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’ INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia in the elderly population with an estimated prevalence
of 30 million people worldwide, a number that is expected to
quadruple in 40 years.1 AD is a complex multifactorial neurode-
generative disease in which many genetic and environmental
factors are involved. The underlying mechanisms of AD are not
clear, but there is evidence and a relatively wide agreement that
the so-called amyloid cascade is a key and early event in the
development of AD. This hypothesis proposes an increased
extracellular accumulation of a peptide, called amyloid-β (Aβ),
which leads to its aggregation, first into oligomers, then into
protofibrils and last into amyloid plaques, a hallmark of AD. This
hypothesis suggests that the mismetabolisms of Aβ and of its
precursor protein are initiating events in AD pathogenesis.
Formation of Aβ aggregates would further instigate pathological
events, including formation of intracellular neurofibrillary tangles
(another hallmark of AD), disruption of synaptic connections,
ultimately leading to neuronal cells death and dementia.1�6 Aβ is
typically a 39�43 residue polypeptide and consists of a hydro-
philic N-terminal domain (1�28) and a C-terminal hydrophobic
domain (29�39/43). In vivo, the most prevalent forms of Aβ
consist of 40 (Aβ40) and 42 amino acids (Aβ42). The longer
form Aβ42 is more prone to aggregation and more toxic to

neurons than Aβ40, in agreement with the amyloid cascade
hypothesis. Metal ions (Cu, Fe, Zn) have been proposed to play a
key role in the development of AD. In vivo, in cello, and in vitro
experiments strongly suggest that metal ions and in particular Cu
ions are involved in AD. Cu ions can bind to Aβ and modulate its
aggregation. Furthermore [Cu(Aβ)] oligomeric forms can cat-
alyze the production of ROS (reactive oxygen species) in
presence of physiological reducing agents (e.g., ascorbate), which
finally leads to neuronal cells death (for reviews, see refs 7�14).

Copper coordination to the Aβ peptides has been proposed as
an important event in the amyloid cascade and deciphering the
Cu environment when bound to Aβ peptides is still a burning and
controversial topic. At physiological pH, two equatorial binding
modes coexist. The one predominant at lower pH is constituted
of two equivalent sets of ligands (noted Ia and Ib), where the
terminal �NH2 (from Asp1), the CO from the Asp1�Ala2
peptide bond, a N from imidazole ring of His6 and from His13
(component Ia) or fromHis14 (component Ib) are involved.15�19

The two components have been proposed to be in equilibrium in
1:1 ratio,15,17 and thus in the following the mixture of Ia and Ib
will be noted component I. However, a recent study reported
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ABSTRACT: Copper ions have been proposed to intervene in
deleterious processes linked to the development of Alzheimer’s
disease (AD). As a direct consequence, delineating how Cu(II)
can be bound to amyloid-β (Aβ) peptide, the amyloidogenic
peptide encountered in AD, is of paramount importance. Two
different forms of [CuII(Aβ)] complexes are present near
physiological pH, usually noted components I and II, the nature of which is still widely debated in the literature, especially for
II. In the present report, the phenomenological pH-dependent study of Cu(II) coordination to Aβ and to ten mutants by EPR, CD,
and NMR techniques is described. Although only indirect insights can be obtained from the study of Cu(II) binding to mutated
peptides, they reveal very useful for better defining Cu(II) coordination sites in the native Aβ peptide. Four components were
identified between pH 6 and 12, namely, components I, II, III and IV, in which the predominant Cu(II) equatorial sites are {�NH2,
CO (Asp1�Ala2), Nim (His6), Nim (His13 or His14)}, {�NH2, N

� (Asp1�Ala2), CO (Ala2�Glu3), Nim}, {�NH2, N
�

(Asp1�Ala2), N� (Ala2�Glu3), Nim} and {�NH2, N
� (Asp1�Ala2), N� (Ala2�Glu3), N� (Glu3�Phe4)}, respectively, in line

with classical pH-induced deprotonation of the peptide backbone encountered in Cu(II) peptidic complexes formation. The
structure proposed for component II is discussed with respect to another coordinationmodel reported in the literature, that is, {CO
(Ala2�Glu3), 3 Nim}. Cu(II) binding to the H6R-Aβ andD7N-Aβ peptides, where the familial H6R andD7Nmutations have been
linked to early onset of AD, has also been investigated. In case of the H6Rmutation, some different structural features (compared to
those encountered in the native [CuII(Aβ)] species) have been evidenced and are anticipated to be important for the aggregating
properties of the H6R-Aβ peptide in presence of Cu(II).



11193 dx.doi.org/10.1021/ic201739n |Inorg. Chem. 2011, 50, 11192–11201

Inorganic Chemistry ARTICLE

that a third component, where the two His involved in Cu(II)
coordination are the His13 and His14, is also present, this third
component (noted Ic) being more prone to formation of unstruc-
tured aggregates than Ia and Ib.20 Regarding the second component
(II), predominant at higher pH, there are two divergent hypo-
theses.19Mainly on the basis of S-bandEPR andHYSCOREdata on
13C and 15N isotopically labeled peptides, it was proposed that
component II is made of the CO group from the Ala2�Glu3
peptide bond and the imidazole rings of the three His.18 In the
second proposition, also deduced fromHYSCORE data on 13C and
15N isotopically labeled peptides15 but from NMR data as well,16

the�NH2 terminal, the amidyl function N
� from the Asp1�Ala2

peptide bond, the CO from the Ala2�Glu3 peptide bond, and one
among the three imidazole rings of His are the functions predomi-
nantly involved in equatorial Cu(II) binding. Regarding the apical
positions, the debate is still open but involvement of carboxylate
groups has been proposed in the literature.15,16,18

Here, we report a EPR, CD, andNMR study of Cu(II) binding
to the Aβ peptide and to ten mutants that allow discrimination
between the two proposed Cu(II) binding models in II (see
above). Moreover, we describe the pH dependent Cu(II) bind-
ing to this series of peptides from pH 4 to 12. While such a pH
range is not biologically pertinent, study performed outside the
physiological range do help disentangling Cu(II) coordination
features around physiological pH. Indeed, the Cu(II) peptidic
species are generally obtained from each other by successive
deprotonation (protonation) of the peptide when the pH is
increased (decreased).21,22 Moreover, such a wide study is of
interest from a chemical point of view since it provides general
rules for Cu(II) coordination to peptides. We thus characterized
two new components (noted III and IV) at pH higher than 8.

