$	$P2_1/c$
Z	4	2	4
<i>a,</i> Å	8.2214(10)	7.6495(15)	8.373(6)
b, Å	19.411(2)	9.7633(19)	9.848(9)
<i>c,</i> Å	9.2205(11)	11.127(3)	12.388(9)
α, deg		104.353(12)	
β , deg	103.768(5)	106.187(13)	102.34(4)
γ, deg		109.288(9)	
V, Å ³	1429.2(3)	698.3(3)	997.9(14)
$D_{\text{calc}} \text{ g/cm}^3$	1.138	1.164	1.013
μ , cm ⁻¹	2.43	2.49	0.48
λ , A (Mo-K _{α})	0.71073	0.71073	0.71073
crystal size, mm	$0.28 \times 0.25 \times 0.08$	$0.35 \times 0.30 \times 0.08$	$0.44 \times 0.35 \times 0.08$
F(000)	512	256	320
2θ angle, deg	4.20-50.18	4.12-54.50	4.98-50.26
temperature, K	143(1)	143(1)	143(1)
net collected	$-y \ge n \ge y$ $-22 \le k \le 22$	$-9 \ge n \ge 0$	$-9 \ge n \ge \delta$ 0 < 1 < 11
	$-23 \ge \kappa \ge 23$ $-10 \le l \le 10$	$-11 \ge \kappa \ge 11$ $-13 \le l \le 12$	$-\delta \ge \kappa \ge 11$ $-14 \le 1 \le 12$
no meas reflus	-10 = t = 10 23645	-15 = l = 15 12464	$-1+ \ge i \ge 12$ 3795
no. of unique reflus	$2533(R_{\rm e} = 0.0250)$	$2455(R_{\rm e} = 0.0222)$	$1736(R_{-}=0.0479)$
no parameters	2399 (R _{int} = 0.0230)	2105 (R _{int} = 0.0222)	1730 (R _{int} = 0.0177)
R^a indices $(F > 2\sigma)$	$R_1 = 0.0243$	$R_1 = 0.0346$	$R_1 = 0.0471$
	$wR_2 = 0.0682$	$wR_2 = 0.0889$	$wR_2 = 0.1143$
R^a indices (all data)	$R_1 = 0.0265$	$R_1 = 0.0383$	$R_1 = 0.0686$
	$wR_2 = 0.0703$	$wR_2 = 0.0928$	$wR_2 = 0.1299$
GOF^{b}	1.058	1.041	0.974
final difference peaks, e/Å ³	+0.166, -0.202	+0.444, -0.581	+0.206, -0.202
	6-((CH ₃) ₃ CO)-B ₁₀ H ₁₃	5-(CH ₃ C≡CCH ₂ O)-B ₁₀ H ₁₃	$6,6'-(OC_6H_{10}O)-(B_{10}H_{13})_2$
	C P U O	C P II O	C P U O
formula weight	$C_4B_{10}H_{22}O_{104,22}$	$C_{4}B_{10}H_{18}O$	$C_{6}B_{20}H_{36}O_{2}$
armetal class	194.32	190.28 trialinia	350.55
		$\overline{D_1}$	
7	2	4	2
a. Å	58342(4)	7094(3)	$\frac{2}{16600(2)}$
b. Å	10.4766(7)	12.518(5)	6.6881(9)
c, Å	10.5591(7)	14.907(6)	10.1106(14)
α, deg		68.796(15)	(-))
β , deg	96.879(2)	86.318(18)	91.691(3)
γ, deg		77.129(15)	
$V, Å^3$	640.75(7)	1202.9(9)	1122.0(3)
$D_{\text{calcr}} \text{ g/cm}^3$	1.007	1.051	1.055
μ , cm ⁻¹	0.49	0.52	0.51
λ , Å (Mo-K _{α})	0.71073	0.71073	0.71073
crystal size, mm	0.30 imes 0.22 imes 0.08	$0.42 \times 0.25 \times 0.15$	0.38 imes 0.32 imes 0.03
F(000)	208	400	376
2 heta angle, deg	5.25-50.08	3.72-50.26	6.56-50.00
temperature, K	143(1)	143(1)	143(1)
<i>hkl</i> collected	$0 \le h \le 6$	$-8 \le h \le 8$	$-19 \le h \le 19$
	$0 \le k \le 12$	$-14 \le k \le 14$	$-7 \le k \le 7$
	$-12 \leq l \leq 12$	$-17 \le l \le 17$	$-11 \le l \le 12$
no. meas refins	10/44	30153 42(0 (P = 0.0215)	11522
no. of unique refins	$23/4 (R_{int} = 0.0242)$	$4200 (K_{int} = 0.0215)$	1968 ($K_{\rm int} = 0.0340$)
no. parameters P^{a} indicas $(E > 2\pi)$	220 $P_{-} = 0.0246$	394 P = 0.0416	200 $P_{\rm c} = 0.0472$
κ indices $(F > 2\sigma)$	$K_1 = 0.0346$	$K_1 = 0.0410$	$K_1 = 0.0462$
\mathbb{P}^{a} indices (all data)	$WK_2 = 0.0929$ $P_1 = 0.0261$	$WR_2 = 0.11/0$ $P_1 = 0.0464$	$WR_2 = 0.1003$ $P_1 = 0.0580$
A mules (an data)	$n_1 = 0.0301$	$R_1 = 0.0404$	$R_1 = 0.0580$
GOF^b	$WR_2 = 0.0957$ 1 113	$WR_2 = 0.1210$ 1 042	$w_{\Lambda_2} = 0.1141$ 1 053
final difference peaks $e/Å^3$	+0.115 -0.145	+0.294, -0.252	+0.161 -0.168
${}^{a}R_{a} = \sum F - F / \sum F \dots D$	$= \{\sum w(F^{2} - F^{2})^{2} / \sum w(F^{2})^{2} \}^{1/2} \ ^{b}COE$	$= \{\sum w(E^2 - E^2)^2 / (n - n)\}^{1/2} \text{ where } n - \frac{1}{2} = \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 / (n - n)^2 + \frac{1}{2} \sum w(E^2 - E^2)^2 + \frac{1}{2} \sum w(E^2 - E^2)^$	no of refine $n = no$ of parameters
refined.	$= \left\{ \frac{\omega_{W}(\mathbf{r}_{0} - \mathbf{r}_{c})}{\omega_{W}(\mathbf{r}_{0})} \right\} \text{GOF}$	$- \{ 2m(r_0 - r_c) / (n - p) \}$ where $n =$	p = 10. or parallels, $p = 10.$ or parallels

