ARTICLE

PAs₃S₃ Cage as a New Building Block in Copper Halide **Coordination Polymers**

Patrick Schwarz, Joachim Wachter,* and Manfred Zabel

Institut für Anorganische Chemie, Universität Regensburg, D-93040 Regensburg, Germany

Supporting Information

ABSTRACT: First examples of the coordination chemistry of the PAs₃S₃ cage were obtained from solutions of PAs₃S₃·W- $(CO)_5$ (1) in CH₂Cl₂ or CH₂Cl₂/toluene and CuX (X = Cl, Br, I) in MeCN through interdiffusion techniques. Crystals of $[Cu(PAs_3S_3)_4]X(2, X = Cl; 3, X = Br) and [(Cu_2I)(PAs_3S_3)_3]I$ (4) were obtained and characterized by Raman spectroscopy (2) and single-crystal X-ray crystallography. The solidstate structures reveal an unexpected coordination versatility of the PAs₃S₃ ligand: apical phosphorus and bridging sulfur atoms interact with copper, while As···X interactions determine the dimensionality of the frameworks. The structures of 2 and 3 contain tetrahedral $[(PAs_3S_3)_4Cu]^+$ cations as sec-

ondary building units (SBUs), which are arranged by interactions with Cl⁻ or Br⁻ anions into two- and three-dimensional substructures. These interpenetrate into a (2D + 3D) polycatenane. Compound 4 is built up by a one-dimensional $[(Cu_2I)(PAs_3S_3)_3]_n^{n+}$ ribbon with PAs_3S_3 cages as P,S-linkers. The As atoms of the exo PAs_3S_4 linkers interact with iodide counterions (3.35 < d(As-I) < 3.59 Å). The resulting two-dimensional layer is organized by weak As · · · I interactions (d(As-I) = 3.87 Å) into a 3D network.

INTRODUCTION

 As_4S_3 as well as P_4S_3 are cage molecules of the nortricyclane type.¹ The coordination behavior of P₄S₃ toward Lewis-acid compounds is already well established because of its better solubility in organic solvents.² Recently, we have shown that both compounds form structurally very different coordination polymers with copper halides.³ Whereas P_4S_3 coordinates exclusively through its P atoms,⁴ As₄S₃ interacts with copper through sulfur.⁵ In the latter case formation of three-dimensional networks seems to be additionally supported by weak but significant As-X (X = Cl, Br, I) interactions. These differences cannot be explained by theoretical studies. Density functional theory calculations on $P_4S_3^{\ 6}$ and As_4S_3 do not show significant differences in the energy and shape of HOMOs and LUMOs.7

A chemical approach for solution of this problem could be the investigation of the yet unknown coordination behavior⁸ of mixed cages $P_n As_{4-n} S_3$ (n = 1-3).⁹ Of particular interest may be the PAs₃S₃ cage, because it combines the PS_3 building block of P_4S_3 and the As_3 basis of As_4S_3 .¹⁰ This similarity makes it an interesting ligand for the formation of coordination polymers with copper(I) halides. In this work we report on the formation of novel coordination polymers of PAs₃S₃ via participation of P and S coordination sites, while the As sites are blocked by intermolecular interactions with halide ions.

RESULTS AND DISCUSSION

1. Synthesis and Characterization of $PAs_3S_3 \cdot W(CO)_5$ (1). The high-temperature synthesis from the elements was reported to give PAs_3S_3 along with phosphorus-rich $P_nAs_{4-n}S_3$ (n = 2-4) compounds.^{9a} We found that fusing together stoichiometric amounts of P, As, and S at 600 °C for 7 days followed by extremely slow cooling (1 °C/min) to room temperature gave yellow-orange PAs₃S₃ of spectroscopic purity. The ³¹P NMR spectrum in CS₂ (δ = 104 ppm) is in agreement with formation of P_{apical}As₃S₃.¹¹ However, the ³¹P MAS NMR spectrum reveals two singlets of equal intensity at δ = 106 and 113 ppm. The existence of two phosphorus resonances may be explained by a different orientation of the cage molecules in the crystal. This phenomenon was first described for β -P₄S₃¹² and was also found for P₄Se₃.¹³ Because of the extremely low solubility of PAs₃S₃ in, e.g., toluene, CH₂Cl₂, and THF we investigated formation of an adduct with $W(CO)_5$. In analogy to the chemistry of As₄S₃, such an adduct should be much more soluble.⁵