In this study, the impact on Cu(II) binding properties of the
two English (H6R) and Tottori�Japanese (D7N) mutations
linked to early onset familial AD were also investigated. In vitro
studies of Aβ40 and Aβ42 peptides incorporating either the H6R
or the D7N mutations have evidenced that the two mutations
alter Aβ assembly at its earliest stages, as well as monomer folding
and oligomerization process. Moreover, it was shown that the
oligomers of the mutated peptides are more toxic to cultured
neuronal cells than the wild type oligomers.23,24 Trace Cu(II)
have not been taken into account in these studies but might
influence the aggregation process. Moreover, His6 intervenes in
Cu(II) binding and Asp7 is a putative Cu ligand in the wild-type
peptide. These are the reasons why it is worth determining how
the H6R and the D7N mutations can modify Cu(II) coordina-
tion in these rare familial forms of AD. Although beyond the
scope of the present phenomenological study, it would be very
important to relate the impact of these mutations on the bio-
logical properties of the peptides with the difference in the Cu(II)
coordination described here.

’RESULTS

1. EPR pH-Dependent Study of Cu(II) Binding to Aβ16
Peptides andMutants.The shorter Aβ16 peptide is used in the
present study. Number of previous works have unambiguously
shown that it represents the minimum Aβ sequence involved in
Cu(II) binding.25�27 The pH-dependent EPR signature of Cu-
(II) binding to the Aβ16 peptide is shown in Figure 1 together
with spectra of Cu(II) species obtained with the D1N-Aβ and
E3Q-Aβmutants and the N-terminally acetylated (Ac-Aβ) peptide
at selected pH values. The EPR signatures of the [CuII(Aβ)]

Figure 1. EPR spectra of [CuII(peptide)] complexes as a function of pH. Panel A: Peptide = Aβ16. Panel B: Peptide = D1N-Aβ, E3Q-Aβ, or Ac-Aβ.
Component I is designated by green lines, component II by orange lines, component III by black lines and components IV and IV0 by red and purple
lines, respectively. Plain lines indicate pH values where a component is predominant in solution and dotted lines pH range where a component is present
in solution but not predominant. [CuII(peptide)] = 1mM inD2O. ν = 9.5 GHz, amplitudemodulation = 0.5mT,microwave power = 20mW.T = 110K.
* indicates the presence of a minor species, which is not detected in the EPR spectra of other [CuII(peptide)] species, with g ) = 2.17(8) and A ) = 160�
10�4 cm�1 EPR parameters (see Supporting Information for identification of this species).
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complexes are complicated and generally correspond to the super-
imposition of several components simultaneously present in solu-
tion at a given pH.This is particularly obvious at lowpH(near pH4),
at physiological pHwhere two species coexist (the well-described
components I and II, indicated by green and orange colors in
Figure 1, respectively) and at pH near 10. In this latter case,
two among the three coexisting components can be well identi-
fied: the first one is predominant at pH 8.7 (component II)
and the other one is predominant above pH 10.6 (that will be
noted component IV, in red in Figure 1). The third component
(noted III, in black in Figure 1) is present only as a minor
component and is thus difficult to identify. The EPR parameters
determined for these four components (I�IV) are given in Table 1.
Regarding the other [CuII(peptide)] complexes (peptide = Ac-Aβ,
D1N-Aβ, E3Q-Aβ, D7N-Aβ, H6A-Aβ, H6R-Aβ, E11Q-Aβ,
H13A-Aβ, and H14A-Aβ) studied here (see Figures S1�S3 in
the Supporting Information), none of themwith the exception of
the [CuII(Ac-Aβ)] has significantly different EPR parameters
compared to those of [CuII(Aβ16)] species (Table 1 and see
below for details). Hence, components relative to [CuII(Ac-Aβ)]
will be noted I0�IV0. Nevertheless, pKa values corresponding to
transition between the various components depend on the
nature of the peptide involved in Cu(II) binding (Table 1).
Note that the pKa values are defined as the pH values where the
EPR signatures of two components contribute equally to the
EPR intensity and thus have been estimated by considering that
only two components are simultaneously present in solution.
a. Components I and II. Regarding component I, there is now

a consensus that the Cu(II) ion lies in an equatorial binding site
made of the terminal amine �NH2 group, the imidazole ring of
His6, the one of His13 or His14 (in equilibrium) and a carbonyl
function,15�19 the apical position being likely occupied by a
carboxylate group.15,16,18 Species II, in which the Cu(II) coordina-
tion remains to be elucidated is characterized by EPR parameters
that differ from those of component I by a concomitant decrease

in the g// and A// and are classical for 3N1O or 4N binding site31

(Table 1). The pKa of the I/II transition is approximately 7.8, in
line with previous studies.32,33 In Figure 1, panel B, the EPR pH
dependent signatures of Cu(II) bound to the D1N-Aβmutant is
reminded. While the EPR parameters of components I from
[CuII(Aβ16)] and [CuII(D1N-Aβ)] complexes are very similar,
the pKa(I/II) value is approximately 6.0 in case of the [CuII-
(D1N-Aβ)] complexes, thus significantly lower than that of the
[CuII(Aβ16)] complexes. The D1N mutant was previously
studied by the group of Szalai33 and the decrease in the pKa(I/II)
was attributed to the breakage of a H-bond network (due to the
replacement of the Asp1 anionic carboxylate by a neutral group),
which would facilitate the deprotonation of a peptide function
during the process leading to component II. However, in this
pioneer work the peptide function undergoing the deprotonation
was not identified.
Regarding the other Cu(II) complexes studied here, none of