Mercapto-compounds also failed to react, despite their enhanced Lewis basicity relative to phenols. This result may be thermodynamically explained, as a nondative B–S bond $(85-90 \text{ kcal/mol})^{21}$ is weaker than a similar B–O bond $(117-119 \text{ kcal/mol})^{22}$ and DFT calculations showed that the reaction of methanol with **6Br** to yield **50Me** was –10.0 kcal/mol downhill, while the reaction employing methylthiol was +5.6 kcal/mol uphill. This selectivity for oxygen allowed the synthesis of the 6- and 5-(HSC₂H₄O)-B₁₀H₁₃ thiolderivatives through the reaction of **5Br** or **6Br** with 2-mercaptoethanol (eqs 3 and 4).

The reaction of 1,4-cyclohexyldiol with both **5Br** and **6Br** yielded the compounds $6,6'-(OC_6H_{10}O)-(B_{10}H_{13})_2$ (eq 5) and $5,5'-(OC_6-H_{10}O)-(B_{10}H_{13})_2$, respectively, each bridged by a diol.

The potential tumor binding properties of thiol-derivatives,²³ such as 6- and 5-(HSC₂H₄O)-B₁₀H₁₃, and the high-boron contents of polyol derivatives, such as $6,6'-(OC_6H_{10}O)-(B_{10}H_{13})_2$ and $5,5'-(OC_6H_{10}O)-(B_{10}H_{13})_2$, may prove useful in the design of new therapeutic agents for boron neutron capture therapy (BNCT) where high boron content compounds that selectively bind tumor cells are required.²⁴

NMR and Crystallographic Characterizations of 6OR and 5OR. Regardless of the identity of the ether substituents, the ¹¹B NMR spectra of the 5OR compounds were similar, as were the spectra of the 6OR ethers. The ¹¹B NMR spectra of the 5OR compounds, as illustrated in Figure 1a,b for $5-(C_6H_{11}O)-B_{10}H_{13}$, 5OCy, displayed 9 peaks (B2 and B4 are coincident at ~40 ppm) consistent with the predicted C₁ symmetry, with the low-field singlet arising from the ether-substituted B5 vertex. When the cages were substituted with primary alcohols, the separation between the 2 resonances between 0.0 and +5.0 ppm (B1 and B10, respectively) decreased; in some cases, these peaks were coincident, but the shifts of the other resonances were nearly identical regardless of the alcohol employed. The ¹¹B NMR spectra of the 6OR compounds showed only 5 resonances in 1:5:2:1:1 ratios, as can be seen in the spectra of $6-(C_6H_{11}O)-B_{10}H_{13}$ (6OCy) Table 2. Isolated Yields for $6\text{-RO-B}_{10}H_{13}$ and $5\text{-RO-B}_{10}H_{13}$

