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I. INTRODUCTION

In this work we study the origin of the magnetic anisotropy of
a family of trigonal pyramidal iron(II) complexes supported by
derivatives of the tris(pyrrolyl-R-methyl) ligand. It was recently
discovered that these systems possess unusually large magnetic
anisotropies.1,2 The computational and theoretical results re-
ported here are used to analyze the effects of the geometrical
distortions due to the first coordination sphere (Jahn�Teller
effect) and the influence of the remote ligand substituents on the
magnetic anisotropy.

Single-molecule magnets (SMMs) are molecules that exhibit
slowmagnetic relaxation, which originates from an energy barrier
to inversion of the total molecular spin. The magnetic moment
can eventually be blocked if the thermal energy is smaller than the
barrier height. This slow relaxation enables such molecules to act
as molecular magnets, similar to the classical ones. This behavior
manifests itself by the presence of a magnetic hysteresis at low
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ABSTRACT: A theoretical, computational, and conceptual
framework for the interpretation and prediction of the magnetic
anisotropy of transition metal complexes with orbitally degen-
erate or orbitally nearly degenerate ground states is explored.
The treatment is based on complete active space self-consistent
field (CASSCF) wave functions in conjunction with N-electron
valence perturbation theory (NEVPT2) and quasidegenerate
perturbation theory (QDPT) for treatment of magnetic field-
and spin-dependent relativistic effects. The methodology is
applied to a series of Fe(II) complexes in ligand fields of almost
trigonal pyramidal symmetry as provided by several variants of
the tris-pyrrolylmethyl amine ligand (tpa). These systems have recently attracted much attention as mononuclear single-molecule
magnet (SMM) complexes. This study aims to establish how the ligand field can be fine tuned in order to maximize the magnetic
anisotropy barrier. In trigonal ligand fields high-spin Fe(II) complexes adopt an orbitally degenerate 5E ground state with strong in-
state spin�orbit coupling (SOC).We study the competing effects of SOC and the 5EXεmultimode Jahn�Teller effect as a function
of the peripheral substituents on the tpa ligand. These subtle distortions were found to have a significant effect on the magnetic
anisotropy. Using a rigorous treatment of all spin multiplets arising from the triplet and quintet states in the d6 configuration the
parameters of the effective spin-Hamiltonian (SH) approach were predicted from first principles. Being based on a nonperturbative
approach we investigate under which conditions the SH approach is valid and what terms need to be retained. It is demonstrated that
already tiny geometric distortions observed in the crystal structures of four structurally and magnetically well-documented systems,
reported recently, i.e., [Fe(tpaR)]� (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl, Ph (3), and 2,6-difluorophenyl, Dfp (4), are
enough to lead to five lowest and thermally accessible spin sublevels described sufficiently well by S = 2 SH provided that it is
extended with one fourth order anisotropy term. Using this most elementary parametrization that is consistent with the actual
physics, the reported magnetization data for the target systems were reinterpreted and found to be in good agreement with the ab
initio results. The multiplet energies from the ab initio calculations have been fitted with remarkable consistency using a ligand field
(angular overlap) model (ab initio ligand field, AILFT). This allows for determination of bonding parameters and quantitatively
demonstrates the correlation between increasingly negative D values and changes in the σ-bond strength induced by the peripheral
ligands. In fact, the sigma-bonding capacity (and hence the Lewis basicity) of the ligand decreases along the series 1 > 2 > 3 > 4.
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temperature. The discovery of SMMs nearly 20 years ago3 has
induced large-scale research efforts since such species might
ultimately find applications in high-density information storage,4

quantum computing,5�7 or even magnetic refrigeration.8 How-
ever, successful design of SMMs rests on the ability to find
molecules with a sufficiently large magnetic anisotropy such that
the blocking temperature is raised from nearly zero to more
practical values, ideally room temperature. Clearly, this ultimate
and ambitious goal requires a clear understanding of the magne-
to-structural correlations that dominate the magnetic anisotropy.

Experimental and theoretical studies on manganese-based,
oxo-bridged SMMs have been used to explore the parameters
that govern the spin-reversal barriers in such complexes.9 This
barrier has been expressed as U = S2|D|, where S is the spin
ground state and D is the axial zero-field splitting parameter that
quantifies the magnitude of the magnetic anisotropy. In addition
to S and D, the magnitude of the magnetic exchange coupling
between constituent metal centers in a SMM, J, serves to define
the temperature range over which the barrier is effective, since it
determines how well isolated in energy the spin ground state is
from excited states. Despite the requirement of large S and D,
efforts to increase these parameters simultaneously have been
prohibited by their interrelationship, where it has been shown
already in ref 10 that D is inversely proportional to S2 and thus
U = S2|D| does not or only weakly depends on the ground state
total spin. The importance of this result for single-molecule
magnetism has been only recently recognized.11�13 Note that the
proportionality of D to 1/S2 is not specific to the case of
magnetically interacting ions in clusters but is a fundamental
result of rigorous theory as described in detail in ref 10. It has
already been verified experimentally that clusters exhibiting large
values of S tend to show small values of D.9 For instance, in the
highest spin ground state yet observed for a molecule, S = 83/2,14

D is so small that no slow magnetic relaxation could be detected,
despite the comparatively large local anisotropy due to the
Mn(III) ions involved in the cluster.

InMn(III)-based oxo-bridged SMMs themagnetic anisotropy
stems from nearly parallel alignments of the Mn(III) local spins
arising from Jahn�Teller splitting of its 5E ground state and the
spin�orbit coupling (SOC) of the resulting orbitally nonde-
generate ground state with excited electronic states (5T2) bearing
angular momenta. Magnetic anisotropies described by a total D
of this origin cannot become large. Thus, recently attention has
been turned to transition metal ions with orbitally (nearly)
degenerate ground states. Such states with strong in-state SOC

arise in certain dN configurations, provided that a 3- or 4-fold axis
is present. In such systems, the energy gap U can become larger
than 100 cm�1 even in complexes with first-row transition
metals.1,2 Due to much larger SOC the magnetic anisotropies
are largely enhanced in rare earth (4f) or actinide (5f)
complexes.15�19 Orbital moments of transition 3d, 4d, and
5d complexes are usually quenched by off-axial geometric
distortions;20�28 however, using geometrically constrained and
sterically bulky macrocyclic ligands it was possible to stabilize
low-coordinate high-spin iron(II) complexes29�34 with axial D
values as large as �50 cm�1 in a planar (β-diketiminate)FeCH3

complex.29

Recently, hybrid ligand scaffolds of Fe(II) with trianionic tris-
(pyrrolyl-R-methyl)amines35 have been reported to display a 3-fold
coordination geometry around the Fe(II) center and an unusually
large value of D = �40 cm�1 as found in K[Fe(tpaMes)].1 Slow
relaxation of the magnetization in the presence of a small dc field
with an effective relaxation barrier ofUeff = 42 cm

�1 provides the
first example of a mononuclear transition metal complex with a
SMM-like behavior.1

Expanding on this discovery, a series of four (Figures 1 and 2)
structurally and magnetically well-documented compounds,
[Fe(tpaR)]� (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl,
Ph (3), and 2,6-difluorophenyl, Dfp (4) have been reported to
display similar properties tuned by a variation of the substituents
R.2 Using the same compounds oxygen-atom transfer properties,
intramolecular aromatic C�H hydroxylation (for 3, Me3NOf
Me3N + O), activation of nitrous oxide (N2O f N2 + O), and
intermolecular hydrogen-atom abstraction (for 2) have been
demonstrated.35

Figure 1. Structures of trigonal pyramidal FeN4 tpa-based complexes with SMMproperties. Orange, blue, yellow, and gray ellipsoids represent Fe, N, F,
and C atoms, respectively. Hydrogen atoms have been omitted for the sake of clarity (adopted from ref 2).

Figure 2. Geometrical parameters, numbering of ligator atoms of
FeN4

�complexes, definition of the geometrical parameters r, R, and β,
and orientation of the Cartesian axes with respect to the
molecular frame.
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Calculations of the electronic structure and magnetic proper-
ties of complexes with orbitally degenerate or nearly degenerate
ground states represent a real challenge for first-principles
methods. DFT-based perturbation theory is not directly applic-
able because of the multireference nature of such ground states.
Note, however, that a general DFT-based ligand field approach
to the parameters of the spin Hamiltonian (SH), LFDFT, has
been proposed.27,36�38 At the same time, the systems under
consideration are too large to be treated by the usual implemen-
tations of variational configuration interaction (CI) approaches
that cover dynamic correlation effects. Even the application of
complete active space self-consistent field (CASSCF)39 in con-
junction with second-order perturbation corrections of the
CASSCF energies (such as the complete active space perturba-
tion theory, CASPT2,40�44 or the N-electron-valence-perturba-
tion theory, NEVPT2) is very challenging.45�48 The potential of
using such approaches to calculate SH parameters of
mononuclear13,49 and binuclear50�52 transition metal complexes
has been recently demonstrated. A general first-principles meth-
od to calculate the spin-dependent part of the energy of ground
and excited multiplet energies in larger polynuclear complexes
has been proposed.53 Here, we apply the recent implementation
of the CASSCF and NEVPT2 methods in our computer code
ORCA54 to perform large-scale correlated calculations on sys-
tems of an unprecedented size. The results presented in this work
provide a theoretical, computational, and conceptual framework
for interpretation, analysis, and prediction of the magnetic
anisotropy in transition metal complexes with orbitally degen-
erate or nearly degenerate ground states.