them with the exception of the [CuII(Ac-Aβ)] has significantly
different EPR parameters compared to [CuII(Aβ16)]. This strongly
suggests that none of the mutated residues is essential for creating
the Cu(II) equatorial binding sites and that it can be replaced by an
identical residue but located at another position in the peptide
sequence. Differences between pKa(I/II) values are observed
and the most important ones are detected for the [CuII(H6A-
Aβ)] and [CuII(H6R-Aβ)] complexes, pKa(I/II) values being
approximately 0.5 pH unit below that of [CuII(Aβ16)]. This
suggests that even if His6 has been proposed to be always
equatorially bound to the Cu(II) center in species I,15,17 it can
be replaced by either the His13 or His14 thus leading to the
equatorial coordination of the His13-His14 diad. In such a co-
ordination environment, geometric constraints accounting for
formation of component II at a lower pH than in the native
[CuII(Aβ16)] species may be anticipated. On the contrary, the
H13A or H14A mutations have only a slight impact on the
pKa(I/II) values (Table 1), in line with the equilibrium between

Table 1. EPR Parameters of Components I�IV and I0�IV0 and of Other [63CuII(peptide)] Complexes for Comparison

I II III IV

peptide g )

a A )

a g )

a A )

a g )

a A )

a g )

a A )

a pKa(I/II)
b pKa(II/III)

b pKa(III/IV)
b

human 2.26(2) 184 2.22(6) 161 2.19(1) 194 2.17(3) 203 7.8 9.3 10.2

D1N-Aβ 2.26(3) 180 2.23(0) 160 2.19(1) 194 2.17(4) 201 6.0 9.0 10.3

D7N-Aβ 2.26(2) 184 2.22(7) 160 2.18(8) 194 2.17(4) 197 7.7 9.1 10.6

E3Q-Aβ 2.26(3) 183 2.22(4) 161 2.19(0) 194 2.17(3) 201 7.6 8.5 9.7

E11Q-Aβ 2.26(5) 184 2.22(5) 161 2.18(7) 194 2.17(0) 202 7.5 9.3 10.1

H6A-Aβ 2.26(8) 185 2.22(8) 164 2.17(2) 202 7.3 9.6

H6R-Aβ 2.26(6) 180 2.22(7) 162 2.17(1) 205 7.2 9.7

H13A-Aβ 2.26(3) 180 2.23(0) 162 2.17(5) 202 7.5 9.5 10.2

H14A-Aβ 2.26(9) 182 2.22(7) 163 2.17(5) 202 7.5 9.6 10.4

DAHK28 2.19 199

GGGGH29 2.23(0) 156 2.19(9) 200 2.17(1) 206

GGGGG29 2.17(1) 206

I0 II0 III0 IV0

Ac-Aβ 2.32(0) 168 2.27(3) 187 2.23(0) 171 2.19(1) 190 5.2 7.5 8.7

GGGTH30 2.20 200
a Parallel spinHamiltonian parameters were obtained directly from the experimental spectra and were calculated from the second and the third hyperfine
lines in order to remove second-order effects. A ) parameters are given in 10�4 cm�1. b pKa values are roughly estimated from EPR spectra, and with the
exception of pKa(I/II) that can be estimated accurately, the two others pKa values are given with an uncertainty of (0.3 pH unit.
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these two His residues for one equatorial binding position pre-
viously proposed.15,17

b. Component III. Component III is hardly distinguishable in
the pH dependent EPR traces of [CuII(Aβ16)], being only
discernible by the fourth hyperfine feature (black line at B =
343 mT in Figure 1, panel A). Indeed, the three other hyperfine
lines are mixed with those of components II and IV and cannot
be well isolated. The reason for such a mixture between com-
ponents II, III, and IV is likely close pKa(II,III) and pKa(III,IV)
values. To better characterize component III, the E3Q mutant is
helpful. Indeed, in the [CuII(E3Q-Aβ)] mutant, component III
is more easily detected, pKa(II/III) and pKa(III/IV) values being
sufficiently different (estimated to 8.5 and 9.7, respectively).
Similar to what was proposed for the D1N-Aβ mutant, we can
hypothesize that the Glu3 carboxylate function stabilizes a
deprotonable function in its protonated form by H-bond inter-
actions, and that in the [CuII(E3Q-Aβ)] complex, the H-bond
network is broken leading to deprotonation of the function at a
lower pKa(II/III) value. It is worth noting that mutation of the
two other carboxylate functions (leading to D7N and E11Q
mutants) do not affect neither the EPR signatures of the cor-
responding Cu(II) complexes nor their pH dependence com-
pared to [CuII(Aβ16)]. Parameters of component III are close to
those observed when the Cu(II) is bound to the ATCUN motif
(encountered in peptide with N-terminal XXH- sequence). In
such species, the Cu(II) is bound via the�NH2 terminal, the His
and the two amidyl functions in between these two residues. For
instance, such equatorial Cu(II) coordination is encountered in
the N-terminal binding site of the serum albumin having the
DAHK sequence.28 Nevertheless, some minor differences are
observed that can be attributed to the formation of three adjacent
metallacycles in the ATCUN case, a structural feature that cannot
be observed in the present case due to the position of the His
compared to the �NH2 group, the closest His residue being far
from the terminal amine by 5 amino-acids. Such ATCUN type
coordination in component III will be further confirmed by
NMR studies (see below).
It is also worth noticing that component III cannot be de-