RO 6 H 7 8 H	9 4			
-OR	% yield			
-OCH ₃	51			
$-OC_6H_{11}$	48			
-OC(CH ₃) ₃	42			
-O(CH ₂) ₃ C≡CH	66			
-OCH(CH ₂ CH=CH ₂) ₂	62			
-OC ₂ H ₄ SH	49			
$-OC_4H_2I$	45			
-OC ₂ H ₄ OC ₂ H ₄ Cl	62			
-OC ₆ H ₁₀ O-	25			
RO 2 10 4				
RO 2 3	4			
-OR	4 % yield			
-OR -OCH ₃	4 <u>% yield</u> 90			
-OR -OCH ₃ -OC ₆ H ₁₁	4 <u>% yield</u> 90 77			
-OR -OCH ₃ -OC ₆ H ₁₁ -OC(CH ₃) ₃	4 <u>% yield</u> 90 77 75			
$\frac{-OR}{-OCH_{3}}$ $-OC_{6}H_{11}$ $-OC(CH_{3})_{3}$ $-O(CH_{2})_{3}C=CH$	4 <u>% yield</u> 90 77 75 38			
$\frac{-OR}{-OCH_{3}}$ $-OC(H_{3})_{3}$ $-OC(CH_{3})_{3}$ $-O(CH_{2})_{3}C \equiv CH$ $-O(CH_{2}C \equiv CCH_{3})$	4 % yield 90 77 75 38 72			
$\frac{\text{-OR}}{\text{-OCH}_{3}}$ $-\text{OC}_{6}\text{H}_{11}$ $-\text{OC}(CH_{3})_{3}$ $-\text{O}(CH_{2})_{3}\text{C}\equiv\text{CH}$ $-\text{O}(CH_{2}\text{C}\equiv\text{CCH}_{3})$ $-\text{OCH}(CH_{2}\text{C}\text{H}=\text{CH}_{2})_{2}$	4 % yield 90 77 75 38 72 48			
$RO_{2} + COR_{1}$ $-OR_{1}$ $-OCH_{3}$ $-OC(CH_{3})_{3}$ $-O(CH_{2})_{3}C \equiv CH_{2}$ $-O(CH_{2}C \equiv CCH_{3})$ $-O(CH_{2}CH = CH_{2})_{2}$ $-OC_{2}H_{4}SH$	4 90 77 75 38 72 48 88			
$\frac{-OR}{-OCH_{3}}$ $-OC_{6}H_{11}$ $-OC(CH_{3})_{3}$ $-O(CH_{2})_{3}C\equiv CH$ $-O(CH_{2}C\equiv CCH_{3})$ $-OCH(CH_{2}CH=CH_{2})_{2}$ $-OC_{2}H_{4}SH$ $-OC_{4}H_{2}I$	4 90 77 75 38 72 48 88 69			
$RO_{2} + COR_{3} + COC_{6}H_{11} + COC_{6}H_{11} + COC_{6}CH_{3})_{3} + COC_{6}CH_{2}C = CCH_{3}) + COC_{1}CH_{2}C = CCH_{3}) + COC_{1}CH_{2}CH = CH_{2})_{2} + CC_{2}H_{4}SH_{3} + COC_{4}H_{2}I_{3} + COC_{2}H_{4}(NC_{4}H_{4}O_{2}) + CC_{2}H_{4}(NC_{4}H_{4}O_{2}) + CC_{2}H_{4}(NC_{4}H$	4 90 77 75 38 72 48 88 69 74			
RO_{2} $-OR$ $-OCH_{3}$ $-OC_{6}H_{11}$ $-OC(CH_{3})_{3}$ $-O(CH_{2})_{3}C \equiv CH$ $-O(CH_{2}C \equiv CCH_{3})$ $-OCH(CH_{2}CH = CH_{2})_{2}$ $-OC_{2}H_{4}SH$ $-OC_{4}H_{2}I$ $-OC_{2}H_{4}(NC_{4}H_{4}O_{2})$ $-OC_{2}H_{4}OC_{2}H_{4}CI$	4 % yield 90 77 75 38 72 48 88 69 74 80			

in Figure 1 c,d, in line with the C_s symmetry of this isomer. Again, the resonance for the ether-substituted vertex (B6) was found at the lowest field.

Table 3 compares the experimentally observed and DFT/ GIAO-calculated ¹¹B NMR chemical shifts and assignments for both the **60Cy** and **50Cy** isomers. In contrast to the calculated shifts for the 5- and 6-halodecaboranes, which showed excellent agreement with the observed experimental values,^{1,2} a number of the calculated decaboranyl ether shifts showed somewhat larger than normal differences (>4 ppm) between the computational and experimentally observed shifts. The calculated shifts for the ether-substituted B6 vertex of **60Cy** and its immediate neighbor borons (B2, B5, and B7) had the poorest agreement. Nevertheless, the assignments of all of the **50Cy** and **60Cy** resonances were confirmed through the combined use of the DFT calculations and 2D COSY ¹¹B-¹¹B

Figure 1. (a) ¹¹B{¹H} NMR spectrum of 5OCy; (b) ¹¹B NMR spectrum (¹H-coupled) of 5OCy; (c) ¹¹B{¹H} NMR spectrum of 6OCy; (d) ¹¹B{¹H} NMR spectrum of 6OCy. The spectra are typical of all compounds synthesized with similar regiochemistry. Peaks are labeled with their vertex assignment. For the numbering scheme, see Table 2.

Table 3. DFT/GIAO (B3LYP/6-311G(d)) Calculated and Observed ¹¹B NMR Shifts (ppm) of 6OCy and 5OCy^a

 a Assignments are consistent with DFT calculated values and 2D COSY $^{11}\rm{B}-^{11}\rm{B}$ NMR in Figures S3 and S4, Supporting Information.

NMR experiments (Figures S3 and S4, Supporting Information) carried out on **60Me** and **50Me**.