Using this first-principles method we study the effects of the
small 5EXε multimode Jahn�Teller distortions and the influ-
ence of the substituents of the tpa ligand on the magnetic
anisotropy by a full rigorous treatment of all spin multiplets
stemming from the quintet and triplet states within the d6

configuration of Fe(II) and by an approximate effective SH
approach. The comparison between these two independent
treatments allows one to specify in which cases and under which
conditions the SH approach is still valid. Furthermore, it
becomes evident which terms are minimally required in the SH
in order to describe the actual level structure correctly. We show
below that the tiny geometric distortions observed in the crystal
structures of the well-documented systems reported recently
([Fe(tpaR)]� 2, 3, and 4 (Figure 1) are enough to lead to only
five low-lying and thermally accessible spin S = 2 sublevels
described sufficiently well by a S = 2 spin Hamiltonian, provided
that it is extended with one fourth-order tensor spin operator.
Using this approach, the reported magnetization data have been
reinterpreted and found to be in good agreement with the ab
initio results. Furthermore, the multiplet energies from the ab
initio calculations have been fitted with remarkable consistency
using a ligand field (angular overlap) model (ab initio ligand
field), thus allowing one to deduce bonding parameters. Using
this approach one is able to explore the dependence of D on the
geometric and electronic structure of the ligand system.

II. THEORY AND COMPUTATIONS

II.1. Computational Details. Since the results of the calcula-
tions are expected to be sensitive to small structural details, we
conducted the calculations on the four compounds (1�4) on the basis
of both crystal and optimized structures. Geometry optimizations
have been performed using the nontruncated systems along with the

Perdew�Becke�Ernzerhof (PBE) functional,55 empirical van der
Waals corrections56 for the DFT energy, the scalar relativistic zero-
order regular approximation (ZORA),57 and the scalar relativistically
recontracted (SARC)58 version of the def2-TZVP basis set.59

Ground and excited state energies and wave functions as well as
magnetic properties were calculated on geometries from X-ray diffrac-
tion data1,2 and from DFT geometry optimizations using the CASSCF
module of ORCA (to account for static correlation) together with theN-
electron valence perturbation theory (NEVPT2)45�48 (to account for
dynamic correlation). Unlike the popular CASPT2 method, NEVPT2
does not suffer from intruder state problems because the important two-
electron interactions inside the active space are already included in the
definition of the zeroth-order Hamiltonian.60 This results in a spectrum
of the zeroth-order Hamiltonian that is much closer to the spectrum of
the full Hamiltonian than what one can achieve with a one-body zeroth-
order Hamiltonian. This ensures properly positive and sufficiently large
energy denominators that are imperative for a stable perturbation series.
In CASPT2 one needs to introduce level shift parameters in the energy
denominators in order to avoid divergence. The final energies then
depend on the user defined level shift.61,62

The nontruncated systems 1�4 were used in the calculations. It is
worth emphasizing that this is essential to obtain realistic results.
Truncated versions of the systems only capture a fraction of the
differences in magnetic properties observed experimentally. This will
be elaborated below.

For the correlated calculations, basis sets of def2-TZVPP, def2-
TZVP, def2-SVP, and def2-TZVP(-f) quality for Fe, N, H, and C,
respectively, alongside with the corresponding auxiliary sets have been
used.54 In this set of calculations only the metal d orbitals were included
in the active space. According to conventional wisdom, this set is too
small as a second d shell is usually required in CASPT2 calculations
along with the corresponding metal�ligand bonding orbitals. Techni-
cally, these extensions do not present essential problems; however, our
preliminary calculations with extended active spaces did not improve the
results noticeably. Hence, in keeping with Ockham’s razor, we used the
smallest possible active space that cleanly maps onto ligand field theory.
The fact that inclusion of metal�ligand bonding orbitals is not necessary
probably stems from the limited covalency between high-spin Fe(II) and
the ligand. We do not expect this to be a universal conclusion for
CASSCF/NEVPT2 calculations.

Realistic treatment of SOC is crucial for successful modeling of the
magnetic properties. In a 5E orbitally degenerate ground state SOC
occurs in the first order of perturbation theory (PT) but generally at
second order for orbitally nondegenerate states with S > 1/2. This leads
to mixing of states which differ in their spin byΔS=(1,0. Through this
mixing, SOC reintroduces some orbital angular momentum into the
electronic ground state that is otherwise well known to be quenched
through low symmetry. In QDPT,63 one starts by obtaining an approx-
imate solution of the Born�Oppenheimer (BO) Hamiltonian of a
multireference type such as CASSCF in the form given by

jΨSS
I æ ¼ ∑

μ
CμI jΦSS

μ æ ð1Þ

where the upper indices SS stand for a many-particle wave function
(configuration state function, CSF) with a spin quantum number S and
spin projection quantum number MS = S. SOC lifts the (2S + 1)
degeneracy of the total spin S of ĤBO eigenfunctions. Thus, the basis for
the SOC treatment are the |ΨI

SSæ states, in which I extends to all states
calculated in the first step of the procedure and Ms = �S...S labels all
members of a given term. Matrix elements of SOC over the |ΨI

SM
sæ basis

functions are easily generated making use of the Wigner�Eckart
theorem, since all (2S + 1) term components share the same spatial
part of the wave function.64 In this way, both the SOC and the Zeeman
interaction can be accurately accounted for.
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The Zeeman interaction can be accounted for by diagonalization of
the matrix representation ĤBO + ĤSOC + ĤZ in the |ΨI

SMsæ basis

ÆΨSMs
I jĤBO þ ĤSOC þ ĤZjΨS0M0

s
J æ

¼ δIJδSS0δMsM
0
s
ESI þ ÆΨSMs

I jĤSOC þ ĤZjΨS0M0
s

J æ ð2Þ

The complete manifold of 5 quintet and 45 triplet states was included in
the calculations, and SOC was accounted for by the mean field (SOMF)
Hamiltonian.65,66 Evaluation of the matrix elements of the orbital
momentum operators between the |ΨI

SMsæ basis functions is done in
terms of one-electron matrix elements within the MO basis. This
procedure carries us beyond the perturbative regime and accounts
for strong SOC effects to all orders. Test calculations additionally
including the 50 singlet states did not change the results. Similar to
the procedures followed in the closely related CASSCF/CASPT2
methodology with inclusion of SOC,44 matrix elements were calculated
using the state-averaged CASSCF (SA-CASSCF) wave functions and
NEVPT2 corrections are only included in the diagonal of the QDPT
matrix.

An approximate counterion/solvent modeling using the conductor-
like screening model (COSMO)67,68 was also attempted. However,
possibly due to the limited total charge of �1 of the target systems, the
results are almost identical to the ones in which the COSMOmodel was
not included.

In order to study vibronic coupling effects (the present systems
represent 5EXε Jahn�Teller problems) we used a truncated model
obtained by freezing the geometry of each Fe(tpa) complex unit and
replacing the bulky substituents at the pyrrolyl fragments with hydrogen
atoms (C�H bond distances and H�C�C bond angles were reopti-
mized with the Fe(tpa) geometry unchanged).
II.2. Magnetic Properties. II.2.1. Exact Treatment within the

Manifold of the 5E Ground Term. Under the combined action of SOC
and vibronic coupling, the 5E ground state of trigonal Fe(II) splits into
10 sublevels spaced in a narrow interval of 500 cm�1. This manifold is
well separated from all other excited states by an energy gap of more than
5000 cm�1.

The leading term in the Hamiltonian consists of the diagonal energies
resulting from SA-CASSCF eigenvalues, corrected for dynamical corre-
lation by NEVPT2. Within the complete triplet and quintet manifold of
the d6 configuration, 160 microstates arise that interact via ĤSOC. This
operator as well as the set of spin Ŝi and angular momentum operators L̂i
(i = x, y, z) are represented by off-diagonal (complex valued) 160� 160
matrices. Denoting the 10 lowest CI eigenvectors of ĤSOC by the
rectangular submatrix C(1:160,1:10), the matrices of Ŝi and L̂i are
transformed into the (10 � 10) Ŝi0 and L̂i0 i matrices of the 5E model
subspace (eqs 3 and 4)

Ŝi
0 ¼ C†ŜiC ð3Þ

L̂i
0 ¼ C†L̂iC ð4Þ

Denoting the diagonal matrix of the 10 ĤSOC lowest eigenvalues by Λ̂,
we then solve the eigenvalue equation for the operator matrix Ĥ = Λ̂+
ĤZ (ĤZ = the Zeeman matrix) on a grid of points on a unit sphere
defined by the vectors (nx, ny, nz) (eq 5) using the value of the pro-
bing magnetic field B = Bo (in T) and for the sake of numerical
differentiation (see below) two more incremental values B = Bo + 0.01
and B = Bo + 0.02.

Ĥ ¼ Λ̂

þ βB½nxðL̂x 0 þ g0Ŝ
0
xÞ þ nyðL̂y 0 þ g0Ŝy

0Þ

þ nzðL̂z0 þ g0Ŝz
0Þ� ð5Þ

The field-dependent adiabatic magnetization of a crystalline powder has
been calculated using a numerical integration over all magnetic field
directions (eq 6, NA = the Avogadro number, kB = the Boltzmann
constant,Z= the partition function, i.e., the sumof Boltzmann factors for
all states under consideration) defined by the vector (nx, ny, nz) or
alternatively by the polar angles j and θ.

Mav ¼ NAkBT
Z π

0

Z 2π

0

d
dBðj,θÞlnðZðBðj, θÞÞÞ
� �

1
4π

sin2 θ dθ dj

ð6Þ
Note that this treatment is by definition more accurate than the direct
diagonalization of the SOC and magnetic field together in the basis of
the nonrelativistic magnetic sublevels of the 5E term. This is because
the SOC of the 5E state with all other quintet and triplet ligand field
states is accounted for to all orders. The only thing that is missing is
the magnetic field-induced mixing of the 10 lowest SOC-corrected
relativistic eigenstates with the other states. This must be tiny given
that the orbital Zeeman matrix elements are on the order of 1 cm�1

while the energy differences to the next low-lying SOC-corrected
states are, by construction, higher than 5000 cm�1. Technically, the
simultaneous diagonalization of the SOC and magnetic field in the
entire ligand field manifold would not be a problem of course.
However, the present method has the advantage that the effective
Hamiltonian obtained in the SOC-corrected 10 � 10 spaces maps
most cleanly onto the spin Hamiltonian to be discussed in the next
section.