tected in the EPR pH-dependent spectra of the [CuII(H6A-Aβ)]
and [CuII(H6R-Aβ)] complexes. This suggests that His6 is more
involved than His13 or His14 in Cu(II) binding in component III.
c. Component IV. The g ) and A ) parameters of component IV

of [CuII(peptide)] complexes, with the exception of the [CuII-
(Ac-Aβ)] are characteristic of a 4N equatorial binding mode,31

where the Cu(II) ion is bound via the terminal�NH2 and three
amidyl functions. Indeed, very similar EPR parameters have been
reported for the [CuII(GGGGG)] complex, where the �NH2 is
the sole Cu(II) anchoring function and thus where the Cu(II)
equatorial site is completed by amidyl groups from adjacent
peptide bonds.29 Such Cu(II) coordination is often encountered
in peptidic fragments where other potential ligands are replaced
by amidyl functions adjacent to the�NH2 anchoring point when
the pH is increased. At high pH, the other possibility is to have a
nitrogen atom from the imidazole ring of an His residues as
the anchoring point and adjacent amidyl functions that entered is
the Cu(II) coordination sphere.22 This is encountered when
the terminal�NH2 is not available for Cu(II) binding, for instance
when it is acetylated.30 In this case, the EPR parameters are
different from those observed here in the component IV but
similar to those observed in component IV0 corresponding to
complex [CuII(Ac-Aβ)] at high pH (Figure 1, panel B and
Table 1). This agrees with the involvement of the N-terminal

amine in equatorial Cu(II) coordination in [CuII(Aβ16)] at high
pH. Note that involvement of the terminal �NH2 function has
already been identified by EPR and ENDOR experiments per-
formed on labeled [CuII(15N-(Asp1)-Aβ16] species.15 A second
consequence is that, Cu(II) center in component IV is likely
bound by the terminal -NH2 and the three adjacent amidyl func-
tions while in component IV0 by one of the three His and three
adjacent amidyl functions, the His residue(s) involved remaining
to be identified.
d. [CuII(Ac-Aβ)] Species. Acetylation of the terminal amine

lead to a series of new type of components that can be obtained
from component IV0 by successive protonation of the amidyl
functions, leading to a {�Nim, 2N

�, X} equatorial binding site in
III0 and {�Nim, N

�, X, Y} in II0 and {�Nim, X, Y, Z} in I0, where
X, Y, and Z can be either His or CO ligands. Further identifica-
tion of the exact nature of components I0�IV0 is beyond the
scope of the present paper and is not physiologically relevant for
the understanding of Cu(II) coordination to Aβ. Nevertheless,
an important point to note is that EPR parameters of compo-
nents II0 and III0 are very close to those of components I and II,
respectively and that pKa(II0/III0) is also very close to pKa(I/II)
(Table 1). As a consequence, the pH dependent EPR spectra of
[CuII(Aβ16)] and [CuII(Ac-Aβ)] complexes will be by chance
very similar near physiological pH.Thismay have led tomisinterpreta-
tion of comparative EPR data of [CuII(Aβ16)] and [CuII(Ac-Aβ)]
when recorded only near physiological pH and to the erroneous
conclusion that �NH2 is involved in Cu(II) apical position in
component I.34

2. CD pH-Dependent Study of Cu(II) Binding to Aβ16
Peptides and Mutants. EPR is a powerful technique to
determine the Cu(II) binding site but reveals information
concerning only the equatorial plane. As a consequence, CD
can be used to monitor structural modifications that occur
outside from the first coordination shell and in apical position.
pH-dependent CD spectra of four chosen examples of
[CuII(peptide)] complexes that are representative of the four
types of CD signatures obtained in the present study, are
shown in Figure 2 ([CuII(Aβ16)], [CuII(Ac-Aβ)], [CuII(H6A-
Aβ)], [CuII(E3Q-Aβ)]).
a. [CuII(Aβ16)] Type Family. pH dependent CD signatures of

this family is shown in Figure 2, panel A. Weak d�d transitions
are observed at λ = 670 and 590 nm, which increase in intensity
upon increasing pH, reaching a maximum at a pH ∼7.5. A new
d�d band at λ = 510 nm is observed when the pH is raised above
7.5. In the UV domain, the intensity of the λ = 315 and 285 nm
bands increase from pH approximately 7 and 3, respectively. The
former band has been attributed to amide to Cu(II) charge
transfer transition (LMCT) while the latter to amine to Cu(II)
LMCT. The band detected at λ = 265 nm, which has tentatively
been attributed to imidazole to Cu(II) LMCT,21 increases in
intensity from pH approximately 8.5. pH dependent behavior of
these features indicates that (i) �NH2 is bound to Cu(II) from
pH 3 and remains bound to Cu(II) at any higher pH, (ii) amidyl
groups start to bind Cu(II) at pH approximately 7, and (iii)
binding of amidyl functions to Cu(II) enhances the molar
extinction coefficient of the His to Cu(II) LMCT and of the
d�d transitions detected at 265 and 590 nm, respectively. The
[CuII(H13A-Aβ)], [CuII(H14A-Aβ)] and [CuII(E11Q-Aβ)]
complexes belong to this family (Supporting Information Figures
S5 and S6) and thus behave very similarly to the [CuII(Aβ16)],
suggesting that (i) both His13 and His14 are not simultaneously
involved in Cu(II) binding in the whole pH range and that
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(ii) carboxylate group from Glu11 is not an essential element of
Cu(II) binding sites.
b. [CuII(Ac-Aβ)]. pH-dependent CD signature of [CuII(Ac-

