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’ INTRODUCTION

Density functional theory (DFT) combined with the broken-
symmetry (BS) method is today widely used in the field of
molecular magnetism for the calculation of exchange coupling
constants. The BS method, as it applies to the study of the
exchange interaction within spin-coupled transition-metal di-
mers, was first proposed by Noodleman and co-workers1�3 (see
also subsequent reformulations by Hart and co-workers4 as well
as by Ciofini and Daul5). It consists of evaluating the magnetic
exchange coupling constant J from the energy difference between
high-spin (HS; of spin Smax) and BS (MS = 0) configurations
constructed from a set of nonorthogonal valence-bond (NO-VB)
magnetic orbitals {ΦA,ΦB} with the overlap S = ÆΦA|ΦBæ. Only
homodimers will be considered in this paper, with, moreover,
HHeis =�JSA 3 SB. In the so-called weak interaction limit (S

2, 1),
JBS = 2(EBS� EHS)/Smax

2 (but see, for example, Noodleman and
Case3 and Yamaguchi et al.,6 where this restriction is removed).
The BS wave function7�9 itself is not a pure spin state but a state
of mixed spin and spatial (orbital) broken symmetry, where the
R and β magnetic electrons are localized on the left and right
metal sites, respectively.

In transition-metal dimer complexes, the magnetic interaction
can be monitored through an appropriate choice of bridging
ligands. Numerous DFT�BS studies aim, therefore, at rationa-
lizing the sign and strength of the exchange coupling for various
bridges by drawing magnetostructural correlations in order to

design new magnetic systems of targeted properties, especially
ferromagnetism10�15 (and references cited therein). Conse-
quently, the DFT�BS method turns out to be a powerful tool
to predict and rationalize experimental trends. In addition, some
attention has been given to the DFT�BS analysis of polyspin
systems, which gives some crucial point of comparison to the
experiment.16,17 This is done by reducing the above phenomen-
ological Heisenberg Hamiltonian HHeis to its diagonal elements,
i.e., to an Ising-type Hamiltonian HIsing = �∑i,jJijMSiMSj, where
the spins of the building blocks (monomers) are kept fixed.
Beyond the intramolecular exchange interaction, some studies
have reported very interesting results concerning intermolecular
interactions.18 In summary, the choice of the DFT�BS method
rests on both its conceptual simplicity and its low computational
cost, which makes it a good investigative tool for calculation
of the electronic structures and magnetic properties of large
systems.

Unfortunately, the DFT�BS method remains semiquantita-
tive because it suffers from a series of drawbacks, both conceptual
(BS) and practical (DFT), some of which have already been
discussed in the literature:2,19

(i) Conceptually, the BS wave function was developed on the
basis of an initial covalent ground-state determinant
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ABSTRACT: We derive an analytical expression of the density functional theory
(DFT)�broken-symmetry (BS) estimation JBS of the singlet�triplet gap at the “3
sites�4 electrons” level, that is, two S = 1/2 metallic sites þ one diamagnetic bridge
orbital. As originally designed by Noodleman and Davidson (Chem. Phys. 1986, 109,
131), JBS contains the residual ferromagnetic contribution, single ligand-to-metal and
metal-to-metal charge-transfer terms, but no double ligand-to-metal charge-transfer
terms or intra/interligand spin-polarization terms. As revealed by the present analysis, the triplet and BS states computed by DFT
differ, not only perturbatively (as expected) because of the various physical mechanisms involved (i.e., differential charge-transfer
terms) but mainly because of a spurious and unphysical symmetry breaking of the bridge orbitals in the BS state. We examine the
consequences of such a difference by deriving two analytical expressions of the exchange coupling constant, one from the BS orbitals
designed to match JBS and another one from triplet orbitals only. Following and extending on the first paper in the series (J. Phys.
Chem. A 2010, 114, 6149), we propose a simple procedure to extract appropriate parameters filling in our analytical expressions.
Moreover, we derive the equivalent “3 sites�4 electrons” exchange coupling constant in the configuration-interaction approach, JCI,
for the purpose of comparison. These analytical expressions have been applied to various copper dimers and compared to
experimental values.
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further refined by the addition of determinants formed by
single excitations with respect to it. This procedure yields
the necessary metal�metal and ligand�metal charge-
transfer terms (MMCT and LMCT, respectively) result-
ing in antiferromagnetic contributions to JBS. However, no
double ligand-to-metal charge transfer (DCT) and no
intra/interligand spin polarization are taken into account
in spite of their mechanistic importance.20�26 The absence
of the two latter mechanisms has been recognized as
almost certainly the most serious omission in the BS method.2

(ii) Practically, the DFT�BS method suffers from spin con-
tamination because it deals with unrestricted determi-
nants rather than with pure spin states. This problem is
usually limited in the HS state, and for copper(II) dimers,
the S2 operator yields eigenvalues very close to the
expected 2. By contrast, the corresponding BS state is
by construction spin-contaminated, although in the weak
limit, it is ideally a controlled mixture of all MS = 0
components of pure spin states ranging from Smin = 0 to
Smax and weighed by Clebsch�Gordan coefficients.
Again, for copper(II) dimers, the S2 operator typically
yields values close to 1, intermediate between 0 (pure
singlet) and 2 (pure triplet). However, this idealization
itself rests on the approximation that themonomeric spin-
bearing building blocks do not change by the spin-flip
procedure, leading from HS to BS.

(iii) The computed values of JBS depend on the choice of the
exchange-correlation (XC) potential. In that regard,
hybrid potentials mixing into the local DFT exchange
some percentage of nonlocal Hartree�Fock (HF) ex-
change have been favored over the last years in order to
correct for the (local) DFT tendency to overestimate
magnetic orbital delocalization. Typically, combining a
20% HF contribution to the XC potential (B3LYP) and
an empirical reduction of the resulting exchange coupling
constant by a factor 2 seems to give values close to the
experimental ones. It is (in our view) still a matter of
debate27�29 whether this empirical factor 2 universally
corrects for the so-called self-interaction errors (SIEs)
inherent to the conventional DFT computation of ex-
change coupling constants (see more about this in the
Conclusion section).