II.2.2. Connection to the Spin Hamiltonian. The 5E ground state of
Fe(II) in trigonal ligand field is described by a spin S =2 and two singly
occupied orbitals e(dxz) or e(dyz) which carry an extra electron in
addition to the half-filled [(dxzdyz)

2dz2
1(dx2�y2dxy)

2] shell. These states
give rise toMl =(1 eigenfunctions of the angular momentum operator
L̂z(eq 7).

j5E, ( 1æ ¼ ð1= ffiffiffi
2

p Þðj5E, dxzæ ( ij5E , dyzæÞ ð7Þ
Since the states |5E,1æ and |5E,�1æ cannot mix by L̂x and L̂y (Ml changes
by 1 under the action of these operators) and the excited |5A1,0æ state is
much higher in energy69 (see section III.1, Figure 5), the 5E ground state
SOC operator ĤSOC in this approximation takes the simple form

ĤSOC ¼ � ðζ=4ÞL̂zŜz ð8Þ
Thus, within the |Ms,Mlæ basis ĤSOC is represented by a diagonal 10 �
10 matrix with elements: �(ζ/4)MsMl (Ms = 0, (1, (2 and Ml =
(1).70�74 ζ is the effective (covalently reduced) SOC ‘constant’ of
Fe(II) (see ref 75 for a detailed discussion). On symmetry lowering from
C3v toCs or evenC1, the

5E(dxz) and
5E(dyz) sublevels split and mix with

each other, as described by the two energy parameters δ1 and δ2,
respectively (eq 9). Thus, within the basis of eq 7 the ligand field opera-
tor ĤLF (eq 10) is off-diagonal; It mixes the terms |Ms,1æ and |Ms,�1æ.

5EðdxzÞ5EðdyzÞ
�δ1 δ2
δ2 δ1

" #
ð9Þ

ĤLF ¼ δ L̂2x � L̂2y

� �
; δ ¼ � δ1 þ iδ2 ð10Þ

The physical origin of δ will be thoroughly analyzed in section II.3.
Analytical expressions for the eigenvalues of thematrix ĤSOC + ĤLF (

5E)
are given in eq 11 (see Supporting Information for a derivation) along
with symmetry notations pertaining to theD3 holohedrized symmetry. It
is worth noting that within the many-electron basis of the 5E ground
term, the A1 and A2 states (eq 11) remain accidentally degenerate in the



7464 dx.doi.org/10.1021/ic200196k |Inorg. Chem. 2011, 50, 7460–7477

Inorganic Chemistry ARTICLE

absence of SOC mixing with excited states (see below).

EðA1,A2Þ ¼ (
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δ2 þ ζ2

p
EðEÞ ¼ (

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16δ2 þ ζ2

p
EðEÞ ¼ ( δ

ð11Þ

From eqs 7�10 the origin of the magnetic anisotropy immediately
emerges; without off-axial distortions (δ = 0) there is a 1:1 mixing
between the xz and yz sublevels of the 5E term by SOC, and this
leads to addition of an orbital angular momentum contribution of 1/2
(L = 1 = (1/2)go, go = 2, the electron free spin g factor) to the spin-
only value of S = 2 in the ground state and subtracts the same amount
from the excited state, leading to total spin moments J of these two
states of 5/2 (a ‘sextet’ ground state) and 3/2 (a ‘quartet’ excited
state), respectively. However, these states are split further by SOC
even in zero field. It follows immediately (within the approximations
inherent in eq 11) that a SH of the usual form for J = 5/2 and 3/2
applies to this case. Since L̂x = L̂y = 0, this SH is of the Ising type.
Energies and their corresponding Ĵz = Ŝz + (1/2)L̂z eigenvalues (MJ,
Table 1) along with the spin Hamiltonian of eq 12 (E = 0 in this case)
have been applied to obtain the ZFS and g-tensor parameters
included in Table 1; the value of D is correspondingly negative for
J = 5/2 (the ground state, Table 1, second row, first column) and
positive for the J = 3/2 (the excited state, Table 1, third row, first
column), and one additional fourth-order term (B40) in the param-
etrization emerges.

Ĥef f
ZFS ¼ D Ĵ2z � JðJ þ 1Þ=3

h i
þ ðE=2Þ Ĵ2þ þ Ĵ2�

� �
þ B40 35Ĵ4z � ð30JðJ þ 1Þ� 25Þ̂J2z

h
þ 3JðJ þ 1ÞðJðJ þ 1Þ � 2Þ� ð12Þ

Turning now to the other extreme, δ. ζ, and applying perturbation
theory, energy expressions for the zero-field split levels of the two
S = 2 states can be derived. The resulting expressions for D are listed

in Table 1 (third column); a SH of the broadly used form of eq 11
with a negative (positive) D for the ground (excited) state applies in
this case

Ĥef f
ZFS ¼ D½Ŝ2z � SðS þ 1Þ=3� þ E Ŝ2x � Ŝ2y

� �
ð13Þ

In the Fe(II) complexes considered that possess close to trigonal
geometries, ζ. δ, i.e., much closer to the case with δ = 0 (eq 12). It
is interesting to observe that the lowest A1 and A2 states are
nondegenerate and thus (being 1:1 mixtures of functions with
Ml = (1, see Supporting Information) nonmagnetic, i.e., MJ = 0 in the
absence of a magnetic field. However, they become polarized
(mixed) by an applied magnetic field which recovers values of
MJ = (5/2 (see Table 1, first column). This causes a Zeeman splitting
of 5βB. Off-axial distortions lead to a first-order (δ splitting of the
second E (MJ =(1/2) term which tends to recover pure 5E(dxz) and
5E(dyz) many-electron wave functions starting from |Ms, (1æ
(eq 7). Thus, it competes with the Zeeman splitting. If δ . βB/2,
the Zeeman splitting is suppressed, thus leading to a dominant MJ =
Ms = 0 situation which remains even with an applied magnetic field.
In this particular case one can redefine the SH of eq 12 in terms of a
formal spin of S = 2 for two noninteracting electronic states with D
negative (positive) in the ground (excited) state and correspond-
ingly modified g-tensor values of gz = 2.5(1.5) (gx = gy = 0). Under
these conditions the SH of eq 13 is still applicable, when extended
with a fourth-order tensor operator term represented by the para-
meter B40, eq 14. This is similar to eq 12 (for energy expressions for
D and B40 see Table 1, second column). Both the signs and the
magnitudes of D and B40 are dominated by SOC (ζ) but are reduced
by the distortions (δ, Table 1, second column).

Ĥef f
ZFS ¼ D Ŝ2z � SðS þ 1Þ=3

h i
þ ðE=2Þ Ŝ2þ þ Ŝ2�

� �
þ B40 35Ŝ4z � ð30SðS þ 1Þ � 25ÞŜ2z

h
þ 3SðS þ 1ÞðSðS þ 1Þ � 2Þ� ð14Þ

We should note that eq 11 is not exact but contains approximations,
i.e., the neglect of mixing via SOC of 5E with the excited 5A1 and

5E
and the triplet states. Upon accounting for such a mixing the topmost
pair of states A1 and A2, which are accidentally degenerate in eq 11,
split and shift downward in energy (Figure 3). Comparison with

Table 1. 5E Ground State Multiplet Energies and Spin-
Hamiltonian Parameters in Trigonal FeN4 Complexes in
Dependence of Spin�Orbit Coupling (ζ) and off-Axial
Splitting (δ)a

δ = 0 ζ . δ . βB/2 δ . ζ

E MJ E MS E MS

A1,A2: ζ/2 (3/2 ζ/2 (2 δ + ζ2/(8δ) (2

E: ζ/4 (1/2 ζ/4 (1 δ + ζ2/(32δ) (1

E: 0 (1/2 δ, �δ 0,0 δ, �δ 0,0

E: �ζ/4 (3/2 �ζ/4 (1 �δ � ζ2/(32δ) (1

A1,A2: �ζ/2 (5/2 �ζ/2 (2 �δ � ζ2/(8δ) (2

D: ζ/8 D: (3ζ/28) � (δ/7) D: (ζ2/32δ)

B40: 0 B40: �(ζ/840) + (δ/140) B40: 0

gz: 2 gz: 1.5 gz: 2

gx,y: 0 gx,y: 0 gx,y: 2

D: �9ζ/112 D: �(3ζ/28) + δ/7 D: �(ζ2/32δ)

B40: ζ/3360 B40: (ζ/840) � (δ/140) B40: 0

gz: 2 gz: 2.5 gz: 2

gx,y: 0 gx,y: 0 gx,y: 2
aEntries in the second and third rows include SH paramaters for the
lower and upper S = 2 nonrelativistic spin multiplets of the 5E state.

Figure 3. 5E split sublevels originating from the interplay between the
splitting of 5E (2δ) and the effective spin�orbit coupling parameter ς
deduced from NEVPT2 calculation on [Fe(tpatbu)]� including the full
set of S = 2 (5 states) and S = 1(45 states). The plot has been constructed
using the AOMX program package,85 along with ligand field parameters
obtained from a fit to CASSCF results for (1, Table 6b) allowing for a
variation of δ.
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exact calculations (see section II.2.1 and results below) shows that
the lowest five thermally accessible spin sublevels are well described
by the spin Hamiltonian of eq 14 in a quite wide range of δ values;
already small distortions described by δ lead to a splitting pattern
typical for a S = 2 spin with a negative D as illustrated in Figure 3.