Aβ)] is unique compared to all the other [CuII(peptide)] com-
plexes studied here (Figure 2, panel B). The continuous increase
of bands at λ = 630, 490, 360, 315, and 265 nm is observed when
the pH is increased. Twomain differences with the [CuII(Aβ16)]
data are the absence of the λ = 285 nm band characteristic of
�NH2 to Cu(II) LMCT, in line with acetylation of N-terminal
amine and a significantly higher intensity of the λ = 265 nm band,
especially at high pH, compared to all the others [CuII(peptide)]
complexes, in agreement with the formation of binding sites
centered onHis anchoring residue, as previously proposed on the
basis of the EPR data analysis.
c. [CuII(H6A-Aβ)]/[CuII(H6R-Aβ)] Type Family. These muta-

tions lead to three mains differences in the pH-dependent CD
signatures of the [CuII(peptide)] complexes (Figure 2, panel C
and Supporting Information Figure S5), which are (i) a negative
d�d band at λ = 630 nm from pH 3 to approximately 7.5; (ii) a
more pronounced λ = 285 nm band, and (iii) a λ = 265 nm band,
the growth of which begins in the negative part of the CD spectra
from pH 3 to approximately 7.5 and the intensity of which
remains weaker than in the [CuII(Aβ16)] type family complexes

at higher pH. These modifications may be attributed to the
simultaneous involvement of His13 andHis14 in Cu(II) binding,
a feature that is not detected in the [CuII(Aβ16)] type family (see
above), thus leading to an important reshuffling of the peptide
conformation. Sign change in the λ = 265 nm band at pH ∼7.5
may also be interpreted as transition between the His13�His14
diad involved in Cu(II) coordination to only one His bound to
Cu(II). These CD data are consistent with the EPR data, since it
confirms that bothHis13 andHis14 can be simultaneously bound to
Cu(II). However, if the EPR traces of both [CuII(H6A-Aβ)] and
[CuII(H6R-Aβ)] complexes are very close to that of the [CuII-
(Aβ16)], their CD signatures differ significantly, in line with
modifications occurring outer from the first coordination shell.
d. [CuII(E3Q-Aβ)] Type Family.The pH dependent CD spectra

of Cu(II) complexes obtained with the triple E3QD7NE11Q
mutants and the D1N, E3Q, and D7N mutants (Figure 2, panel
D and Supporting Information Figures S4 and S6) are slightly
different from that of the [CuII(Aβ16)] type family by having
weaker d�d band intensities up to pH 7.5 (especially in the E3Q
and E3QD7NE11Q cases) and then a stronger intensity at λ =
650 nm at higher pH, except for the [CuII(D1N)] complex that
exhibits a weaker intensity. This may reflect involvement of the
Glu3 and Asp7 residues in apical Cu(II) binding or an outer first

Figure 2. Effect of pH on the CD spectra of [CuII(peptide)] complexes, from pH approximately 3 (blue line) to pH approximately 12 (red line). Panel
A: [CuII(Aβ16)]. Panel B: [CuII(Ac-Aβ)]. Panel C: [CuII(H6A-Aβ)]. Panel D: [CuII(E3Q-Aβ16)]. Left insets: pH from approximately 3 to
approximately 7.5. Right insets: pH from approximately 7.5 to approximately 12. [CuII(peptide)] = 0.5 mM, l =1 cm, T = 20 �C. Arrows indicate the
formation of relevant bands with pH increase. For exact pH values see Supporting Information, Figures S4�S6.
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sphere contribution of the Glu3 and Asp7 residues, for instance
by creating salt bridge with the Arg5 residue. Furthermore, the
CD data obtained here are in line with contribution of the Asp1
residue in Cu(II) apical position even if the different pH-
dependent CD signature of the [CuII(D1N-Aβ)] complex is
mainly due to the low pKa(I/II) value.
e. pKa Determination. Using EPR data it was possible to

evaluate the pKa between various components. As exemplified in
Figure 3 in the case of the [CuII(Aβ16)] complex, this could also
be achieved by simulation of the CD data. Simulations of the pH-
dependent absorbance curves at several selected wavelengths
with a unique set of pKa values were performed and pKa(I/II) =
7.9, pKa(II/III) = 9.3, and pKa(III/IV) = 10.3 values were found.
These results were fully consistent with EPR data suggesting that
no significant pH drift occurs upon freezing the EPR samples. In
the course of simulation, it appears that more than 3 pKa values
were necessary to correctly fit the curves. More precisely, below
pH 6, the intensities of the λ = 620 and 660 nm undergo sig-
nificant increase.The pKa value corresponding to transitionbetween
component I and this newly detected component (noted 0) is
estimated to be 5.8. Regarding the EPR data, it appears that the
EPR signature of component 0 is indiscernible to that of com-
ponent I. Hence, a possible explanation is that this pKa corre-
sponds to the deprotonation of the third Cu(II) unbound His
leading to modification of peptide arrangement but not to direct
change in the equatorial Cu(II) coordination.
3. NMR Studies of Cu(II) Binding to Aβ in Component III

and to H6R-AβMutant in Components I and II. In an attempt
to better characterize the new components III and IV, we used
NMR spectroscopy that was previously revealed to be a powerful
technique to better disentangle Cu(II) binding to Aβ peptides16,32

and to others peptides or proteins.35,36 Indeed the paramagnet-
ism of the Cu(II) ion induces broadening of NMR features that
depends on the proximity of the Cu(II) ion. Hence, it is possible
to map which residues are affected by the presence of Cu(II) and
thus involved in its coordination. 13C NMR spectra of the apo-
Aβ and holo-Aβ (0.3 equiv of Cu(II)) recorded at pH 9.8 (where
component III is predominant) are compared to those of the
apo-Aβ and holo-Aβ (0.1 equiv of Cu(II)) at pH 8.7 (Figure 4).
Cu(II)-induced broadening of the 13C peaks are weaker at pH 9.8

although the Cu(II) stoichiometry is 3-fold higher. Moreover, no
new 13C signals, with the exception of the Cα and Cβ of Lys16,
are affected by the Cu(II) addition at pH 9.8 compared to pH 8.7.
This behavior is attributed to the formation of a “ATCUN” type
Cu(II) binding motif {�NH2, 2N