(iv) Finally, beyond magnetostructural correlations and at-
tempts to rationalize the BS method by developing the
DFT�BS magnetic orbital in terms of atomic ones, there
is, to our knowledge, no analytical expression of JBS

beyond the “2 sites�2 electrons” level,7,30�33 for which
it assumes the closed form1 JBS = 2jMO � US2, where
2jMO is the residual ferromagnetic bielectronic exchange
integral defined for orthogonalized magnetic orbitals and
U is the energy difference between the ionic and covalent
configurations.

By contrast, multideterminant ab initio methods give very
good agreement with the experiment. These methods deal with
the exact electronic Hamiltonian, and all relevant physical effects
can, in principle, be incorporated in the treatment. This yields an
analysis of the various contributions to the exchange coupling
constant at each order of perturbation.26,34,35 In that regard, the
difference-dedicated configuration interaction (DDCI)36 meth-
od has been fully tested for the calculation of exchange coupling
constants over a significant range of magnetic materials. In the

case of copper dimers, this method consists of a direct perturba-
tion treatment of the sole determinants contributing to the
singlet�triplet energy difference. This allows one to reduce the
number of states actually involved in the numerical calculations.
Nevertheless, the computational cost of ab initio CI calculations
is still high, in particular for systems involving several metallic
centers with local spins Si >

1/2. Moreover, some convergence
problems appear for the treatment of large systems, although,
recently, alternative strategies have been proposed to reduce the
size of the CI matrices37 or the number of matrix elements to be
computed.19

In this work, we aim to establish a formal link between the
DFT�BS and ab initio CI methods by developing two analytical
expressions of the exchange coupling constant at the same level
of approximation, one aiming at reproducing JBS and the other
one mimicking the equivalent JCI constant. We will mostly limit
our derivations to “3 sites�4 electrons”, with one unpaired
electron for each of the two paramagnetic sites and two electrons
for the third diamagnetic bridging site linking them. In order to
reproduce JBS, we will explicitly take into account the following
physical mechanisms at the origin of the DFT�BS singlet�
triplet gap: the ferromagnetic potential exchange and theMMCT
and LMCT terms. We will show how one of the two analytical
expressions, supplied with parameters extracted from the DFT
(HS and BS) states, matches JBS for copper(II) dimers. We will
have verified numerically that, as anticipated by Noodleman and
Davidson,2 the BS procedure as modeled within our approach
does not include either double excitation nor intra/interligand
spin-polarization contributions.

In the course of our investigations, we stumbled onto another
feature of the BS state as embodied in DFT calculations. By
definition of the exchange mechanism, the same initial orbital
basis is assumed for the initial construction of both triplet and
singlet wave functions, and upon computation of their energy
difference, they should finally differ only as a result of the physical
mechanisms involved (i.e., charge-transfer terms at various
orders of perturbation). The BS formalism was, of course,
originally developed with such a conceptual background. In
practice though, such is not the case when DFT�HS/BS
calculations were performed. We will show how the shape of
the (doubly occupied) bridge molecular orbitals (MOs) is
artificially altered when their symmetry is broken from HS to
BS. This will have a strong impact on the analytical formulation of
the exchange coupling constant not visible at the “2 sites�2
electrons” level but manifested at the “3 sites�4 electrons” level.
Hence, the thought-provoking title of the present paper: is JBS

really an exchange coupling constant?

’THEORETICAL FORMALISM

In order to clarify the presentation, we derive two new analytical
expressions of Jwithin the simple “3 sites�4 electrons”model (i.e.,
two S = 1/2 Cu

II ions and one diamagnetic bridge orbital). We will
only consider one of the two possible symmetries of the bridge
orbitals, the one selected by the gerade triplet singly occupied
molecular orbital (SOMO). In theAppendix, wewill briefly extend
this first derivation by including both bridge orbitals’ symmetries
(gerade and ungerade). In order to keep the derivation as light as
possible, we will only report in the main text of the paper the key
equations. Some of the necessary mathematical ingredients and
key steps of the full derivation are detailed in section A in the
Supporting Information. Finally, all concepts, as well as analysis of
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the DFT (HS and BS) output files, are first performed within the
NO-VB framework, before being recast into an orthogonalized
atomic picture for the sake of mathematical simplicity. All formal
derivations have been performed with both the computer algebra
system Maxima 5.20.1 package (2009; http://maxima.source-
forge.net) and homemade Python (2.6.5) codes.
Magnetic Orbitals. NO-VB Description of a Monomer within

the BS State.On one side of the BS state, the construction of the
NO-VB magnetic orbitals38�41 starts with the interaction matrix
between the atomic metallic A (i.e., dA) and bridge C (i.e., pz)
orbitals where z stands for the Cu�Cu axis (all nonorthogonal
quantities with uppercase indices). The resulting (antibonding)
magneticΦA and (bonding) bridgeΦCA

orbitals are given by (up
to second order in H(A,C)/ΔAC and σAC):

42

ΦA � HA

ΔAC

� �
Cþ 1� HA

ΔAC
σAC � HA

2

2ΔAC
2

 !
A ð1Þ

ΦCA � 1þ HC

ΔAC
σAC � HC

2

2ΔAC
2

 !
C� HC

ΔAC

� �
A ð2Þ

where ΔAC = EA � EC with EA = ÆA|heff|Aæ and EC = ÆC|heff|Cæ.
Moreover, hAC = ÆA|heff|Cæ and σAC = ÆA|Cæ, from which HA =
hAC � EAσAC and HC = hAC � ECσAC. Finally, the effective
Hamiltonian heff is the Kohn�Sham (KS) monoelectronic op-
erator for the optimized BS state (more about this below). We
showed in the first paper in the series9 how to carefully reconstruct
the localized VBmagnetic orbitals {ΦA,ΦB} from the correspond-
ing partially delocalized DFT�BS orbitals {ΦA

BS,ΦB
BS}, assuming

the following Coulson�Fisher linear relationship:ΦA
BS = λΦA þ

μΦB with S = ÆΦA
BS|ΦB

BSæ = Sþ 2λμ(1� S2). The quantity S will
be computed numerically (cf. theMethodology section). The ratio
μ/λ is derived from that of the copper d orbitals inΦA