Within the basis of the five spin eigenfunctions withMs= (2, (1, 0,
the Hamiltonian of eq 14 takes the following matrix form

HZFS

j�2æ j�1æ j0æ j1æ j2æ
2D þ 12B40 0

ffiffiffi
6

p
E 0 0

0 �D� 48B40 0 3E 0ffiffiffi
6

p
E 0 �2D þ 72B40 0

ffiffiffi
6

p
E

0 3E 0 �D� 48B40 0
0 0

ffiffiffi
6

p
E 0 2D þ 12B40

2
6666664

3
7777775

ð15Þ
From the separations between the energies of the computed E((2 f
(1) and E((2f 0) levels (cf. diagonal energies of eq 15)D and B40 are
given by

D ¼ � 1
7
½Eð ( 2 f ( 1Þ þ Eð ( 2 f 0Þ�

B40 ¼ 1
140

Eð ( 2 f 0Þ � 4
3
Eð ( 2 f ( 1Þ

� � ð16Þ

and |E| is just 1/6 the off-axial splitting of (1.
The parameters of the SH (eq 14) �D, B40, E, and additionally g

have been fitted to the reported field-dependent magnetization data
of complexes 1�4 using a nonlinear optimization tool provided by
MatLab that minimizes the maximum deviation between the calcu-
lated and the experimental values of the magnetization (see Support-
ing Information for details regarding the fitting). The resulting
values of D, B40, and E can then be compared with the ab-initio-
computed ones.
II.3. Multimode 5EXε Jahn�Teller Effect. The 5E ground state

of trigonal Fe(II) is vibronically unstable and subject to distortions along
ε vibrations which can lower the energy and lift the orbital degeneracy.
Restricting our attention to linear 5EXε Jahn�Teller coupling, the
ground state adiabatic potential energy is represented by the matrix of
eq 17,76�78 where Kε and Fε are the force constant and linear vibronic

coupling parameters, respectively.

ð1=2ÞKεðQ 2
x þ Q 2

y Þ þ FεQx �FεQy

�FεQy ð1=2ÞKεðQ 2
x þ Q 2

y Þ � FεQx

2
4

3
5
ð17Þ

In the complexes under consideration, focusing on the N-donor atoms
involved in bonding to Fe(II), there are three types of symmetrized
localized modes of ε symmetry involved: two-bending (in- and out-of-
plane, εd and εo) and one stretching (εs) whose high- (x orQx, C3vfCs)
and low- (y or Qy, C3v f C1) symmetry components are visualized in
Figure 4. In the [Fe(tpaR)]� complex these modes are mixed with
vibrational coordinates with contributions from all atoms of the tpa
macrocycle to give rise to numerous normal modes of the same
symmetry.

Thus, the simple eq 17, valid for a single active ε vibration (ideal
vibronic system), has to be extended with a number of similar
symmetry-related linear vibronic and restoring force terms resulting
in a multimode Jahn�Teller problem of the 5EX(ε(1) + ε(2) + ...)
type. To this end, we apply the formalism for treating such problems
described in ref 78. More specifically, it was shown that the adiabatic
potential surface of eq 17 extended with all contributing terms can be
represented in configurational space in terms of a displacement along
a single interaction mode ε(qx,qy) (eq 18).

j5E, dxzæ j5E, dyzæ
ð1=2Þðq2x þ q2y Þ þ Fqx �Fqy

�Fqy ð1=2Þðq2x þ q2y Þ þ Fqx

2
4

3
5 ð18Þ

In the above expression qε, qζ, F, and the Jahn�Teller stabilization
energy EJT are given in eqs 19�21. The linear vibronic coupling Fεi
and the force constant Kεi parameters are characteristic of each of the
normal modes involved.

qγ ¼ 1
F ∑

Nε

i¼ 1
FεiQγi; γ ¼ x, y ð19Þ

F ¼ ∑
Nε

i¼ 1

F2εi
Kεi

 !1=2

ð20Þ

EJT ¼ 1
2 ∑

Nε

i¼ 1

F2εi
Kεi

ð21Þ

The force constant parameters Kεi are directly accessible from the
Hessian matrix, resulting from an ab initio or DFT calculation, while
Fεi can be calculated as follows. Focusing on a given normal mode,
described by the set of mass-weighted displacement vectors qγi;(γ = x,y),
we note that because of the localized nature of the 3d6 ground state of the
Fe(II) complex only movements of the first coordination sphere, i.e., the
local modes (Figure 4), contribute toFεi. This leads to the expression of
Fεi in terms of the local vibronic coupling constants Fε of eq 22, weighted
with the van Vleck coefficients aiε,

79 i.e., the projection of a given normal
mode qγi;(γ = x,y) on the local mode Qγ (eq 23). Focusing on the
in-plane bending modes εd (Figure 4, see Figure 2 for ligand number-
ing and coordinate orientation) with dominant contributions to the
Jahn�Teller activity, aiε have been obtained from the scalar product
between the vectors 1/(6)1/2(2,�1,�1) and 1/(2)1/2(0,1,�1) repre-
senting the local modes of eqs 24 and 25 and the ab-initio-computed
normal modes.

Figure 4. Symmetrized displacements contributing to the Jahn�Teller
splitting of the 5E ground state of the FeN4 complexes.
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Fεi ¼ 5E, dxzj ∂V
∂qxi

j5E, dxz
� �

¼ 5E , dxzj ∂V
∂Qx

j5E , dxz
� �

∂Qx

∂qxi
¼ aiεFε ð22Þ

Qγ ¼ ∑
Nε

i¼ 1
aiεqγi; ðγ ¼ x, yÞ ð23Þ

Qx ¼ 1ffiffiffi
6

p Rð2δR34 � δR23 � δR24Þ ð24Þ

Qy ¼ 1ffiffiffi
2

p RðδR23 � δR24Þ ð25Þ

Fε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFC=ð2∑

Nε

i
a2iε=KεÞ

s
ð26Þ

Within the approximation of a linear 5EXε Jahn�Teller coupling
(eq 18), the Jahn�Teller stabilization energy EJT (eq 21) is just 1/4 of
the 5E energy splitting EFC, the energy of the Franck�Condon (FC)
transition from the lower to the upper sheet of adiabatic potential
energy surface taken at the ground state equilibrium geometry.
Adopting a value of EFC as given by the CASSCF(NEVPT2) results,
the value of the unknown parameter Fε has been fixed using eq 26, as
derived from combination of eqs 21 and 22.
II.4. Ligand Field Interpretations of the ab Initio Data.

Significant insight in terms of familiar chemical concepts can be obtained
by mapping the ab initio results onto ligand field theory. This might be
viewed as another effective Hamiltonian treatment. While above we
restricted our attention to the magnetic sublevels arising from the 5E
manifold, we here focus on the entire subset of ligand field excited states
and their parametric representation in terms of the angular overlap
model (AOM)80�83 variant of ligand field theory.84 This results in
bonding parameters that are to a large extent transferable between
systems. Here, multiplet energies are expressed in terms of one-electron
matrix elements between molecular orbitals (MOs) with dominant d

character, thus defining an effective (5 � 5) ligand field matrix that
describes the anisotropic interaction of the central metal orbitals with the
ligandorbitals. Interelectronic repulsion andSOCare accounted for, as usual,
by covalently reduced atom-like parametersB,C (Racah parameters), and ζ.

The AOM introduces perturbations on the metal d electrons from
well-aligned ligand σ and π orbitals, which are described by energy
increment parameters eσ and eπ, respectively. These parameters are
specific to the chemical nature of the ligand and also depend on the
metal�ligand distance. In addition, factors that solely reflect the angular
distribution of the ligands around the metal (e.g., the symmetry of the
ligand field) are introduced. They are calculated from the actual structure
of the system, without any fitting or arbitrariness. For complexes 1�4 with
geometries close to trigonal and a planar FeN3moiety, the (5� 5) AOM
matrix takes a block diagonal form given by eqs 27 and 28 for the (dyz,
dx2�y2;dxz, dxy) and dz2 orbital sets of e and a1 symmetry, respectively.
The parameters eσ

e and eσ
a describe σ-antibonding interactions with the

equatorial pyrrolide and axial amine ligands, while eπs
e reflects the effect

due to the out-of-plane orbitals of the pyrrolide ligand. With ψ = 0�
(in this case the pyrrolide ring makes a dihedral angle γ of 90� with the
FeN3 plane, ψ = 90 � γ) the antibonding effect of eπs

e on the dyz(dxz)
orbitals is minimal, whereas on the dx2�y2(dxy) orbitals it is maximal.

e dyzðdxzÞ dx2�y2ðdxyÞ
ð3=2Þðsin2 ψÞeeπs ð3=4Þsinð2ψÞeeπs
ð3=4Þsinð2ψÞeeπs ð3=8Þ½4ðcos2 ψÞeeπs þ 3eeσ

2
4

3
5 ð27Þ

a1dz2 : ð3=4Þeeσ þ eaσ ð28Þ
The set of ligand field parameters eσ, eπ,B,C, and ζ are usually adjustedwith
respect to high-resolution spectroscopy.81�83 However, quite frequently,
this is a seriously underdetermined problem; usually there are more para-
meters than observables. Here we follow the opposite route and take the
ab initio results as a much more comprehensive numerical database for
the AOM parametrization.

The AOM model is applied in a stepwise procedure as follows: We
start with the energies of the four spin-allowed ligand field excitations
following their assignment. These transition energies are not directly

Figure 5. SA-CASSCF orbital shapes and energies and the ground state configuration of [Fe(tpa)Mes]�.
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affected by the parameters B and C. We adjust the parameters eσ
e , eσ

a , and
eπs
e of the Fe�N bonds from a best fit to these transitions. In the second
step, we adopt these one-electron parameters without changes and
obtain the parameters B and C from the computed energies of the spin-
forbidden transitions. In the present case these are the transitions from
the 5E ground state to the triplet ligand field excited states. Finally,
adopting the values of eσ, eπ, B, and C and switching on the SOC, we fix
the value of ζ from the computed energies of the 5E ground state SOC
split sublevels. These calculations have been done by interfacing the
ORCA program with the well-established ligand field program
AOMX.85 The use of artificially high symmetry was allowed for the
sake of simplifying the assignments.