Reaction of PAs_3S_3 with $W(CO)_5THF$ in THF gave after filtration over SiO₂ PAs₃S₃·W(CO)₅ (1) as a yellow-orange powder in 52% yield. The IR spectrum reveals absorptions at 1935 and 2080 cm⁻¹ which are characteristic of ν (CO) stretch

Received: May 19, 2011 Published: July 28, 2011

Figure 1. Molecular structure of $PAs_3S_3 \cdot W(CO)_5$ (1). Selected distances (Å): P1-S1 2.095(1), P1-S2 2.097(1), P1-S3 2.091(1), As1-S1 2.190(1), As2-S2 2.203(1), As3-S3 2.181(1), As1-As2 2.438(1), As1-As3 2.417(1), As2-As3 2.429(1), P1-W1 2.460(1).

Scheme 1. Diffusion Reactions of 1 (in toluene or/and CH_2Cl_2) with CuX (X = Cl, Br, I) (in MeCN)

vibrations typical of a W(CO)₅ fragment. The field desorption mass spectrum exhibits the parent ion at m/z = 675.6. The ³¹P NMR spectrum in C₆D₆ shows a singlet at $\delta = 115.9$ ppm. The observed ¹J_{P,W} coupling of 300 Hz is stronger than that in P₄S₃·W(CO)₅ (126 Hz).¹⁴ The ³¹P MAS NMR spectrum contains one signal at $\delta = 113.0$ ppm and weak resonances at $\delta = 109$ and -64.3 ppm indicating impurities of still unknown nature. The structure of 1 is composed of a PAs₃S₃ cage bearing a W(CO)₅ fragment at the apical P atom (Figure 1). There are no significant distortions within the cage compared to the free molecule.^{10a} Only the As–S bonds are slightly lengthened by 0.02–0.04 Å. The packing in the crystal structure may be described by layers parallel to the *ab* plane but with an inverse orientation of the W(CO)₅ groups in neighbored layers (Figure S1, Supporting Information).

2. Synthesis and Characterization of Coordination Polymers. 2.1. Syntheses and Spectroscopic Data. Layering of solutions of 1 in the respective solvent with solutions of copper(I) halides gave after complete interdiffusion yellow crystals (ca. 1% yield) of $[Cu(PAs_3S_3)_4]Cl$ (2), $[Cu(PAs_3S_3)_4]Br$ (3), and $[(Cu_2I)(PAs_3S_3)_3]I$ (4) (Scheme 1). The low yields may be explained by competitive formation of yellow, orange, or brown powders during the diffusion process. Formation of crystals is solvent dependent. Thus, 2 crystallizes from solutions of 1 in toluene, crystallization of 3 occurs when using a mixture of 1, toluene, and CH_2Cl_2 , and 4 requires dissolution of 1 in CH_2Cl_2 . Variation of the stoichiometry and concentration did not affect the crystallization processes. Layering of saturated solutions of PAs_3S_3 in toluene, CH_2Cl_2 , or CS_2 with CuX solutions gave in all cases immediate precipitation of powders at the phase border.

For the purpose of comparison, reaction of a hot saturated solution of PAs_3S_3 in toluene with CuCl in CH_3CN was studied. An orange microcrystalline material precipitated in nearly quantitative yield. The Raman spectrum of this material agrees fairly well with the spectrum of pure **2** (Figure S2, Supporting

Figure 2. Raman spectra of $PAs_3S_3(-)$ and $[Cu(PAs_3S_3)_4]Cl(2)(--)$.