BS. The VB
overlap S= ÆΦA|ΦBæ is then computed from S andμ/λ. Thewhole
procedure finally yields λ and μ. Consequently, in Noodleman’s
formulation of JBS, the antiferromagnetic contribution, �US2, is
replaced by�US2. Notice that no analysis of the VB overlap S had
been offered in terms of its atomic content in the first paper in the
series. From the reconstructed NO-VB magnetic orbital ΦA ≈
cCC þ cAA (þ other terms ...), one can extract the coefficients’
ratio cC/cA ≈ HA/ΔAC (to second order).
The nonorthogonal atomic orbitals {A, B,C} in eqs 1 and 2 are

recast in terms of orthogonalized atomic orbitals {a, b, c}:39,41,43

A ¼ 1
2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σAB
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� σAB
p Þaþ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σAB
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� σAB
p Þb

B ¼ 1
2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σAB
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� σAB
p Þaþ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σAB
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� σAB
p Þb

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2σAC

2

1þ σAB

r !
cþ σACffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σAB
p aþ σACffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σAB
p b

8>>>>>>><
>>>>>>>:

ð3Þ
with σAB = ÆA|Bæ. It will be applied to both BS and triplet states in
order to carefully compare at the same level of formulation
computed energies and exchange coupling constants. Up to
second order in σAC and the ratio hac/δac, the same previous
NO-VB orbitals are expressed as

ΦA � hac
δac

� �
cþ 1� hac

2

2δac
2

 !
aþ σAB

2
þ hacσAC

δac

� �
b ð4Þ

ΦCA � 1� σAC
2

2
� hac

2

2δac
2

 !
cþ �hac

δac

� �
aþ ðσACÞb ð5Þ

where δac = Æa|heff|aæ � Æc|heff|cæ and hac = Æa|heff|cæ. From the
{A, B, C}T {a, b, c} correspondence (cf. eq 3), it turns out that
cC/cA ≈ HA/ΔAC ≈ hac/δac (to second order). Finally

S ¼ Sþ 2λμð1� S2Þ � σAB þ 2μþ 2hacσAC

δac
þ hac

2

δac
2 ð6Þ

In this “3 sites�4 electrons” formulation, S is decomposed into
both intersite delocalization terms (direct overlap σAB and
ionic�covalent mixing coefficient 2μ) and additional bridge-only
terms, exhibiting site-specific (here metal and bridge) atomic
details not explicit at the simpler “2 sites�2 electrons” level.
VB Description of the Triplet State. The same second-order

procedure can be used for the VB description of the triplet state.
The construction of the VB magnetic orbitals from the triplet
state starts with the interaction matrix between the symmetry-
adapted atomic orbitals (A ( B)/

√
2 and C yielding

Φg �
ffiffiffi
2

p
HA

ΔAC

 !
Cþ 1� σAB

2
�HAσAC

ΔAC
� HA

2

ΔAC
2

 !
Aþ Bffiffiffi

2
p ð7Þ

Φu � A� Bffiffiffi
2

p ð8Þ

ΦC � 1þ 2HCσAC

ΔAC
� HC

2

ΔAC
2

 !
C�

ffiffiffi
2

p
HC

ΔAC

 !
Aþ Bffiffiffi

2
p ð9Þ

Using the orthogonalization procedure defined in eq 3 and up
to second order in hac/δac, the same previous NO-VB orbitals are
now expressed as

Φg ¼
ffiffiffi
2

p
hac

δac

 !
cþ 1� hac

2

δac
2

 !
aþ bffiffiffi

2
p ð10Þ

Φu ¼ a� bffiffiffi
2

p ð11Þ

ΦC ¼ 1� hac
2

δac
2

 !
c�

ffiffiffi
2

p
hac

δac

 !
aþ bffiffiffi

2
p ð12Þ

By recombining (() the two SOMOs (taking into account the
overlap S), one recovers exactly {ΦA,ΦB} (eq 4). The SOMOs’
energy gap Δgu is given by

Δgu � 2hab þ 2hac
2

δac
ð13Þ

where hab = Æa|heff|bæ. The triplet state ΦC orbital (eq 12) is
symmetrical in a T b, whereas the BS ΦCA

orbital is not (eq 5).
Moreover, it can be verified thatΦC is not equal to the normalized
sum of ΦCA

and ΦCB
. In other words, a “3 sites�4 electrons”

analysis of both the triplet and BS states reveals that the dimer
cannot be seen as a simple linear superposition of the monomers
from a DFT�BS point of view. Alternatively, the computation of
the energies ET and EBS leading to JBS ≈ 2(EBS � ET) is not
performed with the same set of MOs (as far as the bridge is
concerned). This difference betweenΦC andΦCA

occurs because,
in the triplet state, ΦC is orthogonal to both magnetic orbitals
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{ΦA,ΦB}. whereas in the BS state,ΦCA
is only orthogonal toΦA

(respectively,ΦCB
is orthogonal toΦB: see Figure 1; there is more

about this in the Discussion section). As a consequence, the KS
effective Hamiltonian heff, functional of the total density, is not
exactly the same for both the T and BS states. In the next section
devoted to the derivation of analytical exchange coupling con-
stants’ expressions, we will remedy these issues by constructing
singlet and triplet states from two alternative sets of MOs (the so-
called “top-down” approach, going down from molecular to
atomic details). Before that, and for comparison purposes, we
first formulate a more classic “bottom-up” approach, constructing
triplet and singlet states from the previously defined set of
mutually orthogonalized {a, b, c} atomic orbitals.
Exchange Coupling Constants. Bottom-Up Derivation of JCI.

On the basis of the determinants represented in Table 1, constructed
from {a, b, c}, the fullCImatrix for a singlet state 1ΨGS is expressed in
termsof thebasic singlet states (1ΨCOV,

1ΨLMCT,
1ΨMMCT,

1ΨDCT) as

Kab � ffiffiffi
2

p
hac 2hab 0

� ffiffiffi
2

p
hac δac

ffiffiffi
2

p
hac 2hac

2hab
ffiffiffi
2

p
hac U 0

0 2hac 0 ΔEDCT

2
66664

3
77775 ð14Þ

where the bielectronic exchange integral Kab = Æab|1/r12|baæ is made
explicit in the covalent singlet energy only andΔEDCT=EDCT� ECOV.