III. RESULTS AND DISCUSSION

III.1. Chemical Bonding, Geometric Structures, and Vibro-
nic Activity. The ground state structures and properties of the
[Fe(tpaR)]� series are governed by the Fe�tpa bonding inter-
actions, which are reflected in the shapes and energies of the
MOs dominated by 3d functions of Fe(II). This is illustrated in
Figure 5, taking [Fe(tpaMes)]� as an example. With the purely π-
type dxz,yz and the σ-antibonding dz2 and dxy,dx2�y2 orbitals
(eqs 27 and 28), an orbital energy ordering typical for a trigonal
pyramidal complex results. The absence of a second axial ligand,
due to steric hindrance of the bulky tpaR ligands, leads to con-
siderable stabilization (included in eq 28 in the parameter eσ

a)
of the dz2 orbital due to 3dz2�4s mixing with respect to the
dxy,dx2�y2 orbitals. However, this stabilizing effect is not strong
enough to place dz2 below the dxz,dyz pair of orbitals. Thus, a
ground state of 5E symmetry with an extra electron of π-type
results. The underlying Fe�tpa interaction will be quantified
following a ligand field analysis of the ab initio results in section
III.4.
The coordination geometry around Fe(II) in all four com-

pounds is close to trigonal with one longer bond to the axial
N-ligand from the amino group (mean value over reported X-ray
structures of 2.17 Å) and three shorter bonds to the pyrrolyl N
donors in the equatorial plane (2.03 Å). The Fe ion is displaced
significantly (by 0.26 Å) from the plane defined by the three
pyrrolyl N ligands. Bond distances and bond angles relevant for
the following discussion are defined in Figure 2, and their values
from X-ray data are listed in Table 2; these are the Fe�N bond
distances (ri), N�Fe�N bond angles Rij between the equatorial

Fe�Nbonds, and the βij angles formed between the axial and the
equatorial Fe�N bonds.
DFT geometry optimizations of the entire complexes yield

geometric parameters in good agreement with values reported
from X-ray data (Table 2).35,2 Calculations of the Hessian and
the complete vibrational spectrum show that optimized struc-
tures for complexes 3 and 4 correspond to minima of the ground
state potential energy surface. For complex 2 two imaginary
frequencies are obtained. The latter are found to be due to
skeletal vibrations with main participation from the pyrrolyl
fragments. No vibrational spectrum could be calculated for
complex 1, for which the optimized geometry is found to be
closest to trigonal. The reason is that for nearly orbitally
degenerate systems the numerical second-derivative treatment
becomes unstable as tiny distortions change the electronic
ground state and hence drastically change the directions of the
obtained forces.
For convenience, the geometric parameters can be repre-

sented in terms of their deviations from axial symmetry. Such
deviations are clearly discernible, both in the experimental
structures and, to a lesser extent, in the optimized structures as
well (Table 2). For 1 a regular trigonal structure has been
reported,2 whereas the DFT-optimized structure is significantly
distorted. The presence of such a distortion is consistent with the
magnetic behavior of 1 as will be discussed in section III.3.
The low-symmetry distortions of the first coordination sphere

of Fe(II) are rather complex and can originate from the
Jahn�Teller activity of the 5E ground state as well as from steric
effects imposed by the rigid ligand backbone and from the
counterions in the solid. In order to shed more light on these
issues, a hypothetical complex was calculated that involved
the non-Jahn�Teller active Mn(II) ion instead of Fe(II). The
corresponding optimized structure was found to be nearly
perfectly axial (Table S1 in the Supporting Information). Thus,
we conclude that the off-axial distortions are largely due to
Jahn�Teller activity. These distortions can be quantified using
the Jahn�Teller radii F corresponding to the local modes of ε
symmetry, two bending and one stretching mode (defined in
Figure 4 and listed in Table 3a).
They show that displacements along the FeN3 bending

mode εd are dominant. Further analysis of these distortions
shows, in agreement with the epikernel principle,86,87 that the

Table 2. Fe�N Bond Distances (in Å) and N�Fe�N Bond Angles (in o) of the FeN4 Chromophore from X-ray Diffraction Data
and DFT Geometry Optimizationa

[FetpaTbu]� [FetpaMes]� [FetpaPh]� [FetpaDfp]�

exp. geometry DFT geometry exp. geometry DFT geometry exp. geometry DFT geometry exp. geometry DFT geometry

r1 2.144 2.187 2.172 2.218 2.161 2.229 2.196 2.229

r2 2.031 1.989 2.008 1.992 2.013 1.989 2.042 2.005

r3 2.031 1.995 2.041 2.014 2.019 1.993 2.038 2.009

r4 2.031 1.996 2.024 2.015 2.016 1.995 2.037 2.013

R23 118.35 117.93 117.35 116.02 120.22 118.64 115.82 116.99

R24 118.35 118.72 115.28 118.77 115.56 119.31 121.57 119.88

R34 118.35 117.33 122.38 119.48 120.27 116.53 116.63 116.35

β12 82.55 81.86 82.45 82.46 83.84 82.27 81.19 81.27

β13 82.55 81.83 82.01 81.89 83.37 82.36 82.30 80.73

β14 82.55 81.68 83.21 81.62 82.88 81.80 82.01 81.78
a See Figure 2 for ligand numbering and definitions.
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high-symmetry (Cs) distortion Qx(x) prevails over the low-symme-
try (C1) oneQy(y) (Table 3b) and thus determines to a large extent
the magnitude of the total F = (Qx

2 + Qy
2)1/2. Following the

formalism of section II.3 we analyzed the multimode 5EX(ε(1) +
ε(2)...) Jahn�Teller effect using truncated model complexes
[FeN4C15H15]

� (I, Figure 6a) and [MnN4C15H15]
� (II). The

first one was used in order to obtain the parameters Fεi, while the
second one was used to obtain a reliable Hessian, avoiding the
complications from additional quadratic vibronic coupling terms
present in I.88 In these complexes we replaced the bulky
substituents of the pyrrolyl fragments by hydrogen atoms
(Figure 6a). From the normal modes with ε symmetry only four
contribute to a very small total Jahn�Teller stabilization energy

EJT(total) = 28.4 cm�1 (Table 3c). We can assume that the clear
local distortions along the Qx coordinate must originate from
low-symmetry perturbations (strains) stemming from the distant
ligand substituents which become vibronically enhanced in the
way specified in refs 76�78 and 89.
To study this point, geometry optimizations on complexes

1�4 have been performed, where FeII(d6) has been replaced by
MnII(d5), thus eliminating vibronic forces. Geometrical param-
eters ri, Rij, and βij along with values of F (defined in Figure 4)
are listed in Table S1 (Supporting Information). For the stereo-
chemically inactive Mn(II) the latter values reflect the net effect
of the substituents on the geometry. As for Fe(II) the tiny
distortions are dominated by displacements along the εd mode
but are now of purely elastic origin. Values of F(εd) for Mn(II)
follow a clear trend increasing from complex 1 to 4 as shown in
Figure 7, where for the sake of comparison the corresponding
values of Fe(II) are presented. The results demonstrate in an
impressive way the vibronic amplification of the distortions
caused by the substituents R. The latter modify the bonding
properties of the tpaR ligand and therefore the vibronic coupling
parameter Fε. This will be the subject of the analysis in section
III.4. In addition to the substituents, counterions and packing
forces may also affect the geometry. Treatment and analysis of
these effects is, however, beyond the scope of the present work
and will require further theoretical development.
Apart from the effect of the substituents, our results clearly

show that vibronic coupling in the complexes under study is
weak. As emerges from consideration of a smaller model complex
[FeN4H9]

� (III) (Figure 6b) with axial NH3 and three unlinked
equatorial NH2

� amido groups, we can attribute the rather weak
Jahn�Teller activity to the rigid tpa ligand backbone; a geometry
optimization starting from the FeN4 coordination geometry,
identical to (I), shows that the axial Fe�NH3 bond is unstable.
Upon geometry optimization the axial ligand tends to dissociate
leading to [FeN3H6]

� (complex IV, Figure 6c). A much larger
Jahn�Teller activity in (IV) compared to (I) is obtained
(Table 3c). However, in this system 5E is an excited state as
the dz2 orbital falls below the e set and hence 5A1 becomes the
lowest state. We conclude from these analyses that the tpa ligand
plays a crucial role in regulating the electronic and steric

Figure 6. Truncated model clusters adopted for the study of the
vibronic effects within the 5E ground state manifold: (a) Truncated
model complex [FeN4C15H15]

1� employed in the study of the EXε
Jahn�Teller effect; (b) [FeN4H9]

�model complex with three unlinked
equatorial NH2

� amido groups; (c) [FeN3H6]
� model fragment

resulting upon dissociation of [FeN4H9]
�.

Table 3. Geometrical Distortions (in Å) of the FeIIN4 Cores
in tpa Complexes As Quantified by the Jahn�Teller Radii G
Deduced from Experimental X-ray Data and DFT Geometry
Optimization (a); Decomposition of the Distortions of FeN4

As Given by X-Ray Diffraction Structures along the High-
Symmetry (Qx, Cs) and Low-Symmetry (Qy, C1) Components
of the in-Plane Bending Mode εd (Figure 4) (b); Contribu-
tions of the ε Normal Modes to the Vibronic Coupling
Constants Fεi and the Jahn�Teller Stabilization Energies
EJT(i) in the Multimode 5EX(ε(1) + ε(2)...) Jahn�Teller
Effect in [FeN4C15H15]

� and [FeN3H6]
� Truncated Model

Complexes (c)

[FetpaTbu]� [FetpaMes]� [FetpaPh]� [FetpaDfp]�

(a) X-ray DFT X-ray DFT X-ray DFT X-ray DFT

F(εs) 0 0.005 0.023 0.018 0.004 0.004 0.004 0.006

F(εd) 0 0.034 0.182 0.090 0.134 0.071 0.158 0.093

F(εo) 0 0.005 0.031 0.022 0.024 0.015 0.029 0.027

(b) [FetpaMes]� [FetpaPh]� [FetpaDfp]�

Qx 0.175 �0.134 0.157

Qy 0.052 0.001 0.018

(c)

h9ωi (cm
�1) Fεi (cm

�1/Å)c EJT(i) (cm
�1)

[FeN4C15H15]
�

38a �87.5 11.4

121a �278.0 11.3

193a �168.4 1.6

226a 156.7 1.0

EJT(total) 28.4

[FeN3H6]
�

57b �229.6 73.6

86b 202.9 25.3

97b �124.7 7.4

530b �390.4 2.4

EJT(total) 111.3
aOn the basis of a force field of a geometry-optimized, nondistorted
[MnN4C15H15]