Table 1. Raman Frequencies $[cm^{-1}]$ of PAs₃S₃ and $[Cu(PAs_3S_3)_4]Cl(2)$

PAs ₃ S ₃ ¹⁵	assignment ¹⁵	PAs ₃ S ₃ ^a	2
183m	ν_{10} (E)	180m	179m
206s	ν_8 (E)	206s	202vs
223m	ν_9 (E)	218m	225w
243w		246w	247vw
277s	ν_4 (A ₁)	274vs	274vs
312m	ν_3 (A ₁)	307s	
354vs	ν_2 (A ₁)	349s	337s, 346sh
		364sh	358w, 371 m
424mw	ν_1 (A ₁)	421m	
464w	ν_6 (E)	461w,br	479w,br
^{<i>a</i>} This work.			

Information). Therefore, similar composition and structures for both products are very likely.

Raman spectra of PAs_3S_3 and **2** were measured (Figure 2). The comparison of both spectra shows that the frequencies ν_1 , ν_3 , and ν_6 of the free cage, which are assigned to vibrations of the apical PS₃ moiety,¹⁵ are significantly affected, very likely by coordination to copper (Table 1). The mode ν_2 (symmetric As-S stretching) of the free cage is split into vibrations at 337, 346, 358, and 371 cm⁻¹. The interaction of the As₃ basis with the Cl⁻ anion is held responsible for this splitting (see below), although it is difficult to assign the vibrations. A similar influence of copper coordination on P₄S₃ Raman frequencies has been studied recently.¹⁴

2.2. Structures of $[Cu(PAs_3S_3)_4]X(X = Cl, Br)$. The structures of 2 and 3 are composed of pairs of $[(PAs_3S_3)_4Cu]^+$ cations and Cl⁻ or Br⁻ anions. The cations are built up of a central copper atom, which is tetrahedrally surrounded by four apical P atoms of PAs_3S_3 molecules (Figure 3). The Cu–P distances (2.23–2.27 Å) are in the same range as those observed for copper phosphides.¹⁶

The crystal structures of 2 (and isostructural 3) were determined by interactions between As₃ basis atoms and Cl⁻ (Br⁻) anions, Table 2. In the structure of 2 there are two different types A and B of $[(PAs_3S_3)_4Cu]^+$ cations, which are defined by the number of Cl⁻ anions interacting with PAs₃S₃ cages. In type A

Figure 3. Structure of $[Cu(PAs_3S_3)_4]X$ (X = Cl, 2, Br, 3). The two different cations with the corresponding anions are shown.

Table 2. Selected Distances (Å) of $[Cu(PAs_3S_3)_4]X$ (X = Cl, 2, Br, 3)

	2	3
Cu1-P1	2.229(4)	2.225(3)
Cu1-P2	2.235(7)	2.240(5)
Cu2-P3	2.271(4)	2.291(2)
Cu2-P4	2.229(11)	2.237(7)
P1-S1	2.069(6)	2.072(4)
P1-S2	2.076(6)	2.066(4)
P1-S3	2.086(7)	2.068(5)
P2-S4	2.078(4)	2.074(3)
P3-S5	2.082(7)	2.061(5)
P3-S6	2.078(7)	2.065(5)
P3-S7	2.077(6)	2.067(4)
P4-S8	2.097(10)	2.075(8)
As1-S1	2.243(3)	2.233(6)
As2-S2	2.233(6)	2.220(5)
As3-S3	2.242(6)	2.232(5)
As4-S4	2.236(4)	2.230(3)
As5-S5	2.245(5)	2.256(4)
As6–S6	2.235(6)	2.239(4)
As7-S7	2.243(5)	2.256(4)
As8-S8	2.201(8)	2.210(6)
As1-As2	2.473(3)	2.474(2)
As1-As3	2.483(3)	2.482(2)
As2-As3	2.473(3)	2.466(2)
As4–As4a	2.496(3)	2.481(2)
As5-As6	2.471(4)	2.461(3)
As5-As7	2.476(3)	2.464(2)
As6-As7	2.464(3)	2.448(3)
As8–As8a	2.472(15)	2.457(10)

cations four PAs₃S₃ molecules are arranged arround one Cl⁻ anion with As···Cl distances between 3.14 and 3.18 Å (Figure 4), whereas in type **B** cations there are only three PAs_3S_3 molecules with As···Cl distances between 3.13 and 3.20 Å (Figure 5). The observed As \cdots Cl distances are significantly shorter than the sum of the van der Waals radii of As and Cl. The corresponding As · · · Br distances in 3 range from 3.24 to 3.37 Å in both types of cations.

