Inorganic Chemistry

C–N Bond-Forming Self-Condensation of Amide Promoted by MoCl₅ at Room Temperature

Sara Dolci,[†] Fabio Marchetti,^{*,†} Guido Pampaloni,^{*,†} and Stefano Zacchini[‡]

⁺Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, I-56126 Pisa, Italy [‡]Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy

Supporting Information

ABSTRACT: The acylamidinium complex MoOCl₄[MeC-(O)N(Ph)C(Me)=NHPh] (2) was obtained by selective self-condensation of MeC(O)NHPh promoted by MoCl₅. Otherwise, the stable chloroiminium salt [MoOCl₄{HC $(O)NMe_2$ [CH(Cl)=NMe₂] (3) was isolated from HC- $(O)NMe_2/MoCl_5$.

E arly-transition-metal halides in high oxidation states are feasible materials for a huge number of metal-directed reactions.¹ In this context, the relevant oxophilicity of MoCl₅ (1) has been exploited for performing several transformations involving oxygen compounds, including the oxidative coupling of alkoxyarenes,² chlorination of alcohols, aldehydes, and epoxides,³ N-acylation of sulfonamides,⁴ acylative cleavage of ethers,⁵ and C-C coupling.⁶

In spite of the interesting catalytic performances, the reactivity of 1 with limited amounts of oxygen species has not been exhaustively explored heretofore.⁷ Actually, the good elucidation of this chemistry is complicated by the high moisture sensitivity of 1 and by the fact that organic substrates may be readily activated by coordination to 1 even at room temperature.^{8,9} Somehow amazingly, the list of crystallographically characterized compounds, obtained by a simple Lewis base addition to 1, is restrained to MoCl₅(OPCl₃).⁸

An improved knowledge of the direct interaction of 1 with oxygen donors may help the understanding and advancement of related catalytic processes. Moreover, some information about the mechanistic aspects of the long-time-known MoCl₅catalyzed polymerizations of olefins or acetylenes may be achieved. Indeed, these processes were often reported to be associated with the presence of "oxygen promoters" (e.g., amides, ethers).¹⁰ On the other hand, there is current interest for the metal-catalyzed activation of amides by transition-metal derivatives;¹¹ indeed, such organic species are the least reactive among a series of carbonylic compounds, and, for instance, the Lewis acidic $TiCl_4^{12}$ and MX_5 (M = Nb, Ta; X = F, Cl)¹³ were reported to interact with amides, giving stable coordination adducts. In view of the above considerations, we decided to study the reactivity of 1 with small amounts of simple amides. Thus, molybdenum pentachloride reacted with a 2-fold excess of MeC(O)NHPh, in strictly anhydrous dichloromethane, affording an emerald-green solution after a few hours. The product of the reaction was identified as the paramagnetic $[\mu_{\text{eff}}(293 \text{ K}) = 1.60 \mu_{\text{B}}]$ molybdenum(V) adduct

Figure 1. Molecular structure of 2. Displacement ellipsoids are at the 30% probability level. Selected bond lengths (Å) and angles (deg): Mo-(1)-O(1) 1.647(6), Mo(1)-O(2) 2.386(5), C(1)-O(2) 1.222(10), C(1)-N(1) 1.409(9), N(1)-C(2) 1.379(9), C(2)-N(2) 1.292(11); O(1)-Mo(1)-O(2) 174.8(3), O(2)-C(1)-N(1) 119.3(7), C(1)-N-C(1)-N(1)(1)-C(2) 123.2(7), N(1)-C(2)-N(2) 122.1(7).

 $MoOCl_4[MeC(O)N(Ph)C(Me)=NHPh]$ (2).¹⁴ The molecular structure of 2 is drawn in Figure 1.