Second-order perturbation theory yields the following ground-
state singlet wave function:

1ΨGS ¼ 1� hac
2

δac
2

 !
1ΨCOV þ

ffiffiffi
2

p
hac

δac

 !
1ΨLMCT

� 2
U

hab þ hac
2

δac

 !
1ΨMMCT �

2
ffiffiffi
2

p
hac

2

δacΔEDCT

 !
1ΨDCT

ð15Þ
At the level of this “bottom-up” approach, constructing 1ΨGS

from {a, b, c} and resulting elementary singlets, we do not need to
give explicit shapes to the magnetic and bridge orbitals. Likewise,
the CI matrix for the triplet state 3ΨGS can be expressed in terms
of 3ΨCOV and 3ΨLMCT, formally identical with the first two
terms in eq 15:

3ΨGS ¼ 1� hac
2

δac
2

 !
3ΨCOV þ

ffiffiffi
2

p
hac

δac

 !
3ΨLMCT ð16Þ

Finally, from the singlet�triplet energy difference, we derive
the following “3 sites�4 electrons” analytical expression of JCI

(cf. eq 13):

JCI ¼ 2Kab � 4
U

hab þ hac
2

δac

 !2

� 8hac
4

δac
2ΔEDCT

¼ 2Kab �
Δgu

2

U
� 8hac

4

δac
2ΔEDCT

ð17Þ

This atomic CI expression, including the last DCT term, is
formally identical with that derived from orthogonal MOs in the

Figure 1. Schematic representation of both the triplet and BS magnetic
and bridge orbitals.

Table 1. Basic Singlet and Triplet Wave Functions and Schematic Representations of Their Contributing Determinantsa

aMoreover, singlet and triplet states are labeled by their multiplicity, 1Ψ and 3Ψ, respectively.
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MO-CI approach,26 as well as in the conceptually similar VB-CI
approach22,44 (assuming there σAB = 0 and hab = 0, that is,
neglecting metal�metal over bridge�metal terms). We already
showed above how to extract the parameter hac/δac from the
DFT output files (just below eqs 4 and 5). In the present atomic
approach, ΔEDCT can be estimated to be larger than δac by at
least U.26 Therefore, the magnitude of the DCT contribution to
JCI will be mostly damped. The magnitude of JCI can be properly
computed by evaluating the values of the various parameters
involved: U, δac (and hab), within the framework of (DD)CI
codes designed for that effect. We chose to follow here another
strategy, consisting of deriving alternative expressions for the
exchange coupling constant from a “top-down” point of view,
starting from explicit magnetic orbitals. All needed parameters
will come directly out of the DFT output files.
Top-Down Derivation. In what follows, we will express VB

singlet and triplet states in terms of magnetic and bridge orbitals
(eqs 4, 5, and 12). These states will be further expanded in terms
of the elementary singlets and triplets constructed from the
orthogonalized atomic orbitals {a, b, c}. This will manifest how
these VB-GSs (as well as the VB-BS state for that matter) realize
only partial VB-CI expansions. From this “top-down” point of
view, these states are formally given by

1;3ΨGS ∼ 1ffiffiffi
2

p ðjΦAΦBΦCΦCj ( jΦBΦAΦCΦCjÞ ð18Þ

with the “þ” sign for the singlet state (“�” for the triplet,
respectively) and the upper bar for β spin. In eq 18, {ΦA, ΦB}
stands for the VB magnetic orbitals (eq 4) common to both
states. We will further give to the generic VB bridge orbital pair
“ΦCΦhC” two different forms, depending on whether one starts
from triplet (eq 12) or BS (eq 5) bridge orbitals. We therefore
derive two alternative expressions Jω (ω = 1, 2) for the exchange
coupling constant (the choice of the indices 1 vs 2 will become
clear at the end of the derivation).
( i) Triplet Orbital Based J2. In this first case, we construct both

triplet and singlet states only from the triplet state’s magnetic and
bridge orbitals (eqs 4 and 12). More explicitly, both the singlet
and triplet states (eq 18) are developed in terms of the basic
determinants of Table 1. The results of such developments are
presented in Table 2. One can then compute their respective

energies. In particular, the variational minimization of the singlet-
state energy yields the following relation:

Δgu ¼ � U2 Sþ hac
2

δac
2

 !
¼ �U2S2 ð19Þ

where S = ÆΦA
BS|ΦB

BSæ (eq 6). Plotting �Δgu as a function of S2
yields an estimate of U2. Finally, the exchange coupling constant
derived from triplet orbitals only is given by

J2 ¼ 2Kab �U2 Sþ hac
2

δac
2

 !2
¼ 2Kab þ JAF2 ð20Þ

Notice that J2 is given here without the additional DCT term
because we will compare it with computed JBS values, devoid of
DCT contributions. However, in contrast to eq 17, all needed
quantities in eqs 19 and 20 can be extracted from the DFT
output files. Finally, J2 could be directly compared to CI-like
values, only with the restriction of these being computed at the
same “3 sites�4 electrons” level (CASþ1 hþ2 h in DDCI
nomenclature26).
(ii) BS Orbital Based J1. As an alternative to J2, we now want

to derive an exchange coupling constant based only on the BS
magnetic and bridge orbitals. In order to construct triplet and
singlet states in which the bridge content is symmetrized, we
make use of the “perfect-pairing” (PP) approximation45�47 by
replacing |ΦCΦh C| in eq 18 by |ΦCA

ΦCB
(Rβ � βR)| f

|(ΦCA
Φh CB

þ ΦCB
Φh CA

)|. It can then be verified in Table 3 that
columns I and II, on the one hand, and columns III and IV, on the
other hand, provide for different but complementary contribu-
tions to the triplet and singlet wave functions developed in terms
of the basic determinants of Table 1. This difference is due to the
fact that the BS bridge orbitals (cf. eq 5) are lateralized with
respect to (a, b) (see Figure 1, right). Consequently, the singlet
state derived from the BS state is constructed from Table 3 by
summing the contributions of the four columns (I þ II þ III þ
IV). The corresponding triplet wave function is constructed from
Table 3 as (I� IIþ III� IV), from which one derives analytical
expressions for their respective energies. The variational condi-
tion applied to the singlet-state energy now yields

Δgu � δacm ¼ � U1 S� hacσAC

δac

� �
¼ � U1S1 ð21Þ

where m = (hac/δac)(σAC þ hac/δac) and S is given in eq 6. We
found numerically that the quantity δacm is nearly constant and
will be of very little consequence to the extraction procedure ofU1

(an independent estimation of δac is tentatively provided in eq
S12 in the Supporting Information). A plot of�Δgu as a function
of S1 yields an estimate of U1. The exchange coupling constant
derived only from BS orbitals is given (without DCT term) by