Two different substructures of different dimensionality follow from the different coordination pattern of Cl⁻ anions: Cation A interacts with four Cl⁻ anions of coordination number 12,

Figure 4. Section of the 3D network of 2 represented by cation 2A and corresponding As · · · Cl interactions (---). Each Cl⁻ anion is surrounded by four PAs₃S₃ molecules, but only one of them is shown completely for the sake of clarity.

Figure 5. Section of the 2D network of 2 represented by cation B and corresponding As···Cl interactions (---).

leading to formation of a 3D network (Figure 4). In the second substructure cation B interacts with three Cl⁻ anions of coordination number 9, giving rise to a 2D network parallel to ab. The cage without interaction with Cl⁻ is oriented along *c*. A further characteristic of this cage is large thermal ellipsoids, which is in agreement with a possible motion in the crystal lattice (Figure 5). The two-dimensional layer possesses voids with an average diameter of ca. 10.7 Å. These voids are penetrated by the three-dimensional network, giving a polycatenated structure (Figure 6). Only a few examples of (2D + 3D) polycatenation of substructures of different dimensionality have been described in the literature.¹

2.3. Structure of $[(Cu_2l)(PAs_3S_3)_3]l$. Compound 4 is a coordination polymer, which is composed of cationic [(Cu₂I)- $(PAs_3S_3)_3^{\dagger}$ and anionic (I^-) building blocks (Figure 7). Cationic $[Cu_2I(\mu-PAs_3S_3)]^+$, which contains a rare example of a cationic copper halide building block,¹⁸ functions as a secondary building unit (SBU). The resulting SBUs are P,S-linked by two cage molecules, giving rise to formation of a one-dimensional

Figure 6. Schematic representation of the (2D + 3D) polycatenation of 2 (and 3).

Figure 7. Section of the structure of $[(Cu_2I)(PAs_3S_3)_3]I(4)$.

Figure 8. Section of the 1D-(Cu₂I)(PAs₃S₃)₃ ribbons with adjacent iodide counterions in 4 and As $\cdot \cdot \cdot I$ interactions < 3.6 Å (---). For the sake of clarity, the exo PAs₃S₃ cages are represented by triangles for the As₃ basis atoms.

 $[(Cu_2I)(PAs_3S_3)_3]_n^{n+}$ ribbon (Figure 8). It is noteworthy that a P,S-coordination behavior of a P₄S₃-derived cage has been reported thus far only for Ag⁺ compounds.^{2g,12}

Coordination of Cu1 is achieved by two S atoms, one P atom, and one iodide ligand, while Cu2 bears iodide, one S atom, and two P atoms. The Cu-S and Cu-I distances are in the range typical of other P_4Q_3 (Q = S, Se) coordination polymers with copper(I) iodide,^{4a} just as the Cu–P distances.^{4,16} The distances P1-S2, P2-S4, and P3-S5 are slightly longer than the other P-S distances because of the bridging character of these atoms (Table 3). The As-S and As-As bonds are longer by

	/ 01 [(0#21)(110303)3]1 (
Cu1–I1	2.628(3)
Cu2–I1	2.577(3)
Cu1-P1	2.236(5)
Cu2-P2	2.266(4)
Cu2-P3	2.243(4)
Cu1-S4	2.329(4)
Cu1-S5	2.317(4)
Cu2-S2	2.351(4)
P1-S1	2.098(6)
P1-S2	2.112(5)
P1-S3	2.087(6)
P2-S4	2.104(5)
P2-S6	2.084(6)
P2-S7	2.090(5)
P3-S5	2.120(5)
P3-S8	2.086(6)
P3-S9	2.069(6)
As1-S1	2.257(4)
As2-S2	2.278(4)
As3-S3	2.250(5)
As4-S4	2.273(4)
As5-S5	2.278(4)
As6-S6	2.264(4)
As7-S7	2.246(4)
As8-S8	2.258(4)
As9-S9	2.255(4)
As1-As2	2.482(3)
As1-As3	2.465(3)
As2-As3	2.481(3)

2.480(2)

2.478(3)

2.476(3)

2.480(2)

2.477(3)

2.483(3)

Figure 9. Two-dimensional arrangement of two planar substructures of 4. As···I interactions (3.35 < d < 3.59 Å) are represented by dashed lines.