The zwitterionic complex 2 consists of a cationic acylamidinium ligand $[MeC(O)N(Ph)C(Me)=NHPh]^+$ coordinated to the $[MoOCl_4]^-$ anion. The molybdenum center displays a distorted octahedral geometry with the two O ligands in mutual trans positions $[O(1)-Mo(1)-O(2) 174.8(3)^{\circ}]$, analogous to that previously seen in the structurally characterized anion $[MoOCl_4(DMF)]^-$ (DMF = *N*,*N*-dimethylformamide).¹⁵ The Mo(1)-O(1) [1.647(6) Å] and Mo(1)-O(2) [2.386(5) Å] interactions are considerably different: the former has doublebond character, whereas the latter is a single-coordination bond. The [MeC(O)N(Ph)C(Me)=NHPh]⁺ ligand displays bonding parameters similar to those found in the previously described acylamidinium salts $[HC(O)NHCH=NH_2]$ $[SbCl_6]^{16}$ and $[^tBuC$ (O)NHC(^tBu)=NH₂]₂[S₂O₇].¹⁷ In particular, both C(1)-O(2) [1.222(10) Å] and C(2)-N(2) [1.292(11) Å] interactions are almost pure double bonds, while the O(2)-C(1)-N(1)-C-(2)-N(2) core is nearly planar [mean deviation from the leastsquares plane 0.0202 Å]. Interestingly, an intramolecular hydrogen bond is present between N(2)-H(2) and the molybdenum-bound O(2) [N(2)-H(2) 0.858(10) Å; H(2)···O(2) 1.83(5) Å; N- $(2) \cdots O(2) 2.558(7) \text{ Å}; N(2) - H(2) \cdots O(2) 141(8)^{\circ}].$

The IR spectrum of 2 (solid state) reflects the X-ray features: a broad envelope absorption centered at 1618 cm⁻¹ has been attributed to the stretching vibrations of the C= O^{18} and C=N

Received: January 19, 2011 Published: March 31, 2011

Scheme 1. MoCl₅-Assisted Activation of Amides

bonds, whereas the band related to the Mo=O stretching falls at 986 cm⁻¹. In addition, a weak absorption at 3181 cm⁻¹ may account for the N-H···O interaction. The UV-vis spectrum (CH₂Cl₂ solution) is in accordance with that available in the literature for molybdenum(V) oxochloro compounds.^{8b,e,19}

The synthesis of **2** appears to be basically the result of a multistep process. Hence, chlorine—oxygen exchange between the molybdenum center and one MeC(O)NHPh molecule may take place first, affording the chloroiminium salt [C(Me)(Cl)= NHPh][MoOCl₄] (see compound **A** in Scheme 1).²⁰ Then, the chloroiminium cation would undergo nucleophilic attack by a second amide, possibly favored by preliminary coordination of the same amide to $[MoOCl_4]^-$. It is remarkable that mediation of the molybdenum species makes possible a coupling reaction that was never observed in the past, despite the fact that the chemistry of chloroiminium compounds with amides has been extensively explored.²¹ The formation of the C–N bond to give **2** requires the release of HCl as a consequence of concerted cleavage of N–H and C–Cl bonds.

In order to collect evidence for formation of the supposed intermediate A (see Scheme 1), we treated 1 in CH_2Cl_2 with 1 equiv of MeC(O)NHPh. Thus, a dark-red solid was obtained upon removal of the solvent and analyzed by IR spectroscopy. The presence of intense absorption bands at 1674 cm⁻¹ $(C=N)^{22}$ and 996 cm⁻¹ (Mo=O)⁹ agrees with the formation of A.²³ The absence of further absorptions in the carbonyl region indicates that activation of the amide C=O moiety has occurred to a complete degree. Coherent with the pathway depicted in Scheme 1, treatment of the dichloromethane mixture obtained from a 1:1 molar reaction of 1 with MeC(O)NHPh, with a second 1 equiv of amide, does yield a green solution of **2**.

The overall reaction leading to 2 is an unprecedented example of metal-assisted self-condensation of amide, giving an acylamidinium cation via activation of the C=O and N-H bonds. Four points deserve to be outlined: (a) couplings of amide fragments generally take place with C-C bond generation;²⁴ (b) to the best of our knowledge, the preparation of acylamidinium species by amide self-condensation was never reported before;²⁵ (c) in general, the amide C=O bond is hardly activated by transition-metal derivatives; (d) oxygen abstraction by MoCl₅ from carbonylic compounds was previously conjectured, but no unambiguous X-ray evidence has been provided until now.^{8b}

In accordance with the pathway proposed for the 1:2 molar ratio reaction of 1 with acetanilide, the analogous reaction with N-disubstituted amide should stop at the stage of the chloroiminium salt. In fact, the absence of N-bound hydrogen atoms disfavors the C–N bond formation because of the impossibility to eliminate HCl. In order to investigate the point, we have studied the reactivity of 1 with DMF. The 1:2 molar reaction,