As shown in the spectrum of $6 - ((CH_2 = CHCH_2)_2HCO) - B_{10}H_{13}$ (Figure S5, Supporting Information), the ¹H NMR spectra of the 6OR compounds showed, in addition to the C-H resonances, two intensity-2 bridging-hydrogen resonances, along with 5 terminal B-H resonances in 1:4:2:1:1 ratios in line with their C_s-symmetric structures. The ¹H NMR spectra of the 5OR isomers, as shown in the spectrum of $5 - ((CH_2 = CHCH_2)_2)$ HCO)-B₁₀H₁₃ (Figure S6, Supporting Information), had similar C-H resonances, but in agreement with their C₁-symmetric structures, exhibited seven terminal B-H resonances in 1:1:3:1:1:1:1 ratios along with four intensity-1 bridging-proton resonances. As was previously observed in the ¹H NMR spectra of the 5X compounds,² three of the bridge protons were positioned upfield (above -1.5 ppm), while the other was at lower field near 0.5 ppm. A 2D HCOR ¹¹B-¹H NMR experiment (Figure S7, Supporting Information) confirmed that the lower-field bridge resonance arises from the proton at the B5-B6 edge that is adjacent to the B5-ether substituent.

ORTEP drawings of the crystallographically determined structures are shown in Figures 2, 3, 4, 5, and 6. Comparisons of the B–B intracage bond distances in both the 5- and 6-substituted decaboranyl ethers with the **5X** and **6X** halodecaboranes, respectively,^{1,2} showed no significant differences. Likewise, as was the case for the halodecaboranes,^{1,2} there were no significant differences in the intracage B–B bond lengths in the **5OR** and **6OR** isomers.

Significant backbonding interactions from π -donating substituents on polyborane cages have been previously observed in both halogenated and amino-substituted derivatives.^{1,2,25} Backbonding from O to B in the decaboranyl ethers was evidenced by shortened B–O bonds and an sp² hybridized oxygen. Table 4 compares the values for the B-O bonds lengths and the B-O-C angles in the decaboranyl ethers with those found in $B(OCH_3)_{3,4}^{26}$ where π -backbonding is strong, and in $B(OCH_3)_4^{-27}$ where π -backbonding is impossible. The B-Obond lengths in the 5- and 6-decaboranyl ethers (ranging from \sim 1.33 Å to \sim 1.37 Å) are guite similar to those found in $B(OMe)_3$ (1.359(6) Å) and significantly shorter than those in $B(OCH_3)_4^-$ (~1.46 Å, average). The decaboranyl ether B-O-C bond angles were all near 120°, consistent with an sp² hybridization of the cage-bound oxygen that would optimize π -backbonding. The B–O–C angle in B(OCH₃)₃ is similar, at 119.7°, while the same angle in $B(OCH_3)_4^-$ is only 116°.

As can also be seen in Table 4, the B–O bond lengths and B–O–C angles in the decaboranyl ether compounds are more similar to that found in 2-(CH₃O)-1,12-C₂B₁₀H₁₁ (1.3884(16) Å and 119.76(10)°)⁵ than to those of the anionic (C₂H₅O)-B₁₂H₁₁^{2–} (1.442(5) Å and 115.9(3)°)²⁸ and 2-(ClC₄H₈O)-1-CB₁₁H₁₁⁻ (1.409(3) Å and 118.4(2)°)²⁹ clusters consistent with the greater degree of O to B backbonding that would be expected for the neutral polyborane ethers.

Computational Studies of the Reaction Pathway. As described earlier, the substitution reactions in eqs 1 and 2 proceeded with surprising regioselectivites. Nevertheless, it was possible to identify reasonable pathways for the transformations of **6X** to **5OMe** and **5X** to **6OMe** using DFT/IRC calculations. As can be seen in Figure 7 for the reaction of **6CI** with methanol, nucleophilic attack of the alcohol—oxygen at B5 pushes its terminal hydrogen upward to form the **TS1** transition state. In **TS1**, the oxygen is still 2.23 Å from B5 and the B—Cl bond has

Figure 2. ORTEP drawings of the crystallographically determined structures of (a) $6 \cdot (ClC_2H_4OC_2H_4O) \cdot B_{10}H_{13}$, (b) $5 \cdot (ClC_2H_4OC_2-H_4O) \cdot B_{10}H_{13}$. Selected bond distances (Å) and angles (°) for: (a) B6 - O1, 1.3548(13); O1 - C1, 1.4364(13); B6 - B5, 1.8025(17); B5 - B10, 1.9631(18); B5 - B2, 1.8021(17); B6 - B2, 1.7327(16); B9 - B10, 1.7924(19); B9 - B4, 1.7180(17); C1 - O1 - B6, 120.74(8); O1 - B6 - B5, 129.07(9); B6 - B5 - B10, 117.65(8); O1 - B6 - B2, 131.82(9); B5 - B6 - B7, 104.63(8); B8 - B9 - B10, 104.60(8). (b) B5 - O1, 1.3604(19); O1 - C1, 1.4372(17); B5 - B6, 1.810(2); B5 - B10, 2.031(2); B8 - B7, 1.939(2); B6 - B7, 1.798(2); B5 - B2, 1.826(2); B5 - B1, 1.770(2); B6 - B2, 1.733(2); B4 - B9, 1.723(2); B2 - B7, 1.775(2); C1 - O1 - B5, 122.93(11); B6 - B5 - B10, 115.19(11); O1 - B5 - B2, 132.56(13); O1 - B5 - B10, 112.13(12); B5 - B10 - B9, 115.75(11); B5 - B1 - B10, 70.73(10); O1 - B5 - B10, 111.63(11); O1 - B5 - B6, 125.81(12); B5 - B6 - B7, 105.36(11); B8 - B9 - B10, 105.18(12).