0.03–0.06 Å than those in free PAs_3S_3 , ^{9a} probably as a consequence of weak interactions with the counterions (see below).

The exo As atoms As4–As9 of the 1D- $[(Cu_2I)(PAs_3S_3)_3]_n^{n+1}$ ribbons interact with adjacent iodide counterions to form a layer within the *bc* plane (Figure 8). The corresponding As-Idistances are between 3.35 and 3.59 Å. This is longer than

Table 3. Selected Distances (Å) of $[(Cu_2I)(PAs_3S_3)_3]I(4)$

As4-As6

As4-As7

As6-As7

As5-As8

As5-As9

As8-As9

covalent As–I bonds, e.g., 2.51 Å in AsI₃¹⁹ or 3.05 Å in As₆I₈^{2–,20} but in the same range as weak interlayer As···I interactions in AsI₃ (d(As-I) = 3.5 Å).¹⁹ Such weak interactions may be forced by electrostatic attractions as observed in [Cp*₂Fe₂As₂Se₂]I (d(As-I) = 3.24 Å).²¹

The atoms As1, As2, and As3 of the bridging SBUs coordinate to I2 in the same range, which gives pairs of mutually arranged layers of about 13 Å diameter (Figure 9). Slightly weaker As \cdots I interactions (d = 3.87 Å) exist between I1 of each of the [Cu₂I]⁺ units and two As atoms (As6, As8) of PAs₃S₃ molecules

Figure 10. Stacks of planar substructures of 4, organized by weak As····I interactions (d = 3.87 Å).

belonging to the next layer. These distances are still shorter than the sum of the van der Waals radii of As and I (4.15 Å). Finally, a 3D network is built up consisting of stacks of planar substructures parallel to the *bc* plane (Figure 10).

CONCLUSIONS

The first examples of coordination polymers from PAs₃S₃ or its metal carbonyl derivative PAs₃S₃·W(CO)₅ (1) and copper halides were obtained by interdiffusion techniques between solvents of different polarity. The solid-state structures demonstrate an unexpected coordination behavior of the PAs₃S₃ building block exhibiting properties in between P₄S₃ and As₄S₃. Thus, coordination of apical phosphorus is reminiscent of that of P₄S₃, and weak but significant As···X interactions resemble those of As₄S₃. However, the role of sulfur, which serves for the first time as a coordination site toward copper, is unprecedented in the series of P₄Q₃ (Q = S, Se) cage molecules.

EXPERIMENTAL SECTION

General Methods. All manipulations were carried out under nitrogen using glovebox or Schlenk techniques. The Raman spectra were recorded on a Varian FTS 7000e spectrometer containing a FT Raman unit. Excitation of the microcrystalline samples was carried out with a Nd:YAG laser ($\lambda = 1064$ nm), and detection was performed with a liquid N₂-cooled Ge detector. ³¹P MAS NMR spectra were recorded with a Bruker Avance 300 spectrometer using a double-resonance 2.5 mm MAS probe. The ³¹P resonance was 121.495 MHz. All spectra were acquired at a MAS rotation frequency of 30 kHz, a 90° pulse length of 2.3 μ s, and a relaxation delay of 450 s.