Figure 2. Structure of 3. Displacement ellipsoids are at the 30% probability level. Selected bond lengths (Å) and angles (deg): Mo-(1)-O(1) 1.662(3), Mo(1)-O(2) 2.234(3), O(2)-C(1) 1.246(5), C(1)-N(1) 1.317(5), N(1)-C(2) 1.455(5), N(1)-C(3) 1.467(5), Cl(5)-C(4) 1.673(5), C(4)-N(2) 1.259(6), N(2)-C(5) 1.536(6), N(2)-C(6) 1.472(6); O(1)-Mo(1)-O(2) 177.43(12), O(2)-C(1)-N(1) 123.5(4), C(1)-N(1)-C(2) 122.2(3), C(1)-N(1)-C(3) 120.9(3), C(2)-N(1)-C(3) 116.6(3), Cl(5)-C(4)-N(2) 122.8(4), C(4)-N(2)-C(5) 122.3(4), C(4)-N(2)-C(6) 123.5(4), C(5)-N(2)-C(6) 114.2(4).

performed in dichloromethane, afforded a green solution of $[MoOCl_4{HC(O)NMe_2}][CH(Cl)=NMe_2](3)$.¹⁴

The X-ray structure of the paramagnetic $[\mu_{eff}(293 \text{ K}) = 1.62 \mu_B]$ 3 is drawn in Figure 2.¹⁴ It consists of $[MoOCl_4\{HC(O)-NMe_2\}]^-$ anions¹⁵ and chlorodimethyliminium $[CH(Cl)=NMe_2]^+$ cations. The cation displays a distorted octahedral geometry, with $HC(O)NMe_2$ in the trans position with respect to Mo=O. The Mo(1)-O(1) [1.647(6) Å] and Mo(1)-O(2) [2.386(5) Å] interactions are in agreement with a double bond and a single bond, respectively.

The chlorodimethyliminium cation $[CH(Cl)=NMe_2]^+$ (the Vilsmeier reagent) was formerly described^{26,27} and has found vast application in synthetic chemistry.^{21,28} The X-ray characterization is reported here for the first time; however, some related compounds have been structurally determined, e.g., $[C(Me)(Cl)NH_2]Cl,^{29}$ $[C(Me)(Br)=NH_2]Br,^{30}$ $[C(Me)(Cl)=NH_2](15$ -crown-5)- $[TaCl_6],^{31}$ and $[C(Ph)(Cl)=NC(Ph)(C_7H_{10})(Cl)][SbCl_6].^{32}$ The C(4)–N(2) length [1.259(6) Å] is as expected for a double bond; otherwise, C(4)–Cl(5) [1.673(5) Å] is shorter than a single $C(sp^2)$ –Cl bond,³³ thus indicating some π interaction.

The IR spectrum of 3 shows absorptions ascribable to the iminium moiety (1658 cm⁻¹), the coordinated amide (1634 vs 1679 cm⁻¹ typical of uncoordinated HC(O)NMe₂³⁴), and the Mo=O unit (971 cm⁻¹).

The 1:1 molar reaction of **1** with DMF in dichloromethane yielded, after workup, a dark-red solid showing strong IR absorptions at 1653 cm⁻¹ (C=N)²² and 998 cm⁻¹ (Mo=O).⁹ This evidence suggests the presumable formation of the salt $[CH(Cl)=NMe_2][MoOCl_4]$ (see compound **A** in Scheme 1). The addition of a further 1 equiv of HC(O)NMe₂ results in the simple coordination of the amide to the metal, giving **3**. The lack of proton on the nitrogen atom of the HC(O)NMe₂ ligand in **3** prevents coupling with the iminium, at variance with that observed when MeC(O)NHPh was employed.

ASSOCIATED CONTENT

Supporting Information. X-ray crystallographic data in CIF format, experimental procedures for the synthesis, and crystal structures. This material is available free of charge via the Internet at http://pubs.acs.org. The supplementary

crystallographic data for **2** (CCDC 794357) and **3** (CCDC 794358) can also be obtained free of charge, upon request, from the Cambridge Crystallographic Data Centre at www.ccdc.cam. ac.uk/data_request/cif.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: fabmar@dcci.unipi.it (F.M.), pampa@dcci.unipi.it (G.P.).

ACKNOWLEDGMENT

The authors thank the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR, Roma), Programma di Ricerca Scientifica di Notevole Interesse Nazionale 2007–2008, for financial support.

REFERENCES

(1) Some recent references are as follows: (a) Smitha, G.; Chandrasekhar, S.; Reddy, C. S. Synthesis **2008**, 829 and references cited therein. (b) Rodriguez-Cisterna, V.; Villar, C.; Romea, P.; Urpí, F. J. Org. Chem. **2007**, 72, 6631. (c) Mamat, C.; Büttner, S.; Trabhardt, T.; Fischer, C.; Langer, P. J. Org. Chem. **2007**, 72, 6273. (d) Basavaiah, D.; Reddy, K. R. Org. Lett. **2007**, 9, 57. (e) Nguyen, V. T. H.; Bellur, E.; Appel, B.; Langer, P. Synthesis **2006**, 1103. (f) Anastasia, L.; Giannini, E.; Zanoni, G.; Vidari, G. Tetrahedron Lett. **2005**, 46, 5803.

