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ABSTRACT: The iminophosphine�phosphazene [PIII�PV]
heterocyclic adduct [IPr 3PN(PCl2N)2] was prepared via re-
duction of the cyclic phosphazene [Cl2PN]3 in the presence of
the carbene donor IPr {IPr = [(HCNDipp)2C:], where Dipp =
2,6-iPr2C6H3}. By contrast, the treatment of [Cl2PN]3 with the
N-heterocyclic olefin IPrdCH2 yielded the olefin-grafted phos-
phazene ring [(IPrdCH)P(Cl)N(PCl2N)2].

The use of N-heterocyclic carbenes (NHCs) as supporting
ligands to isolate/stabilize inorganic species that were either

unknown or inaccessible using conventional methods is a rapidly
developing avenue of research.1 In this regard, the synthesis of
NHC adducts featuring reactive entities, such as :BH, :SiX2 (X = Cl
and Br), :SidSi:, P2, and PH, represent particularly noteworthy
achievements.2 These breakthroughs have substantially expanded
our general knowledge of bonding in inorganic chemistry and have
facilitated the discovery of a number of useful chemical transforma-
tions involving once elusive inorganic species as reagents.3

Our recent syntheses of stable inorganic methylene and
ethylene adducts (:EH2 and H2EE0H2, where E and E0 = Si,
Ge, and/or Sn),4,5 have provided an impetus to explore the
preparation of NHC-supported complexes of phosphorus mono-
nitride (PN) and/or its oligomers (PN)x. Molecular PN was
originally generated and studied via matrix-isolation techniques6

and was later identified as a component of interstellar space.7 In
addition, PN represents a heavier analogue of N2 and is thus an
attractive species from a fundamental standpoint. In this Com-
munication, we report a potential route toward isolating an
adduct of (PN)3 under ambient conditions. Our strategy relies
upon reduction of the readily available cyclic precursor [Cl2PN]3
in the presence of carbon-based donors to yield a stable complex
of (PN)3 (eq 1).

8,9 The present study is conceptually linked with
the elegant synthesis of a formal bis(carbene) adduct of PN by
Bertrand and co-workers in 2010.10

The interaction of the hindered carbene IPr {IPr =
[(HCNDipp)2C:], where Dipp = 2,6-iPr2C6H3]} with
[Cl2PN]3 in the presence of sodium metal as a reductant yielded
a new crystalline product, which exhibited an AX2 splitting
pattern in the 31P NMR spectrum [δA 101.4 (t, J = 86.9 Hz);

δX 6.1 (d, J = 86.9 Hz)]. The disparate nature of the observed
chemical shifts suggested the presence of a single product
with two phosphorus environments in different oxidation states.
Single-crystal X-ray crystallography11 later identified this species
as the novel iminophosphine�phosphazene [PIII�PV] adduct
[IPr 3 PN(PCl2N)2] (1; Scheme 1 and Figure 1).

Attempts to further reduce the remaining PV centers in 1 with
additional equivalents of IPr and sodium yielded no discernible
reaction. Compound 1 could also be obtained in low isolated
yield (13%) when [Cl2PN]3 was directly combined with 2 equiv
of IPr in the absence of sodium; the low yield of 1 stems from the
formation of a number of unidentified side products during the
reaction. Importantly, this latter transformation reveals that IPr
can also serve as a dehalogenation/reducing agent.8

As shown in Figure 1, 1 contains a carbene-ligated P center
with a CIPr�P distance [C(1)�P(1)] of 1.8791(13) Å. This value
is elongated compared to the C�P distances in the cationic
phosphorus bisadduct [(ImMe2

iPr2) 3P 3 (ImMe2
iPr2)]Cl (where

ImMe2
iPr2 = [(MeCNiPr)2]C:) [1.824(3) Å ave]8b and is much

longer than theCIPr�P linkages within IPr 3P2 3 IPr [1.7504(17) Å],
wherein significant P�CIPr π bonding is present.2e The P3N3

heterocycle in 1 adopts an envelope conformation with pyramidal
geometry about the apical P(1) atom in the ring [angle sum =
307.3(1)�]. Compound 1 also features considerable intraring P�N
bond-length variation, with long P�N bonds of 1.6770(12) and
1.6845(13) Å involving the three-coordinate P(1) center, while the
remaining P�N distances vary from 1.5423(12) to 1.5923(13) Å;

Scheme 1. Synthesis of the Iminophosphine�Phosphazene
Adduct 1 and Representative Chemistry
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the latter bond lengths are in the range usually observed in
phosphazene heterocycles.12

The above-mentioned data support the presence of a ster-
ochemically active phosphorus lone pair in 1. Congruently, 1
reacted rapidly with sulfur to afford the novel phosphine sulfide
[IPr 3 (S)PN(PCl2N)2] (2) as a colorless solid (Scheme 1 and
Figure S1).11 The NMR spectra for 2 were consistent with the
presence of phosphazene environments, and correspondingly
short P�N distances of 1.5595(17)�1.6256(16) Å were
observed by X-ray crystallography.11 Despite the presence of
a terminal sulfido group in 2, the dative CIPr�P(1) interac-
tion [1.8582(18) Å] was similar in length to the carbene�
phosphorus interaction within the reduced precursor 1
[1.8791(13) Å]. For comparison, the PdS bond distance in 2
[1.9361(7) Å] lies within the typical bond length values deter-
mined for phosphine sulfides, R3PdS [e.g., 1.950(3) Å within
Ph3PdS].13 Oxidation of the carbene-bound phosphorus cen-
ter in 1 with a chalcogen is reminiscent of prior work by Kuhn
and co-workers, who prepared the phosphonium selenide
complex [Ph2P(Se) 3 ImMe2

iPr2]AlCl4 via the direct oxidation
of an NHC phosphenium (Ph2P

+) adduct with selenium.9c Of
note, we were also able to coordinate BH3 to the phosphorus
donor site in 1 to yield the stable adduct [IPr 3 P(BH3)N(P
Cl2N)2] (3); however, attempts to obtain crystals suitable for
X-ray crystallographic analysis were unsuccessful.11