	-			
	1	2	3	4
formula	C5As3O5PS3W	As12ClCuP4S12	As12BrCuP4S12	As ₉ Cu ₂ I ₂ P ₃ S ₉
$M_{ m w}$	675.83	1506.76	1551.21	1436.72
crystal size [mm]	$0.070\times0.051\times0.042$	$0.13\times0.12\times0.05$	$0.11\times0.044\times0.03$	$0.07\times0.05\times0.01$
crystal system	orthorhombic	trigonal	trigonal	monoclinic
space group	Pbcn	P31c	P31c	$P2_1/c$
a [Å]	10.594(1)	13.314(1)	13.414(1)	12.020(1)
b [Å]	22.909(1)	13.314(1)	13.414(1)	13.774(1)
c [Å]	12.036(1)	21.172(1)	21.482(1)	15.895(1)
β [deg]				91.7(1)
γ [deg]		120.0	120.0	
V [Å ³]	2921.1(3)	3250.2(2)	3347.7(1)	2630.4(2)
Ζ	8	4	4	4
$\sigma_{ m calcd} [m g \ m cm^{-3}]$	3.073	3.079	3.078	3.628
$\mu [ext{Cu K}lpha, ext{mm}^{-1}]$	27.368	24.411	24.364	41.411
instrument	Oxf. Diff. Gemini Ultra	Oxf. Diff. Gemini Ultra	Oxf. Diff. SuperNova	Oxf. Diff. Gemini Ultra
T[K]	123	123	295	123
scan range	$4.60 < \Theta < 66.49$	$3.83 < \Theta < 66.47$	$3.80 < \Theta < 71.35$	$3.68 < \Theta < 56.23$
reflns collected	9111	8478	16 127	6840
unique obd $[I > 2\sigma(I)]$	2106	2739	4029	2579
params refined	163	182	182	226
abs corr	analytical	analytical	analytical	semiempirical
transmission	0.474/0.274	0.328/0.051	0.412/0.153	1.0000/0.2858
max/min residual density $[e/Å^{-3}]$	2.424/-2.224	1.518/-0.920	0.586/-0.603	2.581/-2.195
$R_1, wR_2 (I > 2\sigma)$	0.043, 0.136	0.046, 0.116	0.034, 0.095	0.057, 0.154
R_1 , wR_2 (all data)	0.051, 0.142	0.047, 0.117	0.035, 0.096	0.073, 0.162

Synthesis of PAs₃S₃^{9a}. A 0.4 g (0.013 mmol) amount of red phosphorus, 2.9 g (0.039 mmol) of arsenic, and 1.2 g (0.039 mmol) of sulfur were heated in evacuated vials at 600 °C for 7 days. After very slow cooling (1 °C/min) to room temperature orange PAs₃S₃ is obtained quantitatively. ³¹P MAS NMR (121 MHz): δ = 106 (s), 113 ppm (s).

PAs₃S₃•**W(CO)**₅. A 50 mL amount of a W(CO)₅THF solution (*c* = 0.028 mol · L⁻¹) was added to 350 mg (0.99 mmol) of PAs₃S₃. The resulting suspension was stirred for 18 h at room temperature. After evaporation of the solvent, the residue was dissolved in 25 mL of toluene and filtered over SiO₂ (column 15 × 3 cm). 1 was isolated as a yellow solid, which after washing with pentane was employed for the reactions. Recrystallization from 10 mL of toluene/pentane 2:1 at −24 °C gave material suitable for X-ray diffraction analysis. [PAs₃S₃·W(CO)₅] (1): Yield, 348 mg (52%); ³¹P MMR (121 MHz, C₆D₆) δ = 115.9 ppm (s) (*J*_{P,W} = 300 Hz); ³¹P MAS NMR (121 MHz) δ = 113 ppm; FD MS (toluene) *m*/*z* = 675.6 (M⁺); IR (KBr, cm⁻¹) 1935vs, 2080s [*ν*(CO)].

Syntheses of $[Cu(PAs_3S_3)_4]Cl$. *Method A*. A yellow solution of 40 mg (0.059 mmol) of 1 in 20 mL of toluene was layered with a solution of 15 mg (0.15 mmol) of CuCl in 15 mL of acetonitrile. A brown precipitate formed after 2 days; crystallization of yellow prisms started after 4 days. After decantation of the solvent the crystals were washed with toluene and pentane. The composition of the prisms was determined by X-ray diffraction analysis as $[Cu(PAs_3S_3)_4]Cl$ (2).