(2) (a) Kumar, S.; Manickam, M. *Chem. Commun.* **1997**, 1615. (b) Waldvogel, S. R. *Synlett* **2002**, 622. (c) Kramer, B.; Fröhlich, R.; Bergander, K.; Waldvogel, S. R. *Synthesis* **2003**, 91.

(3) Coe, E. M.; Jones, C. J. Polyhedron 1992, 11, 3123.

(4) Reddy, C. R.; Mahipal, B.; Yaragorla, S. R. Tetrahedron Lett. 2007, 48, 7528.

(5) (a) Guo, Q.; Miyaji, T.; Gao, G.; Hara, R.; Takahashi, T. *Chem. Commun.* **2001**, 1018. (b) Guo, Q.; Miyaji, T.; Hara, R.; Shen, B.; Takahashi, T. *Tetrahedron* **2002**, *58*, 7327.

(6) (a) Guo, Q.; Li, L.; Chen, L.; Wang, Y.; Ren, S.; Shen, B. Energy Fuels 2009, 23, 51. (b) Reddy, C. R.; Rao, N. N.; Sudhakar, A. Lett. Org. Chem. 2008, 5, 473. (c) Hirao, T.; Kohno, S.; Enda, J.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1981, 22, 3633. (d) Graham, J. R.; Slaugh, L. H. Tetrahedron Lett. 1971, 12, 787.

(7) (a) Garner, C. D.; Charnock, J. M. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 3, pp 1329–1374. (b) Dori, Z. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 3, pp 973–1022. (c) Young, C. G. In Comprehensive Coordination Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Oxford, U.K., 2003; Vol. 4, pp 415–527. (d) Okamura, T.; Ueyama, N. In Comprehensive Coordination Chemistry II; McCleverty, J. A., Meyer, J. A., Meyer, T. J., Eds.; Elsevier: Oxford, U.K., 2003; Vol. 4, pp 529–573.

(8) (a) Larson, M. L. J. Am. Chem. Soc. 1960, 82, 1223. (b) Kepert,
D. L.; Mandyczewsky, R. J. Chem. Soc. A 1968, 530. (c) Ernst, T.; El-Kholi, A.; Müller, U.; Dehnicke, K. Z. Anorg. Allg. Chem. 1988, 566, 7. (d)
Hyde, J.; Magin, L.; Zubieta, J. J. Chem. Soc., Chem. Commun. 1980, 204.
(e) Horner, S. M.; Tyree, S. Y., Jr. Inorg. Chem. 1962, 1, 122.

(9) Dolci, S.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans. 2010, 39, 5367.

(10) (a) Düz, B.; Elbistan, C. K.; Ece, A.; Sevin, F. *Appl. Organomet. Chem.* **2009**, *23*, 359. (b) Masuda, T.; Hasegawa, K.; Higashimura, T. *Macromolecules* **1974**, *7*, 728. (c) Masuda, T.; Okano, Y.; Kuwane, Y.; Higashimura, T. *Polym. J.* **1980**, *12*, 907.(d) Naylor, F. E. U.S. Patent 3,336,280, 1967.

(11) (a) Zhang, L.; Zhou, D.; Ye, Y.; Liu, G.; Feng, E.; Jiang, H.; Liu, H. J. Org. Chem. 2010, 75, 3671. (b) Bian, Y.-J.; Liu, X.-Y.; Ji, K.-G.; Shu, X.-Z.; Guo, L.-N.; Liang, Y.-M. Tetrahedron 2009, 65, 1424. (c) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109. (d) Fernandes, A. C.; Romão, C. C. J. Mol. Catal. A: Chem. 2007, 272, 60. (e) Nath, D. C. D.;

Fellows, C. M.; Kobayashi, T.; Hayashi, T. Aust. J. Chem. 2006, 59, 218. (f) Patil, N. T.; Huo, Z.; Bajracharya, G. B.; Yamamoto, Y. J. Org. Chem. 2006, 71, 3612. (g) Martin, R.; Rodriguez Rivero, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 7079. (h) Goossen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed. 2005, 44, 4042.

(12) (a) Schwartz, D.; Heyer, R. J. Inorg. Nucl. Chem. 1967, 29, 1384.
(b) Gerrard, W.; Lappert, M. F.; Wallis, J. W. J. Chem. Soc. 1960, 2141.