J1 ¼ 2Kab �U1 S� hacσAC

δac

� �2
¼ 2Kab þ JAF1 ð22Þ

As it turns out, the two procedures above yielding J1 and J2 can
be summarized in a very synthetic way. The variational condition
applied to each of the two singlet-state energies can be recast into
a common shape (ω = 1, 2):

Δω ¼ � UωSω ð23Þ
whereΔω =Δgu� (2�ω)δacm and Sω = σABþ 2μþωm. The
original “2 sites�2 electrons” quantities Δgu and S are now

Table 2. Decomposition of the VB Triplet Molecular-Based
Covalent Determinants in Terms of the Basic Atomic-Based
Determinants Defined in Table 1a

I = |ΦAΦhBΦCΦhC| II = |ΦBΦhAΦCΦhC|

|abcc| 1 � hac
2/δac

2 0

|bacc| 0 1 � hac
2/δac

2

|aacc| σAB/2 þ hacσAC/δac
þ hac

2/δac
2

σAB/2 þ hacσAC/δac
þ hac

2/δac
2

|bbcc| σAB/2 þ hacσAC/δac
þ hac

2/δac
2

σAB/2 þ hacσAC/δac
þ hac

2/δac
2

|aacb| hac/δac 0

|aabc| 0 hac/δac
|bacb| 0 �hac/δac
|abbc| �hac/δac 0

|aabb| �hac
2/δac

2 �hac
2/δac

2

aGround-state singlet and triplet wave functions are constructed by (
combinations of the various terms (eq 18).
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corrected within the present “3 sites�4 electrons” derivation by
the bridge-only related quantity m and become Δω and Sω,
respectively. It is therefore interesting that both sets of formulas
(for ω = 1, 2) only differ in the quantification of the bridge
content, as expected. Finally, the energy difference between the
optimized singlet and triplet gives the exchange coupling con-
stant Jω:

Jω ¼ 2Kab �UωSω
2 ¼ 2Kab þ JAFω ð24Þ

Setting ω = 1 in eqs 23 and 24 yields eqs 21 and 22 (ω = 2
yields eqs 19 and 20). Equation 24 is strongly reminiscent of
Noodleman’s equation (see item iv in the Introduction). Its form
reflects (and we verified it in each case) that the energy of a given
BS state is exactly halfway between those of the corresponding
triplet and singlet states.
The question now arises as to which (if any) of the two

constants Jω (ω = 1, 2) best describes the magnitude of the
DFT�BS-computed JBS coupling.

’DFT RESULTS

Methodology. All DFT calculations have been performed
with the ADF 2009 package.48�53 We use the B3LYP XC
potential54,55 with a triple-ζ basis set throughout. The procedure
yielding the VB magnetic orbitals {ΦA,ΦB} has been described
in the first paper of the series. The quantity S = ÆΦA

BS|ΦB
BSæ is

computed straightforwardly from the ADF output file as S =
∑i∑jCA

i CB
j Æji|jjæ with ΦA

BS = ∑iCA
i ji and ΦB

BS = ∑jCB
j jj. Here,

{ji} represents the basic Slater atomic orbitals over which the
magnetic orbitals are developed. The atomic orbital overlaps σAC
= ÆA|Cæ (A = “d” for the CuII ion and C = “p” for the symmetry-
adapted bridge orbital) as well as the ratio cC/cA of their
respective coefficients in the NO-VB magnetic orbital ΦA ≈
cCC þ cAA (þ other terms ...) are directly extracted from the
ADF triplet and BS output files. Homemade codes have been
written to extract all needed parameters.
Copper(II) Dimers. Examples Suited for the “3 Sites�4 Elec-

trons” Model. All of the data pertaining to analysis of the ideally
symmetrized and planar hydroxo-bridged copper(II) dimer
[Cu2(OH)2(NH3)4]

2þ are reported in Table 4. The Cu�O
distance is kept constant at 1.977 Å as is the Cu�N distance
(2.020 Å).We only vary the Cu�O�Cu angle θ. Equivalent data
are reported in the Supporting Information for azido- (section
B1), methoxo- (section B2), and aquo-bridged (section B3)
species.
We first plot Δω values for the hydroxocopper dimer as a

function of Sω (see eqs 19, 21, and 23 and Figure S6 in the
Supporting Information), which yields U1 = 4.56 eV and U2 =
5.62 eV.We then report these values in the corresponding eqs 20,
22, and 24 to estimate the antiferromagnetic part of Jω and plot it
without further adjustment against the DFT-computed JBS values
(Figure 2; the equivalent figure combining all of the plots
pertaining to the four idealized copper dimers studied in the

Table 3. Decomposition of the VB-BS Molecular-Based Covalent Determinants in Terms of the Basic Atomic Orbital-Based
Determinants Defined in Table 1a

I = |ΦAΦhBΦCA
ΦhCB

| II = |ΦBΦhAΦCB
ΦhCA

| III = |ΦAΦhBΦCB
ΦhCA

| IV = |ΦBΦhAΦCA
ΦhCB

|

|abcc| 1 � σAC
2 0 1 � σAC

2 � 2hacσAC/δac � 2hac
2/δac

2 0

|bacc| 0 1 � σAC
2 0 1 � σAC

2 � 2hacσAC/δac � 2hac
2/δac

2

|aacc| σAB/2 σAB/2 σAB/2 þ hacσAC/δac þ hac
2/δac

2 σAB/2 þ hacσAC/δac þ hac
2/δac

2

|bbcc| σAB/2 σAB/2 σAB/2 þ hacσAC/δac þ hac
2/δac

2 σAB/2 þ hacσAC/δac þ hac
2/δac

2

|aacb| �σAC 0 hac/δac 0

|aabc| 0 �σAC 0 hac/δac
|bacb| 0 σAC 0 �hac/δac
|abbc| σAC 0 �hac/δac 0

|aabb| �σAC
2 �σAC

2 �hac
2/δac

2 �hac
2/δac

2

aGround-state singlet and triplet wave functions are constructed by ( combinations of the various terms (eq 18).