�, Nim} in component III.
Indeed, it was previously evidenced that in such a coordination
site, Cu(II) exchange between peptides is too slow to affect all
the peptides present in solution. On the contrary, Cu(II) stays
bound to a portion of peptide and then lead to the total dis-
appearance of its NMR signals.28 Thus in the present case, Cu(II)
effect on Aβ NMR peaks corresponding to component III is not
observable. The broadening effect observed is due to the presence
of a small portion of component II (in pH-dependent equilibrium
with component III). As a direct consequence, NMR revealed
inappropriate for the study of components III and IV.
The H6R mutation is a familial mutation that was associated

with early onset of AD.Moreover, significantmodifications of the
pH-dependent CD signature of [CuII(H6R-Aβ)] complexes were
observed compared to that of [CuII(Aβ16)]. These are the
reason why components I and II of the [CuII(H6R-Aβ)] com-
plexes were also studied by 13C NMR. In general, Cu(II) effect
on the 13C NMR spectra of the H6R mutant and on the Aβ16
peptide16 are similar (Supporting Information Figure S7). More
precisely, binding of both His13 and His14 in component I (see

Figure 4. 13C{1H} NMR spectra of 10 mM Aβ peptide in D2O
(bottom spectra) and in presence of 0.1 equiv of Cu(II) (top spectra)
at pH 8.7 (left) and of 0.3 equiv of Cu(II) (top spectra) at pH 9.8 (right).
T = 25 �C, ν = 125.8 MHz. Shift of some peaks is due to slight
modification in the pH value induced by Cu(II) addition.

Figure 3. pH-dependent CD absorbance of [CuII(Aβ16)] complex at λ
= 660 (red plain circles), 620 (pink plain squares), 580 nm (purple plain
diamonds), 518 nm (blue plain triangles), and 314 nm (black plain
triangles). Solid lines are the fits of the curves with pKa = 5.8, 7.9, 9.3, and
10.3. [CuII(Aβ16)] = 0.5 mM, l =1 cm, T = 20 �C.
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CD part) may induce the binding of the CO function in between
the two His residues, as proposed by calculations.37 However,
such a binding do not change the impact of Cu(II) to the 13C
NMR spectra of H6R-Aβ compared to Aβ16. Indeed, coordina-
tion of CO function fromHis residues was previously detected in
the Aβ16 case and attributed to equilibrium in solution between
{�NH2, CO (Asp1), 2NIm} and {�NH2, CO (His), 2NIm}.

16

The main differences observed on the CO and Cα regions at pH
8.6, where component II is predominant, are shown in Figure 5.
Both the CO functions and Cα atoms from His13 and His 14
residues are more broadened in the case of the H6R mutant.
However, broadening of the CO and Cα

13C atoms from the Ala2
residue, previously attributed to coordination of the amidyl
function from the Asp1�Ala2 peptide bond, is still observed.
Thus, this suggests that the deprotonation of the Asp1�Ala2
peptide bond also occurs in the H6Rmutant but in this latter case,
it does not induce the binding of the adjacent CO function (from
Ala2 to Glu3). Indeed, CO functions from His residues may
principally be involved in Cu(II) binding.

’DISCUSSION

1. Coordination Sites of Cu(II) in Components I�IV. The
proposed equatorial Cu(II) binding sites in components I�IV
are shown in Scheme 1. Component I has been proposed by several
groups.15�19 In this species, the Cu(II) center is bound via the

terminal amine, two His residues and a CO function mainly
originating from the Asp1�Ala2 peptide bond.
While consensus has been recently reached on Cu(II) coor-

dination sphere in component I, this is not the case for component
II. Indeed two models have principally appeared in the last years.
In the first one, Cu(II) is bound via the carbonyl function from
Ala2�Glu3 and the imidazole rings of the three His (model
noted 1)17,18 and in the second one, Cu(II) is bound via the
terminal amine, the adjacent amide function from Asp1�Ala2,
one out of the three His and the CO function from Ala2�Glu3
(model noted 2).15,16 In the present study, new key insights have
been obtained regarding the Cu(II) binding sphere in compo-
nent II. First, an interesting feature is that Cu(II) complexes of
the three H6A, H13A, and H14A mutants have EPR parameters
identical to those of [CuII(Aβ16)], indicating that the simulta-
neous equatorial coordination of the three His to the Cu(II)
center is unlikely. Otherwise, this would imply that in complexes
obtained with the His mutants, the His residues is replaced by a
ligand that would influence the Cu(II) electronic properties in a
very similar way, a possibility that we cannot however fully ruled
out. Second, component III is identified as {�NH2, 2N

�, Nim}
(see below) and thus it is difficult to rationalize why the terminal -
NH2 amine bound to Cu(II) in components I and III, will be
unbound in the intermediate component II. Third, transition
from components I�II (and to III and IV) is pH driven and thus
should be concomitant to deprotonation of peptide function. In
case of model 1, all the residues that can undergo deprotonation
(i.e., the three His residues) are already deprotonated at pH
below the pKa(I/II) value and hence this model fails to explain
the effect of pH in transition from I to II. Fourthly, contrarily to
model 2, model 1 does not explain the variation in the pKa(I/II)
and pKa(II/III) observed in [Cu

II(D1N-Aβ)] and [CuII(E3Q-Aβ)]
complexes, respectively (see below). Fifthly, intervention of
CO from Ala2�Glu3 preferentially to that of another peptide
bond remains unexplained inmodel 1 whereas the deprotonation
of the adjacent Asp1�Ala2 amide bond in model 2 justifies the
intervention of the Ala2�Glu3 CO function in Cu(II) binding.
Lastly, the EPR parameters of the very simple [CuII(GGGGH)]
complex (see Table 1), containing only one His residues in its
sequence, are virtually identical to those found here for compo-
nents II�IV, indicating that only oneHis can be bound toCu(II)
in components II and III.29