Method B. A 50 mg (0.14 mmol) amount of PAs₃S₃ was stirred for 1 h at 110 °C in 100 mL of toluene and then filtered. The hot filtrate was combined with a solution of 10 mg (0.1 mmol) of CuCl in 10 mL of acetonitrile. Immediately, a yellow-orange precipitate formed. Crystallization was completed after keeping the solution for 1 day at room temperature to give 45 mg of a microcrystalline powder, which was isolated by decantation of the solvent and washing with pentane. The product was examined Raman spectroscopically. [Cu(PAs₃S₃)₄]Cl (2): Raman (cm⁻¹) 179m, 203s, 224w, 249vw, 278vs, 298vw, 337m, 347w, 357vw, 371 m, 480w,br. Anal. Calcd: S, 25.54. Found: S, 23.51.

 $[Cu(PAs_3S_3)_4]Br$ (3). The solution of 25 mg (0.037 mmol) of 1 in a mixture of 30 mL of toluene/CH₂Cl₂ (v/v 2:1) was layered with a solution of 15 mg (0.1 mmol) of CuBr in 15 mL of acetonitrile. A yellow precipitate formed immediately at the phase border; yellow intergrown crystals formed after 3 days of diffusion. These were separated from yellow powder by decantation and washing with pentane. X-ray diffraction analysis showed them to have composition $[Cu(PAs_3S_3)_4]Br$ (3).

 $[(Cu_2I)(PAs_3S_3)_3]I$ (4). A solution of 37 mg (0.055 mmol) of 1 in 25 mL of CH_2Cl_2 was layered with 36 mg (0.19 mmol) of CuI in 20 mL of acetonitrile. A yellow to orange precipitate formed immediately, and then very slowly intergrown yellow platelets crystallized. The reaction was finished after the initially yellow solution of 1 decolorized. After isolation and washing with pentane the crystals were determined to have composition $[(Cu_2I)(PAs_3S_3)_3]I$ (4).

X-ray Structure Determination of Compounds 1–4. Crystallographic data of the crystal structure determinations for 1–4 are given in Table 4. The structures were solved by direct methods (SIR-97 program)²² and refined by full-matrix anisotropic least-squares (SHELXL97 program)²³ with all reflections. The examined crystal of compound **3** was a merohedral twin, the twin law was ($-1 \ 0 \ 0, 0 - 1 \ 0, 0 \ 0 \ 1$), and the ratio of the twin components was refined to 0.616(0.002) to 0.384.

ASSOCIATED CONTENT

Supporting Information. X-ray crystallographic data in CIF format, packing diagram of 1, and Raman spectrum of microcrystalline 2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Fax: +49-941/943-4439. E-mail: Joachim.Wachter@ chemie.uni-regensburg.de.

ACKNOWLEDGMENT

This work was supported by the Deutsche Forschungsgemeinschaft (Wa 486/11-1). We gratefully acknowledge continuous support by Prof. Dr. M. Scheer. We also thank Dr. M. Schlosser for recording the Raman spectra and Dr. C. Gröger for recording the ³¹P MAS NMR spectra.

REFERENCES

(1) (a) Whitfield, H. J. J. Chem. Soc. A **1970**, 1800. (b) Whitfield, H. J. J. Chem. Soc., Dalton Trans. **1973**, 1737. (c) Chattopadhyay, T. K.; May, W.; von Schnering, H. G.; Pawley, G. S. Z. Kristallogr. **1983**, 165, 47.

(2) (a) Cordes, A. W.; Joyner, R. D.; Shores, R. D.; Dill, E. D. Inorg. Chem. 1974, 13, 132. (b) Jefferson, R.; Klein, H. F.; Nixon, J. F. J. Chem. Soc., Chem. Commun. 1969, 536. (c) Di Vaira, M.; Peruzzini, M.; Stoppioni, P. J. Organomet. Chem. 1983, 258, 373. (d) Di Vaira, M.; Peruzzini, M.; Stoppioni, P. Inorg. Chem. 1983, 258, 373. (e) Aubauer, C.; Irran, E.; Klapötke, T. M.; Schnick, W.; Schulz, A.; Senker, J. Inorg. Chem. 2001, 40, 4956. (f) Barbo, P.; Di Vaira, M.; Peruzzini, M.; Costantini, S. S.; Stoppioni, P. Chem.—Eur. J. 2007, 13, 6682. (g) Adolf, A.; Gonsior, M.; Krossing, I. J. Am. Chem. Soc. 2002, 124, 7111.