only slightly lengthened from 1.78 to 1.82 Å. As the oxygen moves closer to B5, three hydrogens (the B5 terminal hydrogen and 2 bridging hydrogens) move to *endo*-positions on B5, B6, and B7 to form INT1. In INT1, the decreased B-O bond length (1.61 Å) is accompanied by a corresponding increase in the B5-B6 distance from 1.81 to 2.40 Å, but at this point, there is no additional lengthening of the B-Cl bond. As the oxygen moves closer (1.49 Å) to B6 to form TS2, the chlorine begins to detach

Figure 3. ORTEP drawings of the crystallographically determined structures of **5OMe**. Selected bond distances (Å) and angles (°): B5–O1, 1.370(3); O1–C1, 1.434(2); B5–B6, 1.826(3); B6–B7, 1.803(3); B5–B10, 2.046(3); B8–B7, 1.968(3); B5–B1, 1.761(3); B1–B10, 1.746(3); B8–B3, 1.757(3); B6–B2, 1.732(3); B2–B3, 1.780(3); B4–B9, 1.718(3); B7–B3, 1.756(2); C1–O1–B5, 120.82(15); B6–B5–B10, 112.99(14); O1–B5–B2, 131.29(15); O1–B5–B1, 121.56(15); B5–B10–B9, 117.61(13); B5–B1–B10, 71.38(11); B7–B3–B8, 68.14(11); B5–B6–B7, 104.90(13); B8–B9–B10, 105.79(14).

Figure 4. ORTEP drawing of the crystallographically determined structure of $6 \cdot ((CH_3)_3CO) \cdot B_{10}H_{13}$. Selected bond distances (Å) and angles (°): (a) B6 - O11, 1.335(2); O11 - C12, 1.470(2); B6 - B5, 1.826(3); B5 - B10, 1.994(3); B5 - B1, 1.764(3); B5 - B2, 1.806(3); B6 - B2, 1.739(3); B9 - B10, 1.793(3); B9 - B4, 1.718(3); C12 - O11 - B6, 129.10(15); O11 - B6 - B5, 133.69(17); O11 - B6 - B7, 122.91(16); B6 - B5 - B10, 118.50(15); O11 - B6 - B2, 136.39(16); B5 - B10 - B9, 118.03(15), B5 - B6 - B7, 103.07(14); B10 - B9 - B8, 104.63(15).

(B6–Cl, 2.42 Å) from the cage forming a five-membered B–Cl–H–O–B ring structure (Figure 8) that allows the Cl to bond with the methanolic hydrogen (1.74 Å). In the final step, the hydrogen is transferred from the oxygen to the chlorine (H–Cl, 1.32 Å) with the elongated H–O bond length (1.82 Å) typical of those found for hydrogen-bonded ethers.³⁰ As a result of the chlorine leaving the cage, the *endo*-B6-H moves to the vacated terminal B6 position and the *endo*-hydrogen-bonded HCl/ decaboranyl–ether adduct is not stable under the experimental reaction conditions, since the HCl is immediately neutralized by NaHCO₃ to liberate the final decaboranyl ether.

An analogous pathway was found for the reaction of methanol with **5Cl** (Figure 9). Nucleophilic attack of the alcohol at B6 occurs through **TS3** to form **INT2**. The **INT2** structure is similar to **INT1**, with a 1.61 Å B6–O distance and three *endo*-hydrogens. As the oxygen moves closer to B6 (1.49 Å), the **TS4** transition state is formed, which, like **TS2**, has a cyclic five-membered configuration

Figure 5. ORTEP drawing of the crystallographically determined structure of one of the two independent molecules of $5-(CH_3C \equiv CCH_2O)-B_{10}H_{13}$. Selected bond distances (Å) and angles (°): B5–O1, 1.3828(17); O1–C1, 1.4336(15); B5–B6, 1.793(2); B5–B10, 2.044(2); B8–B7, 1.954(2); B6–B7, 1.792(2); B5–B1, 1.7605(19); B1–B10, 1.747(2); B6–B2, 1.726(2); B4–B9, 1.720(2); B7–B3, 1.743(2); C1–O1–B5, 117.61(10); B6–B5–B10, 114.93(10); O1–B5–B2, 131.45(11); O1–B5–B1, 126.77(10); B5–B10–B9, 116.61(10); B5–B1–B10, 71.28(8); B7–B3–B8, 67.91(9); B5–B6–B7, 105.31(10); B8–B9–B10, 105.45(11).