Inspired by the recent use of the N-heterocyclic olefin IPr=CH2

as a donor ligand in low-oxidation-state main-group chemistry,4c,14

we subsequently investigated the reaction of IPrdCH2 with
[Cl2PN]3. As illustrated in Scheme 2, the sole phosphorus-contain-
ing product in the reaction was the alkene-substituted heterocycle
[(IPrdCH)P(Cl)N(PCl2N)2] (4). Interestingly, the same product
is obtained when the reaction is conducted in the presence of
sodium metal as a potential reductant.

The formation of 4 likely involves the initial nucleophilic
displacement of a phosphorus-bound chloride in [Cl2PN]3 by
IPrdCH2, followed by deprotonation (HCl elimination) in
the presence of excess basic IPrdCH2 to generate an alkenyl

IPrdCH group at phosphorus. The latter process yields the
insoluble imidazolium salt [IPrCH3]Cl, which was isolated in
pure form by filtration.11,15 Attempts to functionalize the remain-
ing P�Cl bonds in 4 with excess IPrdCH2 failed; however, the
IPrdCH residue was readily cleavable from the phosphazene
ring by treatment with anhydrous HCl, regenerating [Cl2PN]3 in
the process (eq 2).

Figure 1. Thermal ellipsoid plot (30% probability level) for 1 with
hydrogen atoms and toluene solvate omitted for clarity. Selected bond
lengths (Å) and angles (deg): C(1)�P(1) 1.8791(13), P(1)�N(1)
1.6770(12), P(1)�N(3) 1.6845(13), P(2)�N(1) 1.5423(12), P(2)�
N(2) 1.5900(13), P(3)�N(2) 1.5923(13), P(3)�N(3) 1.5543(13);
C(1)�P(1)�N(1) 99.05(6), C(1)�P(1)�N(3) 100.14(6), N(1)�
P(1)�N(3) 108.12(6).

Scheme 2. Synthesis of the Alkene-Substituted Phosphazene 4

Figure 2. Thermal ellipsoid plot (30% probability level) for 4 with
hydrogen atoms and solvate omitted. The N3P3Cl5 group was disor-
dered over two positions (70:30), and only the major orientation is
shown for clarity. Selected bond lengths (Å) and angles (deg) with
values due to the minor orientation of the N3P3Cl5 group in brackets:
C(1)�C(4) 1.398(2), C(4)�P(1A) 1.687(2) [1.708(3)], P(1A)�
N(3A) 1.6089(17), P(1A)�N(5A) 1.610(2), P(2A)�N(3A) 1.5617-
(16), P(2A)�N(4A) 1.583(2), P(3A)�N(4A) 1.583(2), P(3A)�
N(5A) 1.567(2); C(1)�C(4)�P(1A) 129.07(14) [132.52(17)].
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Compound 4 was also characterized by single-crystal X-ray
crystallography (Figure 2). The phosphazene heterocycle 4
contains P�N bond lengths in the narrow range of 1.5617-
(6)�1.610(2) Å, while the exocyclic P�C interaction is sig-
nificantly shorter [P(1A)�C(4) = 1.692(4) Å ave] than the
dative P�CIPr linkages within the heterocyclic adducts 1 and 2.
Furthermore, the short P�C distance in 4 is accompanied by the
substantial lengthening of the proximal P(1)�Cl(1) bond length
[2.088(2) Å ave] relative to the P�Cl distance observed in
phenyl-substituted phosphazene [PhP(Cl)N(PCl2N)2] [2.021(2)
Å].16 These metrical parameters suggest that the IPrdCH sub-
stituent is strongly electron-releasing, thereby leading to a weaken-
ing of the adjacent P�Cl interaction. Unfortunately, our attempts to
remove a chloride ion from 4 using the known halide abstractors
Ag[A] (A = O3SCF3

� and SbF6
�) led to inseparable product

mixtures in place of the desired cyclophosphazene cation
[(IPrdCH)PN(PCl2N)2]

+ ([4]+).17

In summary, partial reductive dehalogenation of [Cl2PN]3 in
the presence of the carbene donor IPr affords the novel mixed
PIII�PV heterocyclic adduct 1; this species was also reacted with
sulfur to give the sulfido adduct 2. A divergent reaction pathway
was observed between IPrdCH2 and [Cl2PN]3, leading to the
olefin-bound cyclophosphazene 4. Future work will focus on the
reduction of [Cl2PN]3 in the presence of less hindered NHC
coligands in order drive the system toward a fully dehalogenated
(PN)3 heterocycle. The ability to prepare metastable complexes
of (PN)3 should lead to the discovery of new binary P�N
materials upon controlled removal of the stabilizing ligands,3b,e

with potential applications in materials science envisioned.18
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