� model complex. bOn the basis of a force field of a
geometry-optimized, nondistorted [MnN3H6]

� model complex. cCal-
culated adopting values of Fε (eq 22) of 1133 cm

�1/Å and 2653 cm�1/Å
and the NEVPT2 5E splittings of [FeN4C15H15]

� and [FeN3H6]
�

model complexes, respectively.
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properties of the [Fe(tpaR)]� series. The effect is 2-fold: first, the
stiffness of the ligand suppresses at least to some extent the
Jahn�Teller coupling of the 5E ground state. Second, the axial
Fe�N is imposed by the ligand, and thus, the 5E (e3a1

1e2)
ground state is stabilized over the 5A1 (a1

2e2e2) state that
otherwise would be the ground state.
The weak Jahn�Teller effect in the complexes under study

leads to a situation in which SOC dominates over vibronic
coupling (Figure 3); here the range of variation of δ is distinctly
smaller than the value of ζ. The energy dependence of the two
lowest states (A1, A2) and E on δ shows that the Jahn�Teller
coupling in these states is completely quenched. This is just the
opposite in the second excited state (E(|MJ| = 1/2), Figure 3),
which is not affected by SOC (Ms = 0 in this case). While the
latter state is only weakly populated at the temperatures of the
magnetic measurement, it may affect the structure at room
temperature, thus supporting the distortions.90

III.2. Multiplet Structure and Effect of Spin�Orbit Cou-
pling. The six d electrons of Fe(II) (Figure 5) give rise to 5

quintet states. Their SA-CASSCF and NEVPT2 energies ob-
tained on the basis of the X-ray structures are listed in Table 4.
The energies of all quintet states are computed to be lower

than those of the triplet states (see section III.4 and Table 6a)
with a sizable energy gap of 13 000 cm�1 between the 5E ground
state and the lowest triplet state. The rather small deviations from
axial symmetry (vide supra) lead to a ground state splitting 2δ
which increases progressively from 0 to 375 cm�1 across the
series 1 < 2 < 3 < 4. Fe(tpaTbu) complex 1, which was reported to
be strictly trigonal, possesses a 2δ of zero at the CASSCF level of
theory which increases to 2δ = 15 cm�1 in NEVPT2. Clearly, this
is an artifact of the contraction procedure used to define the first-
order interacting space and is shared by all internally contracted
electron correlation methods. Dynamical correlation effects
accounted for at the NEVPT2 level of theory introduce energy
shifts of the 5Ef 5A1,

5Ef 5E transitions by 2000�2500 cm�1

(to higher energy) and of the quintet to triplet transitions by
4000�5000 cm�1 (to lower energies) (Table 6a). The
Jahn�Teller effect in the electronic ground state is rather weak
because the degenerate orbital set involved only participates in π
bonding. The excited 5E state that has an uneven occupation in
the degenerate, σ- and π-antibonding dxy and dx2�y2 set of
orbitals shows a much larger low-symmetry splitting (into 5A0
and 5A00, Cs symmetry) than the ground 5E state (cf. Table 4).
Accounting for SOC leads to the energies of the sublevels

included in Table 4. The energies of the lowest five sublevels
follow on the trends obtained for δ, as depicted in Figure 3. As
follows by a comparison of various sets of model calculations
(Figure 8), the orthorhombic splitting of the first excited term E
(Figure 3, 5E, E(|MJ| = 3/2)) increases when extending the SOC
matrix with the 5A1 and

5E excited states. It increases even more
when the triplet excited states are also included. Moreover, the
topmost level (Figure 3, 5E, E(|MS| = 0)) of the zero-field split
S = 2 ground state drops down in energy when including excited
quintet and triplet states in the CI treatment. It follows from
Figure 8 that accounting for surrounding effects and extending

Figure 7. Extent of distortions as quantified by F(εd) of [Mn(tpaR)]�

in comparison with those of their Fe(II) congeners fromDFT geometry
optimization; the value of F(εd) resulting from the DFT geometry
optimization of the truncated model complex [MnN4C15H15]

1� is
shown by a horizontal dotted line.

Table 4. Energies (in cm�1) of S = 2 States and 5E (C3 parent symmetry notations) Components Split out by Spin�Orbit Coupling
from CASSCF and NEVPT2 Calculations of the Four FeN4 Complexes with Geometries from X-ray Diffraction Data and
Accounting for the Complete Set of the 5 Quintet and 45 Triplet Electronic Statesa

[FetpaTbu]� [FetpaMes]� [FetpaPh]� [FetpaDfp]�

electronic stateb CASSCF NEVPT2 CASSCF NEVPT2 CASSCF NEVPT2 CASSCF NEVPT2

5E 0 0 0 0 0 0 0 0

0.3 15.1 112.4 118.2 123.7 139.8 316.8 374.8
5A1 5011.4 7429.2 5103.4 7487.9 5102.7 7440.6 5386.2 7579.1
5E 6701.8 8759.5 6426.4 8373.3 6773.7 8836.4 5972.1 7791.3

6702.1 8760.1 7365.8 9611.5 7209.3 9432.1 6502.2 8511.1

A1,A2 0 0 0 0 0 0 0 0

0.001 0.001 0.054 0.034 0.056 0.047 0.605 0.605

E 80.6 83.4 72.1 74.8 70.4 71.6 40.1 37.3

80.6 83.5 76.2 78.2 74.8 75.8 52.2 49.0

E 170.7 168.2 124.4 126.8 120.1 119.3 67.2 61.8

171.7 183.2 236.2 244.5 243.1 258.2 380.9 433.9

A1 250.4 258.2 277.2 286.3 281.7 295.8 396.6 447.7

A2 300.8 300.1 323.6 325.0 327.9 333.8 433.4 477.8

E 389.7 389.1 406.9 407.8 410.2 414.7 491.0 529.7

389.8 389.2 407.8 408.6 411.2 415.6 493.4 531.7
aThe state of lowest energy has been taken as energy reference. bTerm notations are given for the D3 holohedrized symmetry.
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the set of active orbitals with ligand lone pairs does not alter the
energy level structure. Finally, the effect of the remote substit-
uents on the ground state spin sublevels emerges when compar-
ing the results for the truncated model complex (I) with those
including the entire ligand (exemplified in Figure 8 using
complex 2).
III.3. Magnetic Anisotropy. Compounds 1�4 have pre-

viously been magnetically characterized and were found, by both
direct (dc) and alternating current (ac) susceptibility measure-
ments, to be highly anisotropic.1,2 Specifically, for 1 a large D
of �48 cm�1 and a much smaller yet non-negligible |E|max =
0.4 cm�1 were deduced from a fit of the magnetization data
employing a SH of eq 13. Aside from the approximations
inherent in this particular choice of SH (see below), both (dc)
and (ac) data show the presence of an orthorhombic anisotropy
leading to an efficient tunneling pathway in all four complexes.
Since these ions are non-Kramers systems, this implies low-
symmetry splitting of the(Ms pairs (described by the parameter
E) and deviations from the apparent crystallographic symmetry
in the 128 K X-ray structure. This is largely in agreement with the
subtle distortions found by DFT for this and all other complexes

investigated here (Table 2). Adopting the DFT structure and the
ab initio results for this compound we plot in Figure 9 field-
dependent magnetizations obtained directly from the ab initio
calculations by using all SOC split sublevels of the 5E ground
state and their wave functions. There is reasonable agreement
between computed and experimental data points with calcu-
lated values of the magnetization M being systematically
higher than the experimental ones. A plot of the magnetization
with a magnetic field oriented parallel (||) and perpendicular
(^) to the pseudo C3 axis nicely illustrates the almost Ising-
type behavior of the anisotropy with a large and maximal M||

and almost zero M^ (Figure 9a). With a magnetic field
oriented parallel to the x or y axis (see Figure 2 for their
definitions) within the FeN3 plane we further obtainMx > My,
implying a substantial transversal anisotropy and a negative
value of the parameter E (see Figure 9b and eq S40, Support-
ing Information).
The geometric and electronic structures of the investigated

systems imply that a SH of the form of eq 14 is best suited for a
comparison between theoretical and simulated data and to
allow for an exploration of magneto-structural correlations. The
parameters D, B40, and |E|, obtained from a best fit to
experimentally reported magnetizations and from the calcu-
lated lowest five SOC split sublevels, are presented in Table 5a.
The sign of E could not be fixed from these considerations.
However, based on calculations (e.g., Figure 9b) E is found to
be negative in all complexes considered (see above). We note in
passing that the values of these parameters are not equally well
constrained by the two sets of data. While all three parameters
D, B40, and |E| are apart from the sign of E (see above)
accurately determined in the ab initio calculation they are
subject to large error-bars when adjusted to fit the experimental
magnetization data. In particular, for complexes 1 and 2, which
according to the ab initio results possess the largest |D|, no
accurate fits could be achieved. For example, D is mainly
determined from the third, fourth, and fifth levels, which are
almost completely depopulated at the temperatures used in the
experiments. D gets smaller when going to complexes 3 and 4,
and so the error bars of the experimentally fitted D, B40, and E
(σ = 0.013 (4) to be compared with σ = 0.024 (1), 0.029 (2),
and 0.030 (3), see Table 5a). The more accurate best fit values
of D, B40, and E for complex 4 (see their error bars given in
Table 5a) compare very well with the theoretically predicted
ones (Table 5a). As illustrated in Figure 10, the low-field values

Figure 8. Effects of the spin states (S), number of roots (NR, i.e.,
number of nonrelativistic eingenvectors and eigenvalues used in con-
struction of the SOC matrix) for each spin, adopted cluster model (NA,
number of atoms), inclusion of solvent (COSMO), and space of active
orbitals on the lowest three excited spin levels of [Fe(tpa)Mes]� with the
geometry from reported X-ray data.