Figure 6. ORTEP drawing of the crystallographically determined structure of $6,6' - (OC_6H_{10}O) - (B_{10}H_{13})_2$. Selected bond distances (Å) and angles (°): B6 - O11, 1.3549(19); O11 - C12, 1.4506(17); B6 - B5, 1.804(2); B5 - B10, 1.980(2); B5 - B1, 1.749(2); B1 - B10, 1.748(2); B5 - B2, 1.799(2); B6 - B2, 1.733(2); B9 - B4, 1.717(3); C12 - O11 - B6, 122.22(12); O11 - B6 - B5, 123.37(13); B6 - B5 - B10, 118.00(12); B5 - B6 - B7, 104.11(11); B8 - B9 - B10, 104.73(12).

Table 4. Crystallographically Determined B–O Bonds Lengths and Angles

	B-O length (Å)	$C{-}O{-}B$ angle (°)
B(OCH ₃) ₃ ²⁴	1.359(6)	119.7
$[B(OCH_3)_4^{-}]^{25}$	1.46 (avg)	116 (avg)
6-(ClC ₂ H ₄ OC ₂ H ₄ O)-B ₁₀ H ₁₃	1.3548(13)	120.74(8)
5-(ClC ₂ H ₄ OC ₂ H ₄ O)-B ₁₀ H ₁₃	1.3604(19)	122.93(11)
5-(CH ₃ O)-B ₁₀ H ₁₃ (5OMe)	1.370(3)	120.82(15)
6-((CH ₃) ₃ CO)-B ₁₀ H ₁₃	1.335(2)	129.10(15)
$5-(CH_3C \equiv CCH_2O)-B_{10}H_{13}$	1.3828(17)	117.61(10)
$6,6'-(OC_6H_{10}O)-(B_{10}H_{13})_2$	1.3549(19)	122.22(12)
$2 - (CH_3O) - 1, 12 - C_2B_{10}H_{11}^5$	1.3884(16)	119.76(10)
$[(C_2H_5O)-B_{12}H_{11}^{2-}]^{26}$	1.442(5)	115.9(3)
$[2\text{-}(\text{ClC}_4\text{H}_8\text{O})\text{-}1\text{-}\text{CB}_{11}\text{H}_{11}^{-}]^{27}$	1.409(3)	118.4(2)

with an elongated B6–Cl (2.55 Å) distance (Figure 10) that facilities the initial H–Cl bonding interaction (H–Cl, 1.73 Å). In the final step, the hydrogen transfer from the oxygen (H–O,

Figure 7. DFT calculated pathway from **6Cl** to **5OMe**. Calculations performed at the B3LYP/6-311G(d) level of theory at 298 K. Electronic energies are given in kcal/mol.

Figure 8. Bond distances and angles in the 5-membered ring portion of INT1, TS2, and the hydrogen-bonded combination of 6OMe and HCl.

1.87 Å) to the chlorine (H-Cl, 1.31 Å) is complete to again produce the hydrogen-bonded decaboranyl ether. The chlorine is no longer attached to the cage and the *endo*-B5-H has moved to the vacated terminal B5-position with the *endo*-hydrogens on B5 and B7 moving back into bridging positions. Again, under the

Figure 9. DFT calculated pathway from 5Cl to 6OMe. Calculations performed at the B3LYP/6-311G(d) level of theory at 298 K. Electronic energies are given in kcal/mol.

Figure 10. Bond distances and angles in the 5-membered ring portion of INT2, TS4, and the hydrogen-bonded combination of 6OMe and HCl.

experimental reaction conditions, the hydrogen-bonded HCl is neutralized by $NaHCO_3$ to liberate **6OMe**.

The higher activation energy of **TS4** (21.9 kcal/mol) compared to that of **TS2** (18.3 kcal/mol) is consistent with the slower rates of the **5X** reactions compared to those of **6X**. Likewise, optimization of **TS2** for the other 6-halodecaboranes found that the activation energy decreased in order **6F** (26.5 kcal/mol) > **6Cl** > **6Br** (13.4 kcal/mol) > **6I** (11.9 kcal/mol) consistent with the observed reaction rates (**6I**, **6Br** > **6Cl** \gg **6F**). Despite the relatively fast rates of the reactions of alcohols with **6I**, the ease of the isomerization of **6I** to **5I** under slightly basic conditions² resulted in final products of lower purity than those formed from **6Br**.

Deuterium Labeling Studies. Complete bridge deuteration without deuterium incorporation into any terminal B-H positions had been previously achieved for $B_{10}H_{14}$ by its reaction with a biphasic mixture of D_2O and dioxane at room temperature and short reaction times.³¹ Likewise, when **6Br** or **5Br** were stirred in biphasic CDCl₃/D₂O mixtures, analysis by ¹H and ¹¹B NMR (Figures S1 and S2, Supporting Information) showed selective deuterium exchange of all four bridging hydrogens with no measurable deuterium incorporation at any terminal B-H sites.³²

According to the mechanisms in Figures 7 and 9, the reactions of the bridge-deuterated halodecaboranes with methanol should result in one of the bridging deuterons moving to the position vacated by the halogen (i.e., the bold **D** in eqs 6 and 7).