(3) Wachter, J. Coord. Chem. Rev. 2010, 254, 2078.

(4) (a) Biegerl, A.; Brunner, E.; Gröger, C.; Scheer, M.; Wachter, J.;
Zabel, M. Chem.—Eur. J. 2007, 13, 9270. (b) Biegerl, A.; Gröger, C.;
Kalbitzer, H. R.; Wachter, J.; Zabel, M. Z. Anorg. Allg. Chem. 2010, 636, 770.

(5) Schwarz, P.; Wachter, J.; Zabel, M. Eur. J. Inorg. Chem. 2008, 5460.

(6) Guidoboni, E.; de los Rios, I.; Ienco, A.; Marvelli, L.; Mealli, C.; Romerosa, A.; Rossi, R.; Peruzzini, M. *Inorg. Chem.* **2002**, *41*, 659.

(7) Kubicki, M. M. Personal communication.

(8) Di Vaira, M.; Stoppioni, P.; Peruzzini, M. J. Organomet. Chem. 1989, 364, 399.

(9) (a) Blachnik, R.; Wickel, U. Angew. Chem., Int. Ed. Engl. 1983,
 22, 317. (b) Leiva, A. M.; Fluck, E.; Müller, H.; Wallenstein, G. Z. Anorg.
 Allg. Chem. 1974, 409, 215.

(10) (a) Bues, W.; Somer, M.; Brockner, W. Z. Naturforsch. 1980, 35b, 1063. (b) Brockner, W.; Somer, M.; Cyvin, B. N.; Cyvin, S. J. Z. Naturforsch. 1980, 36a, 846.

(11) Blachnik, R.; Wickel, U.; Schmitt, P. Z. Naturforsch. 1984, 39b, 405.

(12) Raabe, I.; Antonijevic, S.; Krossing, I. Chem.—Eur. J. 2007, 13, 7510.

(13) Biegerl, A.; Gröger, C.; Kalbitzer, H. R.; Pfitzner, A.; Wachter, J.; Weihrich, R.; Zabel, M. J. Solid State Chem. **2011**, 184, 1719.

(14) Balázs, G.; Biegerl, A.; Gröger, C.; Wachter, J.; Weihrich, R.; Zabel, M. Eur. J. Inorg. Chem. 2010, 1231.

(15) Bues, W.; Somer, M.; Brockner, W. Z. Anorg. Allg. Chem. 1984, 516, 42.

(16) (a) Pfitzner, A. Chem.—Eur. J. 2000, 6, 1891. (b) Reiser, S.;
Brunklaus, G.; Hong, J. H.; Chan, J. C. C.; Eckert, H.; Pfitzner, A. Chem.
—Eur. J. 2002, 8, 4228. (c) Pfitzner, A.; Reiser, S.; Deiseroth, H.-J. Z.
Anorg. Allg. Chem. 1999, 625, 2196. (d) Pfitzner, A.; Reiser, S. Inorg.
Chem. 1999, 38, 2451. (e) Brunklaus, G.; Chan, J. C. C.; Eckert, H.;
Reiser, S.; Nilges, T.; Pfitzner, A. Phys. Chem. Chem. Phys. 2003, 5, 3768.

(17) (a) Qin, C.; Wang, X.; Wang, E.; Su, Z. Inorg. Chem. 2008,
 47, 5555. (b) Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev.
 2003, 246, 247.

(18) Peng, R.; Li, M.; Li, D. Coord. Chem. Rev. 2010, 254, 1.

(19) Enjalbert, R.; Galy, J. Acta Crystallogr., Sect. B 1980, 36, 914.

(20) Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini, A. J. Chem. Soc., Chem. Commun. 1988, 1241.

(21) Blacque, O.; Brunner, H.; Kubicki, M. M.; Leis, F.; Lucas, D.;
Mugnier, Y.; Nuber, B.; Wachter, J. *Chem.—Eur. J.* 2001, *7*, 1342.
(22) SIR97, Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano,

(22) *SIR97*, Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, G. G.; Polidori, G.;

Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.

(23) Sheldrick, G. M. SHELXL-97. Acta Crystallogr. 2008, A64, 112.