Figure 9. Theoretical (DFT-optimized geometry, NEVPT2) vs experimental field-dependent magnetizations for [FetpaTbu]� (experimental data
points are adopted from ref 2 and plotted using numerical data provided by the authors of this reference).
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of M (B = 1 T) are found to be mostly affected by B40 (to be
compared with Figure S4 showing much less variation of M
(B = 1T)withD, E, and g but see the changes of the high-fieldM
(B = 7 T) with D, B40, E, and g). Experimental12 and simulated
(using best-fit parameters from Table 5a)M data for complexes
1�4 are given in the Supporting Information (Figures S5�S9).
In spite of the uncertainty in determination of D, B40 for

complexes 1 and 2 and to a lesser extent for complex 3 as well,
there is good agreement between the ab initio and best fit to M
data sets (Table 5a). In particular, the trend that |D| decreases
along the series is well reproduced. On the basis of these trends it
was concluded in ref 2 that D rises with increasing ligand basicity
tuned by the tpa substituents. A ligand field analysis (see section
III.4) lends support to this proposal.
The comparison between the CASSCF and the NEVPT2

results shows that dynamical correlation effects do not play a
leading role for the anisotropy; the values of D, B40, and E
obtained in the two treatments, the simple CASSCF and the
more sophisticated NEVPT2, are quite similar (Table 5a). Good
agreement between SA-CASSCF calculations and experiment
was found in a number of previous studies.13 By contrast, as
pointed out above, the geometry that is adopted is of crucial
importance. For example, for 2 D changes significantly from
�29.1 cm�1, obtained with the X-ray geometry, to�23.7 cm�1,
obtained with a DFT-optimized structure. Not unexpectedly,
values of D resulting from calculations restricted to truncated
model clusters (Table 5b) of the type of (I, see Figure 6a) do not
display significant variations, which is in disagreement with both
experiment and calculations on nontruncated models.
Importantly, it should be noted that there is an essential

contribution of the fourth-order parameter B40 to U, the energy
barrier for thermal relaxation of themagnetization (eq 29), which
is found to be

U ¼ � 4D þ 60B40 ð29Þ

This value is positive for complexes 1�4 and increases the value
of U significantly by 24.6, 10.8, 9.0, and 2.0 cm�1, respectively
(NEVPT2, X-ray geometry). The values closely follow the trends
in |D|. On the basis of on the comparison between the param-
eters D, B40 (Table 5a), and the values of the 5E ground state T
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Figure 10. Experimental magnetization (M, B = 1 T, open circles) for
complex 4 (adopted from ref 2 and plotted using numerical data
provided by the authors of the cited work) and its values calculated
using SH with D = �10.30 cm�1, B40 = 0.0 cm�1, E = 2.67 cm�1, and
g = 2.19 (solid line, see Supporting Information for details regarding the
fit and Table 5a for standard deviations and parameter error bars). The
variation of M with B40 (broken lines) is illustrated.
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splitting �2δ (Table 4) it follows that the magnetic anisotropy
persists up to quite large values of δ. It stems from the
unquenched ground state orbital momentum |Lz| (Figure 10),
which is reduced only slowly with increasing δ but depends on
|Ms| (Figure 11).

91 However, with increasing δ there is a drastic
increase of the parameter E, which induces a tunneling splitting
ΔE of the Ms = (1 pair, ‘shortcutting’ the thermal relaxation
barrier in this series to effective values that are far smaller
than those predicted theoretically (eq 29). The interaction of
theMs =(2magnetic pair with the topmostMs = 0 sublevel leads
to a similar splitting given by perturbation theory according
to eq 30.92 It dominates the magnetic behavior at cryogenic
temperature and explains the lack of blocking of the magnetiza-
tion and hysteresis reported for all four systems.

ΔE ¼ 3E2

�D þ 15B40
ð30Þ

Thus, both the second (E, D) and fourth-order term (B40) can
contribute to increasing ΔE and thus lead to a reduction of the
anisotropy. Already small distortions δ lead to an increase of ΔE
and thus to a low-temperature loss of magnetization dominated
by quantum tunneling.
In a recent publication93 it was claimed that “the splitting of the 5E

term cannot be described by a conventional zero-field splitting
Hamiltonian proving the irrelevance of the spin-Hamiltonian

formalism for FeN4”. As far as all sublevels of the ground state
term 5E are concerned this statement is certainly correct.
However, because of the large sensitivity of the 5E level splitting
with respect to δ and because at the temperature of the
experiments only the lowest five levels are thermally populated,
we can still apply the SH of eq 14 in a slightly extended form
compared to the usual form that involves only D and E (eq 13).
Nevertheless, the SH of eq 14 is still fairly conventional.
III.4. Ligand Field Analysis and Magneto-Structural Corre-

lations. III.4.1. Ligand Field Analysis of the ab Initio Results. The
X-ray structure of 1 is trigonal and, due to the degenerate
irreducible representations in a perfect 3-fold symmetry, allows
for an unambiguous assignment of the electronic transitions.
Their values resulting from CASSCF and NEVPT2 calculations
are listed in Table 6a. Neglecting first metal�ligand π overlap
(eπ = 0, however, see below), ligand field matrix elements can been

Figure 11. Expectation value of the orbital angular momentum opera-
tor within the 5E state manifold as a function of the departure from C3

symmetry (quantified by δ defined by one-half the 5E splitting)): broken
lines, in-state 5E SOC only included; solid lines, SOC calculation with all
210 S = 2, 1, and 0 states taken into account. The plot has been
constructed using the AOMX program package,85 along with ligand field
parameters obtained from a fit to CASSCF results for (1, Table 6b)
allowing for a variation of δ.

Table 5b. Spin-Hamiltonian Parameters Obtained Using Truncated [FeN4C15H15]
1�Model Complexes with the SameGeometry

As the Corresponding Nontruncated Complex

[FetpaTbu]� [FetpaMes]� [FetpaPh]� [FetpaDfp]�

exp. geometry DFT geometry exp. geom. DFT geometry exp. geometry DFT geometry exp. geometry DFT geometry

D �36.56 �31.96 �27.96 �31.53 �30.56 �30.08 �27.16 �30.34

B40 0.46 0.28 0.17 0.27 0.23 0.23 0.16 0.24

|E| 0 0.17 0.57 0.26 �0.38 �0.35 0.64 0.32

Table 6. Energy Transitions (in cm�1) of [FetpaTbu]� from
CASSCF andNEVPT2 calculations in Comparison with Their
Values As Resulting from Ligand Field theory (a) Calculated
Using Best-Fit Ligand Field Parameters (in cm�1, b)a

(a) term CASSCF AILFT NEVPT2 AILFT

5E(1) f 5A1 5011 5011 7429 7429
5E(1) f 5E(2) 6702 6702 8760 8760
5E(1) f 3A2(1) 17 698 17 626 12 929 13 083
5E(1) f 3E(1) 20 380 18 994 17 502 14 928
5E(1) f 3E(2) 21 390 21 649 18 509, 18 512 19 154
5E(1) f 3E(3) 21 805 21 903 19 296, 19 304 19 532
5E(1) f 3A2(2) 22 693 22 780 20 305 20 348
5E(1) f 3A1(1) 22 740 23 184 20 358 20 447
5E(1) f 3E(4) 23 896 24 487 20 763,20 764 22 258

5E(1)

A1A2 f E(1) 80.6 75.4 83.4,83.5 80.1

A1A2 f E(2) 171.0 163.9 168.2,183.2 171.2

A1A2 f A1(2) 250.4 236.5 258.2 247.0

A1A2 f A2(2) 300.8 309.9 300.1 308.2

A1A2 f E(3) 389.8 391.5 389.1, 389.2 390.0

(b) parameter CASSCF NEVPT2 Fe2+(free ion)

eσ
e 5768 7540

eσ
a 1110 2330

B 1785 1213 1058

C 3459 3372 3901

ζ 496 494 410
a Parameters for the free ion are taken from Griffith, J. S. The Theory of
Transition-Metal Ions; University Press: Cambridge, 1971; p 437.
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expressed in terms of only two eσ parameters describing the
interaction between Fe(II) and the axial amino (eσ

a) and the
equatorial pyrrolyl (eσ

e ) ligands. The three-step procedure devel-
oped in section II.4 has been used to fit the ab initio data,
resulting in computed (denoted by “AILFT” in Table 6a) energy
levels and best-fit parameter values listed in Table 6b. Only five
parameters afforded by LFT allow one to reproduce all the ab
initio numerical data with remarkably consistency.94

On the basis of a comparison between the parameters B, C, and
ζ for the free Fe(II) ionwith the best-fit values to theCASSCF and
NEVPT2, we conclude that the dynamical correlation introduced
by NEVPT2 leads to a significant improvement for B and C
compared to the values obtained from CASSCF. Even so,
NEVPT2 values for B, C, and ζ are still larger than those reported
for the free Fe2+ ion (Table 6b). This is a feature of the wave
function contraction and the lack of electronic relaxation in
second-order perturbation theory and hence cannot be cured with
the present methodology. As elaborated in the Supporting In-
formation using empirically corrected values of B and C (affording
a reduction by 20%) does not affect D and B40. However, both
values get smaller by 30% when the same reduction of ζ is
performed (relativistic nephelauxetic effect). CASSCF and
NEVPT2 values of the parameters eσ

e (5768 and 7540 cm�1,
Table 6b) are in good agreement with the ones deduced from
highly resolved optical spectra of tetrahedral complexes of 3d
metals, while eσ

a appears to be too low.95 The anomalously low
value of eσ

a is due to the stabilizing effect of s�d mixing which
largely reduces the destabilizing antibonding effect due to the axial
amineN ligand. It follows from a comparison of the CASSCF and
NEVPT2 data that computed higher energy levels using the
second approach are artificially split, a drawback that cannot be
avoided while keeping to the perturbational approach.
Adopting the parameters B, C, and ζ obtained for complex (I)

and continuing to use the CASSCF method for the aforemen-
tioned reasons, we list in Table 7 the best-fit values of eσ

e and eσ
a for

the whole series. Here, due to the low-symmetry distortions
small but positive values of eπs

e due to interactions between the Fe
3d orbitals and the out-of-plane π orbitals of tpa were deduced.
Focusing further on eσ

e , it is found that it increases along the
series 4 < 3 < 2 < 1. It is remarkable that this trend correctly
reproduces the Lewis basicity and nicely fits with the increase
of |D| in the same direction (Figure 12), as postulated in a
previous study.2