Table 4. DFT (B3LYP) Parameters and Exchange Coupling Constants for Hydroxo-Bridged Copper(II) Dimers as a Function of
the Cu�O�Cu Angle θ (deg)a

θ Δgu (eV) S hac/δac σAC S1 S2 J1
AF J2

AF JBS Jexp

110.6 0.903 �0.271 0.422 �0.094 �0.231 �0.093 �1963 �392 �1866 �990

108.6 0.842 �0.256 0.415 �0.092 �0.218 �0.084 �1748 �320 �1642 �837

106.6 0.776 �0.240 0.410 �0.091 �0.203 �0.072 �1516 �235 �1405 �684

104.6 0.718 �0.227 0.404 �0.088 �0.191 �0.064 �1342 �186 �1220 �531

102.6 0.657 �0.212 0.399 �0.086 �0.178 �0.053 �1165 �127 �1033 �378

100.6 0.590 �0.197 0.395 �0.084 �0.164 �0.041 �989 �76 �838 �225

98.6 0.532 �0.183 0.390 �0.081 �0.151 �0.031 �839 �44 �687 �72

96.6 0.469 �0.168 0.387 �0.078 �0.138 �0.018 �700 �15 �524 81

94.6 0.415 �0.155 0.382 �0.075 �0.126 �0.009 �584 �4 �401 234

92.6 0.356 �0.141 0.379 �0.071 �0.114 0.003 �478 0 �281 387

90.6 0.301 �0.127 0.376 �0.068 �0.101 0.014 �375 �9 �178 540
a Jω values are given in cm�1, and Jexp values are extrapolated from a fit of the experimental data for nearly planar complexes.
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present work is reported in Figure S7 in the Supporting
Information).
(i) Forω = 1, the slope is close enough to unity (1.07) and the

intercept of 222 cm�1 is interpreted as the ferromagnetic
2Kab contribution. Notice that these (“3 sites�4 electro-
ns”) values of U1 and 2Kab are close to those reported in
the first paper of the series within a “2 sites�2 electrons”
framework where Ueff was, however, only an effective fit
parameter resulting from JBS = f(S2).

(ii) For ω = 2, the J2
AF values versus JBS are very different and

the amplitude of variation of J2 is much smaller than that of
JBS. Simply put, Figure 2 shows that J1 reproduces the J

BS

values, whereas J2 does not. Following the same procedure,
we calculated Uω and Jω values for various ideally sym-
metric copper(II) dimer bridges [Cu2(X)2(NH3)4]

nþ. In
Table 5, values for U1, U2, 2Kab, and the slopes are
reported (the case of the chloro-bridged dimer will be
discussed in the Appendix).

To this collection, we also added a “real” copper(II) dimer,56

[CuL(H2O)]22H2O, bridged by L = N-picolinoyl-3-amino-1-
propanol (papen; see Figure 3). Its Cu�O�Cu angle value is
98.3�, and the exchange coupling constant measured experimen-
tally for this hydrated compound is �128 cm�1, although that
value is not derived from a binuclear formulation of the magnetic
susceptibility but from an approximate tetrameric ring formula-
tion. When starting from such a “real” system, the strategy
consists of drawing a limited magnetostructural correlation in
order to getUω values (DFT data in section B4 in the Supporting
Information). Starting from the X-ray crystallographic geometry,
we generated four additional geometries by moving both Cu
atoms symmetrically along the Cu�Cu axis, bringing them
further away from, and closer to, one another (step: 0.05 Å).
In this case, U1 = 1.54 eV and U2 = 1.73 eV. Plotting JBS as a
function of J1 yields a slope of 1.17 and an intercept value 2Kab of
174 cm�1. Notice that both Uω values are smaller for this real
dimer than for the correspondingmethoxo-idealized one because
of the additional expansion of the magnetic orbital toward the
pyridine ring in the former case (Figure 3). Next, we can compare

the computed JBS value of the original geometry (�424 cm�1)
with that measured experimentally:�128 cm�1. A rough reduc-
tion factor of 2 applied to JBS would bring the computed value
closer to the experimental one. Finally, for a Cu�O�Cu angle of
98.3�, the extrapolation of the magnetostructural correlation
curve (cf. the first paper of the series) for experimental (nearly
planar) alkoxo-bridged copper(II) dimers predicts a ferro-
magnetic exchange coupling constant of 248 cm�1. The differ-
ence between the measured (�128 cm�1) and extrapolated
(248 cm�1) values is not due to the presence of the water mole-
cules because the anhydrous version of the papen-bridged copper
dimer (all other structural data being conserved) yields
JBS =�441 cm�1. This illustrates the sensitivity of the measured
or computed exchange coupling constants to the geometries of
the complexes (here, nearly planar versus distorted papen). To
conclude this section about copper(II) dimers, in all of these
cases, we found that only the analytical J1 constant constructed
from the BS MOs satisfyingly reproduces the magnetostructural
features of the corresponding DFT-computed JBS values.

’DISCUSSION

In the previous sections, we derived two analytical expressions
for the exchange coupling constant Jω (eqs 20, 22, and 24 with
ω = 1, 2). J1 is obtained by expressing triplet- and singlet-state
wave functions and energies from DFT�BS orbitals only (cf.
Figure 1, right). For that, we used the PP method for the bridge.
By contrast, J2 results from the sole use of the triplet state,
magnetic and bridge mutually orthogonal orbitals (Figure.1,
left). Notice that, in both cases, the same NO-VB magnetic
orbitals enter in eq 18. The source of the difference between J1
and J2 lies, therefore, only in the description of the bridge.
However, both J1 and J2 differ from JCI (eq 17) in that they both

Table 5. Parameters Derived for Various Copper(II) Dimers
at the B3LYP Level (See Figures 2 and S1�S5 in the
Supporting Information for Fits and Tables S1�S5 in the
Supporting Information for DFT Data)a

bridge U1 (eV) slopes 2Kab (cm
�1) U2 (eV)

hydroxo 4.56 1.07 222 5.62

azido 3.84 1.05 878 4.21

methoxo 4.44 1.00 378 6.08

aquo 4.34 1.15 28 4.32

papen 1.54 1.17 174 1.73

chloro 6.56 0.86 818 2.01
a Slopes are extracted from the fit of JBS as a function of J1

AF.

Figure 3. Representation of the (β-spin-unrestricted) LUMOs mirror-
ing the SOMOs for the “real” papen (left) and idealized methoxo (right)
copper dimers (B3LYP). The isosurface value is set to 0.02 au.