As predicted by the proposed mechanism, a comparison of the ¹¹B NMR spectrum of **50Me**, a product of the reaction of **6Br** with methanol (according to eq 1), to that of the product of the reaction of μ -D₄-6Br with either CH₃OH (eq 6, X = Br) or CD₃OD showed that the doublet B6 resonance in the **50Me** spectrum (Figure 11a) had changed to a singlet in the Figure 11b,c spectra indicating deuterium incorporation at the B6 terminal position.³³ The peak is sharper when CH₃OH is replaced with CD₃OD since the absence of a methanolic hydrogen eliminates any presubstitution H/D exchange with the bridging deuterons that would then result in some hydrogen incorporation at B6.

When μ -D₄-**5Br** was reacted with C₂D₅OD in CDCl₃ (eq 8) at 70 °C, the ¹¹B NMR spectrum of the μ -D₃-5-D-6-(C₂D₅O)-B₁₀H₉ product showed a broadened resonance at \sim -15.5 ppm (B5,7, as assigned in Figure S2, Supporting Information) consistent with the superposition of a singlet and doublet (B5 and B7, respectively, in eq 8) indicative of incorporation of deuterium into one of these vertices (Figure 12).³⁴ This observation is again consistent with the mechanism shown in Figure 9.

In summary, combined experimental and computational studies indicate that the reactivity imparted by the halo-substituents of the 5- and 6-halodecaboranes activates nucleophilic attack by the alcohol at an adjacent boron site, ultimately substituting alkoxide for halide. The unusual regioselectively observed for these substitution reactions resembles that of an organic $S_N 2'$ reaction (eq 9), since, unlike in conventional $S_N 1$ and $S_N 2$ substitution reactions where the incoming group takes the place

Figure 11. ¹¹B NMR spectrum of the products of the following reactions: (a) $6Br + CH_3OH$, (b) μ -D₄- $6Br + CH_3OH$, and (c) μ -D₄- $6Br + CD_3OD$. The * denotes the B6 resonance.

Figure 12. ¹¹B NMR spectrum of the products of the following reactions: (a) $5Br + C_2H_5OH$ and (b) μ -D₄- $5Br + C_2D_5OD$. The * denotes the B5,7 coincident resonance.

of the leaving group, the substitution occurs at a site away from the leaving group.

In the organic $S_N 2'$ reactions, electrons are moved through the π -system to the leaving group, while in the halodecaborane

substitution reactions, hydrogen-migration provides the pathway for electron transport (eq 10).

These reactions now provide general synthetic routes to decaboranyl ethers starting with the readily available 6- and 5-halodecaboranes. A range of 1° , 2° , and 3° ethers have been produced bearing polymerizable goups (alkenes, alkynes), nucleophiles (thiol), and electrophiles (alkyl halides, succinimide), as well as new types of polyol-derived linked-cage compounds. The results of our ongoing investigations of the chemical properties and applications of these new decaboranyl ethers will be reported in future publications.

ASSOCIATED CONTENT

Supporting Information. Full experimental and spectroscopic details for all synthesized compounds and DFT optimized Cartesian-coordinates and energies for relevant compounds and reaction steps. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: lsneddon@sas.upenn.edu.

ACKNOWLEDGMENT

We gratefully acknowledge the National Science Foundation and US Department of Energy for the support of this research.

REFERENCES

(1) Ewing, W. C.; Carroll, P. J.; Sneddon, L. G. Inorg. Chem. 2008, 47, 8580-8582.

(2) Ewing, W. C.; Carroll, P. J.; Sneddon, L. G. Inorg. Chem. 2010, 49, 1983–1994.

(3) Sivaev, I. B.; Bregadze, V. I.; Sjöberg, S. Collect. Czech. Chem. Commun. 2002, 67, 679–727 and references therein.

(4) Sivaev, I. B.; Prikaznov, A. V.; Naoufal, D. Collect. Czech. Chem. Commun. 2010, 75, 1149–1199.

(5) Kabytaev, K. Z.; Mukhin, S. N.; Glukhov, I. V.; Starikova, Z. A.; Bregadze, V. I.; Beletskaya, I. P. Organometallics **2009**, *28*, 4758–4763.

(6) (a) Nie, Y.; Hu, C.-H.; Li, X.; Yong, W.; Dou, J.-M.; Sun, J.; Jin, R.-S.; Zheng, P.-J. Acta Crystallogr. 2001, C57, 897–899. (b) Paxon,

T. E.; Hawthorne, M. F. Inorg. Chem. **1975**, 14, 1604–1607.

(7) Hawthorne, M. F.; Miller, J. J. J. Am. Chem. Soc. 1960, 82, 500.

(8) Loffredo, R. E.; Drullinger, L. F.; Slater, J. A.; Turner, C. A.; Norman, A. D. *Inorg. Chem.* **1976**, *15*, 478–480.