Following the same concept one should also expect that
increasing π-donor basicity will act in the opposite direction.
This is supported by the values of eπs

e that are found to increase
from 2 to 3 and 4 (Table 7). This behavior will be analyzed in
section III.4.2

The set of ligand field parameters deduced from the ab initio
data provide a tool for the systematic search of new ligands which
are better σ donors and thus expected to display enhanced
magnetic anisotropies. To this end, we would like to stress the
symbiosis between the theoretically rigorous ab initio approach
and the approximate but intuitive and chemically more readily
intelligible ligand field model.
III.4.2. Magneto-Structural Correlations. The parameters of

the SH are complex and sensitive functions of small distor-
tions of the geometry of [Fe(tpa)]� as discussed in sections
II.2.2 and III.3 and of the chemical nature of the tpaR ligands
that is in turn fine tuned by the substituents R. The parametric
structure of the AOM is ideally suited to separate these two
effects and to study the effects of variations of the Lewis
basicity of tpaR induced by the substituents R as revealed by
variations of the parameters eσ

e and eπs
e in Table 7. For the sake

of the analysis, we here adopt a FeN4 geometry as given by the
X-ray structure of [Fe(tpaMes)]�, the most distorted complex
within the series. Taking the geometry as fixed we explore the
dependence of the parameters δ, D, B40, and E on eσ

e and eπs
e .

Note that according to the sum rule, the trace of the ligand field
matrix (here the sum over all ligands, ∑ = 3(eσ

e + eπs
e ) + eσ

a))
is approximately invariant for complexes that have related
coordination environments.96 The ligand field analysis of
d�d spectra for a variety of 3d ions in the +II oxidation state
have shown that the trace ∑exp ≈ 20 000 cm�1.97�101 This is
pleasingly confirmed for the present systems as a value of
∑AILF ≈ 19 135 ( 706 cm�1 is obtained from the fitting of
the AOM parameters to the ab initio data (Table 7). Upon
inspection of Table 7 it is observed that not only ∑AILF but
also the sum eσ

e + eπs
e pertaining to a given Fe�N(tpa) bond

is (within (300 cm�1) constant (5760 cm�1) along the
series. Following this constraint, we plot in Figure 13a the
dependence of δ on eσ

e . It follows that an increase in the
Lewis basicity (i.e., an increase eσ

e ) is accompanied by a reduc-
tion of δ.
This results (opposite to Figure 12 where purely electronic

effects interfere with geometric distortion effects) in a smooth δ
vs eσ

e dependence. As expected, both D (Figure 13b) and B40
(Figure 13c) increase with eσ

e . We can subdivide the net effect of
the increasing Lewis basicity on the ground state magnetic

Table 7. Angular Overall Model Parameters (in cm�1)
Deduced from a Fit of the Energies of the d�d Transitions
(CASSCF results)a

[FetpaTbu]� [FetpaMes]� [FetpaPh]� [FetpaDfp]�

eσ
e 5768 5374 4820 4246

eσ
a 1110 1588 1941 2784

eπs
e 570 1142 1119

ψ1 11.9 8.6 1.7 6.8

ψ2 11.9 10.9 1.6 3.2

ψ3 11.9 3.8 2.2 3.3
aData are based on the geometry as given by the X-ray structures.

Figure 12. Correlation between the σ-donor ability of the tpaR ligand
(described by the parameter eσ

e ) and the axial zero-field splitting
parameter D; data are based on the geometry as given by the X-ray
structure.
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anisotropy into electronic effects evolving within the 5E electro-
nic ground state (in-state SOC) and contributions from config-
urational mixing via SOC with excited state multiplets. Model
calculations show (Figures 13a�c) that the bulk of the effect of
the Lewis basicity originates from configuration interaction
between the 5E(1) ground state with the 5A1 and

5E(2) excited
states. As follows from Figure 13a�c, inclusion of these excited
states into the SOCmatrix leads to drastic reduction in δ and this
effect increases with eσ

e . This is accompanied by a corresponding
increase in D and B40. By contrast, the extension of the SOC
matrix with the S = 1 and 0 ligand field excited states induces
smaller changes in these parameters. A small decrease in�D and
negligible change in B40 are calculated. Resolving δ into separate
contributions from eπs

e and eσ
e is possible by choosing the first set

of values of eσ
e and eπs

e ; eσ
e = 4000 cm�1 and eπs

e = 1760 cm�1

(Figure 13d, left) and the last one - with eσ
e =5750 cm�1 and

vanishing eπs
e (Figure 13d, right).

Focusing on the first set of parameters, a first-order splitting 2δ
(Figure 13d, left, a diagonal effect described by the parameter
δ1 in eqs 9 and 10) of 5E is observed. This is induced by weak
dxz, yz�ligand interaction ofπ type. Because the pyrrolide rings in
these complexes are nearly (but not completely) perpendicular
to the FeN3 plane (cf. eq 27 and the values of ψ, Table 7) this
effect is small. Allowing further for off-diagonal mixing between
the 5A0(xz) and 5A00(yz) sublevels of the 5E ground state
(parametrized by the parameter δ2 in eqs 9 and 10) leads to a
further increase in 2δ (Figure 13d, left, middle), an effect
dominated by eσ

e . Finally, extending the SOC matrix with excited

Figure 13. Dependence of δ (a), D (b), and B40 (c) on eσ
e with and without configuration interaction between the 5E ground term with ligand field

excited states; (d) contributions to δ for two limiting cases of values for eσ
e and eπs

e : large eπs
e (left) and vanishing eπs

e (right).
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quintet states leads to an additional increase of 2δ, an effect
related to deviations of the central Fe from the N3 plane (θ =
82.2�, Table 2) and dominated again by eσ

e . We conclude that
with the parameter set (eσ

e = 4000 cm�1, eπs
e = 1760 cm�1) both

eσ
e and eπs

e and SOC�CImixing with excited states act in the same
direction, namely, an increase of 2δ. A quite different situation
exists if eσ

e is large while eπs
e is vanishing (pure sigma-donor

ligands; Figure 13d, right). Here, again, in-state 5E electronic
effects induce large splittings 2δ, which, however, become nearly
zero when allowing for SOC�CI mixing with the excited states.
This leads to an increase of D and B40.
Recall (see section II.2.2) that an increase in 2δ is not always

expected to affect the value of the orthorhombic zero-field
splitting parameter E as far as 5E in-state electronic effects are
concerned. In fact, an accidental degeneracy of 5E is obtained in
this case (eqs 11). However, allowing for a SOC�CI mixing of
the 5E term of the ground state with excited states, an E vs eσ

e

curve with a minimum is calculated (Figure 14).
In contrast toD and B40, extending the SOCmodel space from

S = 2 to S = 2, 1, 0 leads to a significant increase of E.
Nevertheless, with the distorted geometry of 2 we have not
found a combination of ligand field parameters that would lead to
the desirable situation of having an E value of zero, as would be
required for SMM behavior. Thus, an exact 3-fold symmetry is
mandatory to achieve this goal.

IV. CONCLUSIONS AND OUTLOOK

1 A general and transparent theoretical and computational
scheme for interpretation and prediction of the magnetic
properties of complexes with orbitally degenerate or nearly
degenerate ground states was developed. The treatment
is based on rigorous CASSCF/NEVPT2 calculations of
the magnetic sublevels under the combined action of
Jahn�Teller, low-symmetry, spin�orbit, and magnetic
field perturbations. In this work we used this protocol to
investigate the intriguing magnetic properties of a series of
[Fe(tpaR)]� complexes with a 5E ground state.

2 A study of the multimode 5EXε Jahn�Teller effect showed
that vibronic coupling for these systems is largely sup-
pressed by the rigid ligand backbone, with contributions
from normal modes widely delocalized over the ligand
macrocycle and concentrated in a narrow energy window

below 250 cm�1. The Jahn�Teller effect is further reduced
by SOC. On the basis of this result, the observed distortions
must be attributed to vibronic enhancement of low-sym-
metry perturbations due to the tpa substituents R and
possibly also to crystal packing and counterion effects.

3 It was shown that the small geometric distortions reported
in X-ray crystal structures of complexes 2�4, which are
possibly also present in the (yet unknown) low-temperature
structure of complex 1, are large enough to render applica-
tion of a standard S = 2 spin Hamiltonian for description of
their magnetic properties valid. However, a fourth-order
anisotropy term, B40, must be included in the analysis
together with the standard second-order terms D and E.
Values of these parameters adjusted to ab initio results and
independently deduced from a reinterpretation of the
reported magnetic data are consistent with each other and
lend support to a concept correlating the value ofDwith the
tpaR ligand Lewis basicity.

4 A positive value of B40 emerging invariably from analysis of
the ab initio results was found to yield a considerable
contribution to the quantity U, the energy barrier for the
thermal relaxation of the magnetization. From deduced
values of E it is concluded that quantum tunneling is respon-
sible for the systems relaxing much faster than expected
from the theoretical value of the anisotropy barrier.

5 A ligand field interpretation of the ab initio data (AILFT)
was used to deduce chemical bonding parameters within the
framework of the angular overlap model. This approach
allows for quantification and analysis of the correlation
between the zero-field splitting parameter D and the σ-
bond strength (represented here by the angular overlap
parameter eσ

e ), which is finely tuned by the substituents on
the tpa ligand. This is consistent with the proposal brought
forward by the analysis of the experimental data.2

We hope that the theoretical and conceptual framework
developed in this work as well as the detailed analysis of the
Fe(II) complexes considered in the present study will further
stimulate experimental efforts aimed at finding and characteriz-
ing mononuclear transition metal complexes with SMM beha-
vior. We believe that prospects in this area are exciting.
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