Figure 2. BS exchange coupling constant JBS as a function of the
antiferromagnetic part of Jω

AF (filled circles for ω = 1 and empty circles
for ω = 2). The dashed line corresponds to the identity JBS = Jω

AF.
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(in their own way) realize partial atomic CI expansions, whereas
JCI is derived from a full CI expansion via the matrix in eq 14.
Finally, a computed DFT�BS value JBS = 2(EBS � ET) is
conceptually hybrid in the sense that both DFT triplet and BS
state energies differ not only because of physically sound LMCT/
MMCT mechanisms but mainly because of an unphysical
symmetry breaking of the bridge orbitals inherent to the unrest-
ricted DFT�BS methodology. Therefore, JBS is not strictly
speaking an exchange coupling constant.
Computed JBS Values Reproduced by J1. The analytical

expression of J1 explicitly contains LMCT and MMCT contribu-
tions but neither DCT nor intra/interspin-polarization terms. In
addition to such quantities defined in the first paper of the series
as the intersite delocalization parameter μ and the DFT�BS
magnetic overlap S, we extracted from DFT calculations specific
parameters (ratio hac/δac and atomic orbital overlaps σAB and
σAC) suitable for our “3 sites�4 electrons”. By applying our
analytical model to various copper dimers, we verified that, in
each case, J1 reproduces correctly the variation of J

BS (slope close
to unity). We, therefore, validate a posteriori the minimal physics
required by the BS methodology.2 Moreover, plotting JBS as a
function of J1

AF yields the intercept values reported in Table 5,
which are interpreted as the residual ferromagnetic constant
2Kab.
We further verified that the agreement between J1 and J

BS does
not depend on the percentage of HF exchangemixed into the XC
potential. It can be seen in Figure S8 in the Supporting
Information (see also Tables S8 and S9 in the Supporting
Information) drawn for the hydroxo-bridged copper(II) dimer
that, from 20% to 50% HF, the slopes remain close to unity.
Moreover, as can be expected, the 2Kab estimations decrease with
an increase in the percent of HF as the magnetic orbitals retreat
toward the copper sites.
J2 as a First Step toward Experimental Values. The expres-

sion of J2 contains the same physics as that of J1 (i.e., LMCT and
MMCT), but it is developed on a different (triplet bridge) orbital
basis. The magnitude of J2 is much smaller than that of J1 ≈ JBS.
This means that the energy of the singlet state estimated from the
DFT triplet-state orbitals and yielding J2 is higher than that of the
singlet state corresponding to J1 and derived from BS orbitals.
This is most probably related to the fact that, in the computed BS
state, the breaking of the bridge symmetry offers an additional
degree of liberty (with respect to the triplet state), leading to an
extra stabilization of the BS state. The comparison between CI-
calculated J values using either triplet or singlet MOs has been
reported in the literature.35 The values are somewhat different at
the CAS-CI level but much less contrasted than the differences
reported here between J1 and J2. This shows more that the
difference between J1 and J2 is not mechanistic, as Noodleman’s
BS formalism is physically sound, but is artificially caused by the
unrestricted DFT�BS methodology.
Numerically, we expect the magnitude of J2 to be closer to

those computed at the CASþS level. In effect, post-self-consis-
tent-field (SCF) CAS calculations start from the triplet state’s
orbitals, as does J2 in our derivation. Therefore, were the DFT
orbitals suited for such a purpose, J2 would constitute the first
term to which other post-DFT contributions (DCT, intra/
interligand spin polarization, etc.) could be added by perturba-
tion in order to (hopefully) reach experimental values. In this
way, from our “top-down” approach, we derive an analytical
expression of the DCT contribution �8hac

4/δ3(1 � ΔEDCT/
4δac) to be added to J2. This last expression shows a crucial

dependence in the ratio ΔEDCT/4δac. However, we do not yet
have a clear-cut procedure to evaluate theΔEDCT quantity as well
as δac (see, however, eq S12 in the Supporting Information).
There are still conceptual differences between our approach

yielding J2 and CAS or post-CAS (i.e., DDCI) procedures. In
effect, we expressed all NO-VB orbitals (eqs 4, 5, and 10�12)
and basic singlets (Table 1) in terms of orthogonalized atomic
orbitals {a, b, c} (our building bricks). As a consequence, the
physical content of J2 is explicitly built at the atomic orbital level
and, therefore, resembles other VB-CI approaches,22,44 where,
for example, atomic-based DCT terms appear explicitly. By
contrast, in the minimal “active space” of a DDCI calculation, all
interatomic charge-transfer contributions definable for a given
active space are implicitly taken into account during the SCF
calculation, yielding the triplet (or singlet) state. This proce-
dure yields magnetic (antibonding) and corresponding bridge
(bonding) orbitals, which, in turn, become the elementary
bricks of subsequent post-SCF perturbation contributions. As
a consequence, the residual orbital-based DCT contributions
(called “2 h” in Malrieu et al.’s terminology) resulting from
other bridge orbitals are expected to be small due to Brillouin’s
theorem.26

Finally, the CAS/DDCI methods developed by Malrieu et al.
do a very fine job in reproducing experimental values, and we do
not see yet how to rival such theories with our DFT tools because
(to start with) of the intrinsic limitations of the BS methodology
listed in the Introduction. As a consequence, the focus of the
present work was rather to give an analytical expression to JBS

within theminimal “3 sites�4 electrons” framework, opening the
way for a better understanding of the physics involved in an
actual DFT�BS calculation.

’CONCLUSIONS

Despite its apparent conceptual deficiencies, the BS metho-
dology is still surprisingly robust and convenient to reproduce
experimental trends and to yield insights into some of the
exchange mechanisms involved in the process, especially basic
and fundamental MMCT and LMCT terms. It has to remain
clear, however, that the BS state, constructed as it is fromNO-VB
orbitals, when expanded into orthogonalized (atomic or
molecular) orbitals in a “top-down” procedure (eq 18), realizes
only a partial CI optimization. By contrast, the “bottom-up”
approach (eq 14) provides a full CI expansion for both the triplet
and singlet states.

Usually, a BS state is thought as resulting from the symmetry
breaking of the magnetic orbitals. We showed, however, in the
present work that the bridge orbital symmetry of the triplet
state (eqs 9 and 12) is artificially broken in the BS state (eqs 2
and 5). As a consequence, the DFT-computed JBS is not stricto
sensu an exchange coupling constant because the BS state does
not exhibit physically sound bridge orbitals (cf. Figure 1). To
the best of our knowledge, it is the first time that the symmetry
breaking of the bridge orbitals is shown to have such an impact
on the magnitude of JBS. This effect, therefore, contributes to
the overestimation of JBS compared to experimental values, in
addition to other effects already mentioned.