(9) Stuchlík, J.; Heřmánek, S.; Plešek, J.; Štíbr, B. Collect. Czech. Chem. Commun. 1970, 35, 339–343.

(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision B.05; Gaussian, Inc.: Pittsburgh PA, 2003.

(11) SAINT version 7.68A: Bruker AXS Inc., Madison, WI, USA.

- (12) SHELXTL version 6.14: Bruker AXS Inc., Madison, WI, USA.
- (13) SADABS version 2008/1. Bruker AXS Inc., Madison, WI, USA.

(14) CrystalClear version 1.36: Rigaku Corporation Inc., The Woodlands, TX, USA.

(15) *CrystalStructure: Crystal Structure Analysis Package. version* 3.60. Rigaku Corporation Inc., The Woodlands, TX, USA.

(16) REQAB4: A Program for Absorption Correction of X-ray Diffraction Data, Jacobsen, R. A., Rigaku Corporation Inc., The Woodlands, TX, USA.

(17) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.; Polidori, G. J.; Spagna, R. J. Appl. Crystallogr. **1999**, 32, 115–119, SIR97.

(18) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

(19) Beachell, H. C.; Schar, W. C. J. Am. Chem. Soc. 1958, 80, 2943–2945.

(20) Ingold, C. K. Chem. Rev. 1934, 15, 225–274.

(21) Finch, A.; Gardner, P. J.; Watts, G. B. *Trans. Faraday Soc.* **1967**, 63, 1603–1607.

(22) Fenwick, J. T. F.; Wilson, W. J. J. Chem Soc. Dalton Trans. 1972, 13, 1324–1326.

(23) (a) Barth, R. F. Appl. Radiat. Isot. 2009, 67, S3-S6. (b) Hatanaka, H.; Nakagawa., Y. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28, 1061-1066.

(24) (a) Sivaev, I. B.; Bregadze, V. I. *Eur. J. Inorg. Chem.* **2009**, 1433–1450 and references therein. (b) Ma, L.; Hamdi, J.; Wong, F.; Hawthorne, M. F. *Inorg. Chem.* **2006**, *45*, 278–285.

(25) (a) Li, Y.; Sneddon, L. G. J. Am. Chem. Soc. 2008, 130, 11494–11502. (b) Roth, M.; Meyer, F.; Paetzold, P. Collect. Czech. Chem. Commun. 1997, 62, 1299–1309. (c) Paetzold, P. Eur. J. Inorg. Chem. 1998, 143–153. (d) Garrett, P. M.; Ditta, G. S.; Hawthorne, M. F.

J. Am. Chem. Soc. 1971, 93, 1265–1266. (26) Hartl, M. A.; Williams, D. J.; Acatrinei, A. I.; Stowe, A.; Daemen,

L. L. Z. Anorg. Allg. Chem. 2007, 633, 120–126. (27) Alcock, M. W.; Hagger, R. M.; Harrison, W. D.; Wallbridge,

M. G. H. Acta Crystallogr. 1982, B38, 676–677.
 (28) Peymann, T.; Lork, E.; Gabel, D. Inorg. Chem. 1996,

35, 1355–1360. (29) Mair, F. S.; Morris, J. H.; Gaines, D. F.; Powell, D. J. Chem. Soc.,

(29) Mair, F. S.; Morris, J. H.; Gaines, D. F.; Powell, D. J. Chem. Soc., Dalton Trans. **1993**, 135–141.

(30) (a) Legon, A. C. Faraday Discuss. 1994, 97, 19–33. (b) Ferreira,
F. C.; Oliveira, B. G.; Ventura, E.; do Monte, S. A.; Braga, C. F.; Araújo,
R. C. M. U.; Ramos, M. N. Spectrochim. Acta A 2006, 64, 156–160. (c)
Antolínez, S.; López, J. C.; Alonso, J. L. Chem. Phys. Lett. 2001, 334, 250–256.

(31) Hawthorne, M. F.; Miller, J. J. J. Am. Chem. Soc. 1958, 80, 754.

(32) While the parent compound $B_{10}H_{14}$ was not found to undergo H/D exchange when stirred in mixtures of D_2O and nonethereal solvents (ref 31), **6Br** quickly underwent bridge-deuteration with D_2O in CDCl₃. This is likely an indication of the enhanced acidity of the halogenated cages relative to $B_{10}H_{14}$.

(33) Since ¹¹B-D coupling is small, evidence for terminal deuteration would be found in the collapse of B-H coupling normally seen in the ¹¹B NMR spectra of each decaboranylether. For example, for BD_4^- : $J_{B-D} = \sim 12 \text{ Hz}$, compared to BH_4^- : $J_{B-H} = \sim 80 \text{ Hz}$. See: Than, C.; Morimoto, H.; Andres, H.; Williams, P. G. J. Labeled Compd. Radio. Pharm. **1998**, 38, 693–711.

(34) Owing to the increased rate of deuterium exchange between bridging deuterium and ethanolic hydrogen at elevated temperatures, the reactions μ -D₄-SBr with CH₃OH resulted in products with a mix of H/D incorporation at B6.