(13) Marchetti, F.; Pampaloni, G.; Zacchini, S. *Eur. J. Inorg. Chem.* **2008**, 453 and references cited therein.

(14) See the Supporting Information.

(15) Fenske, D.; Jansen, K.; Dehnicke, K. Z. Naturforsch. 1986, 41B, 523.

(16) Allenstein, E.; Keller, K.; Hausen, H.-D.; Weidlein, J. Z. Anorg. Allg. Chem. **1987**, 554, 188.

(17) Hvoslef, J.; Tracy, M. L.; Nash, C. P. Acta Crystallogr., Sect. C 1986, 42, 353.

(18) The carbonyl IR absorption occurs at 1662 $\rm cm^{-1}$ in uncoordinated MeC(O)NHPh.

(19) (a) Piovesana, O.; Furlani, C. Inorg. Nucl. Chem. Lett. 1967, 3, 535.(b) Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984. (c) Collison, D. J. Chem. Soc., Dalton Trans. 1990, 2999.

(20) Bosshard, H. H.; Zollinger, Hch. Helv. Chim. Acta 1959, 42, 1659.

(21) (a) Kantlehner, W. In Advances in Organic Chemistry; Böhme, H., Viehe, H. G., Eds.; Wiley: New York, 1979; pp 6–58 and references cited therein. (b) Helbert, M.; Renou, J. P.; Martin, M. L. Tetrahedron 1979, 35, 1087. (c) Martin, M. L.; Ricolleau, G.; Poignant, S.; Martin, G. J. J. Chem. Soc., Perkin Trans. 2 1976, 182.(d) Jutz, C. In Advances in Organic Chemistry; Böhme, H., Viehe, H. G., Eds.; Wiley: New York, 1976; pp 226–341 and references cited therein.

(22) Hamed, A.; Müller, E.; Jochims, J. C. Tetrahedron 1986, 42, 6645.

(23) Red to yellow-brown [MoOCl₄]⁻ salts have been reported. (a) Beck, J.; Koch, M. Z. Anorg. Allg. Chem. **2006**, 632, 756. (b) Baumann, A.; Beck, J. Z. Anorg. Allg. Chem. **1998**, 624, 1725. (c) Beck, J.; Hengstmann, M. Z. Naturforsch. **1996**, 51B, 1415.

(24) (a) Lindsay, K. B.; Ferrando, F.; Christensen, K. L.; Overgaard, J.; Roca, T.; Bennasar, M.-L.; Skrydstrup, T. J. Org. Chem. 2007, 72, 4181. (b) Rangareddy, K.; Selvakumar, K.; Harrod, J. F. J. Org. Chem. 2004, 69, 6843. (c) Selvakumar, K.; Harrod, J. F. Angew. Chem., Int. Ed. 2001, 40, 2129. (d) Kashimura, S.; Ishifune, M.; Murai, Y.; Murase, H.; Shimomura, M.; Shono, T. Tetrahedron Lett. 1998, 39, 6199. (e) Ogawa, A.; Nanke, T.; Takami, N.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Appl. Organomet. Chem. 1995, 9, 461.

(25) Jochims, J. C.; Abu-El-Halawa, R. Synthesis 1990, 488 and references cited therein.

(26) Brosshard, H. H.; Mory, R.; Schmid, M.; Zollinger, Hch. Helv. Chim. Acta 1959, 42, 1653.

(27) Li, P.; Xu, J.-C. Tetrahedron 2000, 56, 4437.

(28) (a) Meth-Cohn, O.; Stanforth, S. P. . In *Comprehensive Organic Synthesis*; Trost, B. M, Fleming, I., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Vol. 3, pp 777–794. (b) Hamed, A.; Müller, E.; Al-Talib, M.; Jochims, J. C. *Synthesis* **198**7, 745.

(29) Williams, J. M.; Peterson, S. W.; Brown, G. M. Inorg. Chem. 1968, 7, 2577.

(30) Matkovic, B.; Peterson, S. W.; Williams, J. M. Croat. Chem. Acta 1967, 39, 139; Chem. Abstr. 1968, 68, 82133.

(31) Bulychev, B.; Bel'skii, V. K. Russ. J. Inorg. Chem. 1995, 40, 1834.
(32) Hitzler, M. G.; Freyhardt, C. C.; Jochims, J. C. Synthesis 1994, 509.

(33) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.

(34) Kaufmann, G.; Leroy, M. F. J. Bull. Soc. Chim. Fr. 1967, 402.