Regarding component III, EPR parameters, as well as NMR
data support an “ATCUN” type Cu(II) site {�NH2, 2N

�, Nim}.
A {�NH2, 3N

�} Cu(II) equatorial site is proposed for compo-
nent IV based on the EPR parameters and the difference with
EPR signature of [CuII(Ac-Aβ)]. These propositions are in
line with those previously reported by Kowalik et al. in their
pioneer work,21 except for component IV that was identified as
{�Nim, 3N

�}. Moreover, in the present study attribution of each
equatorial binding atoms has been proposed, that is, I= {�NH2,CO

Scheme 1. Proposed Equatorial Cu(II) Binding Sites of [CuII(Aβ)] as a Function of pH

Figure 5. 13C{1H} NMR spectral regions of 10 mM Aβ16 peptide in
D2O (bottom spectra) and in presence of 0.1 equiv of Cu(II) (top
spectra) at pH 8.7 (panels A and B) and of 5 mM H6R-Aβ peptide in
D2O (bottom spectra) and in presence of 0.05 equiv. of Cu(II) (top
spectra) at pH 8.6 (panels C and D) T = 25 �C, ν = 125.8 MHz. Shift of
some peaks is due to slight modification in the pH value induced by
Cu(II) addition.
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(Asp1�Ala2), Nim (His6), Nim (His13 or His14)}, II = {�NH2,
N� (Asp1�Ala2), CO (Ala2�Glu3), Nim}, III = {�NH2, N

�

(Asp1�Ala2), N� (Ala2�Glu3), Nim}, and IV = {�NH2, N
�

(Asp1�Ala2), N� (Ala2�Glu3), N� (Glu3�Phe4)}
Regarding involvement of carboxylate groups in Cu(II) apical

position, theCDdata obtained are in linewith previous propositions
that suggest a preferential role of the Asp1 residue.15,16,18 Implica-
tion of theGlu3, Asp7, andGlu11 carboxylate groups in equilibrium
with the one of Asp1 was also suggested for component I.16 The
CD data obtained here agree with this possibility except for the
Glu11 residue, for the involvement of which no evidence was found.
D1N and E3Q mutations induced change in pKa values

between I/II and II/III, respectively (Table 1). More precisely,
D1N mutation decrease the pKa(I/II) value by more than one
pH unit and the E3Qmutation decrease the pKa (II/III) bymore
than 0.5 pH unit (Table 1). As previously pointed out,33 this may
be related to the breakage of H-bond network when carboxylate
functions are modified to amide and subsequent easier deproto-
nation of peptide functions, here identified as the Asp1�Ala2
and Ala2�Glu3 peptide bonds, respectively. This is illustrated in
Scheme 2,where the interventions of Asp1 andGlu3 are exemplified
on the basis of model 2 for component II.
2. Coordination of Cu(II) to the H6R and D7N Familial

Mutants. Among the various mutants studied here, Cu(II) co-
ordination to the two H6R and D7N familial mutants linked to
early onset of AD were investigated. While, regarding to Cu(II)
coordination, the D7N mutation have no significant impact, the
[CuII(H6R-Aβ)] complexes show differences with [CuII(Aβ16)].
More precisely, the pKa(I/II) is significantly lower (about 0.5 pH
unit) in the former case than in the latter, implying that at
physiological pH the two components I and II will be differently
distributed. More importantly, Cu(II) is differently bound in
both components I and II of [CuII(H6R-Aβ)] and [CuII(Aβ)].
Proposed Cu(II) equatorial binding sites of [CuII(H6R-Aβ)]
complexes are shown in Scheme 3. The most striking difference

with [CuII(Aβ16)] is due to the concomitant involvement of
His13 and His14 in Cu(II) binding in I, leading to outer first
coordination shell effects observed by CD. Such equatorial binding
of the His13-His14 diad (as minor form) in [CuII(Aβ16)] species
compared to coordination of the His6 plus His13 or His14
(as major form) has been recently proposed to be linked to forma-
tion of amorphous aggregates.20 In the [CuII(H6R-Aβ)] species,
only the His13-His14 diad does intervene in Cu(II) equatorial
binding in component I, and thus, the H6R mutation may be
anticipated to be responsible of formation of only amorphous
aggregates. In component II, intervention of CO from His13-
His14 and His14-Gln15 peptide bonds in Cu(II) equatorial
binding may also explained why component III is not detected
in [CuII(H6R-Aβ)] complexes. Indeed, decoordination of the
CO and the adjacent imidazole ring from His13 or His14
(forming a 6-membered metallacycle) residues may be conco-
mitant, thus leading directly to a component IV (identical to the
one obtained in case of the [CuII(Aβ)] species) from component
II. Lastly, the [CuII(H6R-Aβ)] and [CuII(H6A-Aβ)] complexes
have the same spectroscopical signatures implying that nature of
the replacing residue in the H6 mutant is not a key factor.

’CONCLUDING REMARKS

In the present paper, we reported the pH-dependent study of
Cu(II) coordination to the Aβ peptide and to a series of mutants.
While results obtained here are in perfect agreement with the
Cu(II) equatorial binding site previously proposed in the litera-
ture for component I {�NH2, CO (Asp1�Ala2), 2 Nim}, they
also strongly supports a {�NH2, N

�, CO (Ala2�Glu3), Nim}
site in component II. Cu(II) complexes outside the physiological
pH range have also been studied for expanding the number of
spectroscopic references of Cu(II) peptidic species. Among the
various mutants studied, the two familial H6R and D7Nmutants
were investigated and while the D7N mutation does not impact
significantly Cu(II) coordination to Aβ, the H6R one leads to
modification in Cu(II) binding that may also influence the
peptide aggregating properties. During the course of these
studies, the EPR and CD revealed to be complementary spectro-
scopies. Indeed, while EPR is a powerful technique to determine
the Cu(II) equatorial environment, CD was very useful in
disentangling effects outside the first coordination shell and for
instance lead to the detection of a new species near pH 5.5.