We showed, however, that it is still possible to derive a highly
significant analytical expression J1 (eq 22) numerically matching
the DFT-computed JBS for various copper(II) dimers suitable for
a NO-VB description. The linear fits of JBS as a function of J1

AF

work with slopes near 1 and ferromagnetic terms as intercepts for
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several systems over a range of bridge geometries (angles),
moreover using different DFT hybrid functions from 20% to
50%HFmixtures.We thus now have a fair idea of what JBSmeans
in terms of a VB-CI expansion. The corresponding true exchange
coupling constant J1 has been constructed only from the
DFT�BS state using the same magnetic and bridge orbital basis.
However, by construction, J1 incorporates the same defect as JBS

at the level of the bridge.
One may still think that the problem at stake, that is the fact

that the unrestricted DFT�BS method yields exchange coupling
constants of usually too large magnitude, is more with finding the
physically correct DFT than with the BS method itself. On the
one hand, some authors57,58 have remarked that the BS state can
be seen as an artifact whose existence is due to our lack of
knowledge of the exact XC potential. Were this exact XC
potential known, the BS state would either not exist or be at
best an excited state (i.e., the ground state would be the true
singlet state for antiferromagnetic systems). On the other hand,
for a given (as of yet approximate) XC potential and resulting BS
state, there is a basic difference between the BS state, as it is
described from a formal point of view,1,2 and the actual unrest-
ricted DFT�BS state, as it comes out of a calculation. That
difference lies at the level of the bridge orbitals and has a large
impact on computed JBS values. As of yet, we do not see a way
around that defect in the unrestricted DFT�BS methodology
itself. We still hope that our analysis represents a good start
toward further progress.

From a pragmatic point of view, it seems that the combined
use of the B3LYP XC potential with an empirical reduction factor
of 2 of the magnitude of J1≈ JBS works just fine for a wide range
of spin-coupled copper(II) complexes.27 The source of this
drastic measure is supposedly linked to the so-called SIE, that
is the nonexact compensation between (exact) Coulombic and
(approximate) exchange energies designed to remove the elec-
tron self-interaction energy.57,58 The tools we developed in the
present paper (especially J1 versus J2) will allow us to distinguish
between pure DFT (i.e., SIE) and BS methodology (i.e., bridge)
problems (manuscript in preparation).

Concerning our expression J2 (eq 20; possibly with some
DCT contribution), we have applied it to ideally symmetrical
(C2v) and chemically simple (NH3 terminal ligands) copper
dimers (cf. Table 4 and sections B1�B3 in the Supporting
Information). These values cannot be compared directly to those
derived from experimental correlations drawn for realistic com-
plexes exhibiting lower symmetries and richer chemistry (the
case of the papen copper dimer treated above). It would be
necessary to compare numerically our J2 values with CAS(þ1
hþ2 h)/CASþS values for the same set of ideal systems and,
ultimately, with DDCI values. This part is already in progress
through a collaboration.

’APPENDIX: EXTENSION OF THE FORMALISM

In the previous formalism, we only considered one bridge c
orbital belonging to the gerade SOMO symmetry in order to keep
the derivations as simple as possible. By the generic term “c”,
we meant the symmetry-adapted linear combination of bridge
(s and p) atomic orbitals interacting with the “þ” combination of
copper ninth d orbitals yielding the gerade triplet SOMO. It is
possible, however, to treat in the very same way the other
ungerade SOMO symmetry. The generic bridge orbital will be
labeled “d”. We give here only a few key expressions derived at

what we now call the “3 sites�6 electrons” level. Some details
of the derivation are furnished as section A4 in the Support-
ing Information. TheDFT�BSmagnetic orbital overlap S is now
expressed to the second order as (cf. eq 6)

S ¼ σAB þ 2μþ 2hacσAC

δac
þ hac

2

δac
2

 !
� 2hadσAD

δad
þ had

2

δad
2

 !

ð25Þ

and the triplet SOMO gap Δgu becomes (cf. eq 13)

Δgu ¼ 2hab þ 2hac
2

δac
� 2had

2

δad
ð26Þ

For both symmetries, the product hσ < 0 and setting aside
hab T σAB þ 2μ in eqs 25 and 26, we verify that both S and Δgu

cancel when c and d weigh equivalently in the two magnetic
orbitals. These analytical “3 sites�6 electrons” expressions are
relevant for a proper description of the exchange phenomenon
within, for example, copper(II) dimers bridged by μ-chloro
moieties. We tested this last model and show in Figure 4 a
representation of the two triplet SOMOs, each selecting the
corresponding symmetry-adapted bridge orbitals: the 3py (þ3s)
chloride orbital interacts with themetallic (da� db) combination
and the 3pz orbital with the (da þ db) combination.

We derived the appropriate formula for the exchange cou-
pling constants: inΔω (cf. eq 23), δacm is replaced by (δacmac�
δadmad), while in Sω, m is replaced by mac � mad. The form of
eq 24 is, however, left unchanged. All needed data are given in
section B5 in the Supporting Information. As for the chloro-
bridged copper(II) dimers, J1 fairly reproduces JBS (slope of
0.85), whereas J2 does not. In the first case, the numerical
agreement is not perfect because of the fact that it is more
difficult to quantify the result of the difference between z and y
partially compensating terms. Moreover, while the chlorine 3pz
orbital is almost the sole contributor to the gerade SOMO, such
is not the case within the ungerade symmetry, containing a
mixture of chlorine 3s and 3py orbitals. A proper analytical
treatment of such a mixture turned out to be too cumbersome,
even after predefining such a mixture in the DFT calculations
via a fragment approach, as is possible with ADF. We therefore
did not pursue such a course. Still, J1 is much closer to JBS than
J2, which is what we wanted to show.

’ASSOCIATED CONTENT

bS Supporting Information. Supplements to the theoretical
formalism, DFT results for copper dimers, and miscellaneous

Figure 4. Representation of the two (β-spin-unrestricted) LUMOs
mirroring the two SOMOs for a [Cu2Cl6]

2� dimer computed with
B3LYP. The isosurface value is set to 0.04 au, and the bridge angle
[Cu�Cl�Cu] is 89�.
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