’EXPERIMENTAL SECTION

1. Sample Preparation. Studies were performed in H2O or in
D2O. However, for clarity and consistency, we decided to use the
notation pH even when the measurements were made in D2O. pD was

Scheme 2. D1N Mutation Decreases the pKa(I/II) Value by
Precluding the COO�

3 3 3H�N (Asp1�Ala2) Interaction
(7-Membered Metallacycle) while the E3Q Mutation De-
creases the pKa(II/III) Value by Precluding the COO�

3 3 3
H�N (Ala2�Glu3) Interaction (7-Membered Metallacycle)

Scheme 3. Proposed Equatorial Cu(II) Binding Sites of
[CuII(H6R-Aβ)] as a Function of pH
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measured using a classical glass electrode according to pD = pHreading +
0.4, and the pD value was adjusted according to ref 38 to be in ionization
conditions equivalent to those in H2O.

Aβ16 peptide (sequence DAEFRHDSGYEVHHQK and referred to
as Aβ in the following), Ac-Aβ peptide corresponding to the N-termin-
ally acetylated Aβ peptide, the D1N-Aβ (sequence NAEFRHDSGYEV-
HHQK), E3Q-Aβ (sequence DAQFRHDSGYEVHHQK), H6R-Aβ
(sequence DAEFRRDSGYEVHHQK), H6A-Aβ (sequence DAEFRA-
DSGYEVHHQK), D7N-Aβ (sequence DAEFRHNSGYEVHHQK),
E11Q-Aβ (sequence DAEFRHDSGYQVHHQK), H13A-Aβ (sequence
DAEFRHDSGYEVAHQK), H14A-Aβ (sequence DAEFRHDSGYEV-
HAQK), and the triple E3QD7NE11Q-Aβ C-terminally protected Aβ
peptide (sequence DAQFRHNSGYQVHHQK-NH2) were bought from
GeneCust (Dudelange, Luxembourg) with purity grade >98%.

Stock solutions of peptide were prepared by dissolving the powder in
Milli-Q water or in D2O (resulting pH ∼2). Peptide concentration was
then determined by UV�visible absorption of Tyr10 considered as free
tyrosine ((ε276- ε296) = 1410 M�1cm�1) and the solution was diluted
down to the appropriate concentration in peptide.

pH was adjusted using NaOH/HCl (H2O) or NaOD/DCl (D2O).
All pH values are given with a ( 0.2 pH unit error.
a. Circular Dicroism (CD) Samples. Stock solution of peptide was

diluted down to 0.5 mM in pure Milli-Q water; 0.9 equiv of CuII was
added from 0.1 M Cu(SO4) stock solution.
b. Electron Paramagnetic Resonance (EPR) Samples. Stock solution

of peptide was diluted down to 1.0 mM in D2O; 0.9 equivalent of
63CuII

was added from 0.1 M 63Cu(NO3)2 stock solution. Samples were frozen
in quartz tube, with addition of 10% glycerol as a cryoprotectant.
c. Nuclear Magnetic Resonance (NMR) Samples. Stock solution of

H6R-Aβ peptide was diluted to about 5 mM in D2O. Substoichiometric
quantity (∼0.05 equiv) of CuII from Cu(SO4) in D2O was added. CuII

to H6R-Aβ ratio was reduced to a minimum in the free peptide solution
by working at 10 mM peptide concentration without buffer that is the
primary source of paramagnetic contamination. Indeed a too high CuII

to Aβ ratio would induce an uncontrolled broadening of NMR signals, a
problem that may contributes to the loss of signals in the apo-peptide
solution in previous studies.39,40 Substoichiometric CuII ratio (0.05
equiv of CuII per Aβ peptide) was used. Indeed, this ratio is large enough
to induce selective broadening of specific residues of all the peptides
present in solution (because of fast exchange of CuII between peptides).
2. Spectroscopic Measurements. a. Circular Dichroism (CD).

CD spectra were recorded on a JASCO circular dichroism spectrometer
at 20 �C. Data were collected with a 1 nm sampling interval and 2 scans
were averaged and a baseline spectrum was subtracted for each spectrum.
b. Electron Paramagnetic Resonance (EPR). EPR data were recorded

using an Elexsys E 500 Bruker spectrometer, operating at a microwave
frequency of approximately 9.5 GHz. All spectra were recorded using a
microwave power of 20 mW across a sweep width of 150 mT (centered
at 310 mT) with a modulation amplitude of 0.5 mT. Experiments were
carried out at 110 K using a liquid nitrogen cryostat.
c. Nuclear Magnetic Resonance (RNMR). 1D 1H and 13C experiments

and 2D experiments were recorded on a Bruker Avance 500 spectro-
meter equipped with a 5 mm triple resonance inverse Z-gradient probe
(TBI 1H, 31P, BB) and a Bruker Avance 600 spectrometer equipped with
a 5 mm triple resonance inverse (TCI 1H, 13C, 15N) Z-gradient
cryoprobe, respectively. All chemical shifts are relative to tetramethylsi-
lane. 1D-NMR and 2D-NMR spectra were collected at 298 and 288 K in
pure D2O, respectively. Accumulation lasts c.a. Sixteen hours for the
13C{1H} NMR experiments and 24 h for the 2D 1H�1H TOCSY,
1H�13C HSQC, and 1H�13C HMBC experiments.

All the 1H and 13C signals were assigned on the basis of chemical
shifts, spin�spin coupling constants, splitting patterns and signal intensities,
and by using 1H�1H TOCSY, 1H�13C HSQC, and 1H�13C HMBC
experiments.
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