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ABSTRACT: Lithium aluminates Li[Al(O-2,6-
Me2C6H3)R′3] (R′ = Et, Ph) react with the μ 3-alkylidyne
oxoderivative ligands [{Ti(η 5-C5Me5)(μ-O)}3(μ 3-CR)]
[R = H (1), Me (2)] to afford the aluminum−lithium−
titanium cubane complexes [{R′3Al(μ-O-2,6-Me2C6H3)-
Li}(μ 3-O)3{Ti(η

5-C5Me5)}3(μ 3-CR)] [R = H, R′ = Et
(5), Ph (7); R = Me, R′ = Et (6), Ph (8)]. Complex 7
evolves with the formation of a lithium dicubane species
and a Li{Al(μ-O-2,6-Me2C6H3)Ph3}2] unit.

The chemistry of heterobimetallic compounds that contain
alkali metals has attracted the interest of many research

groups for the last 3 decades. Compounds containing a central
metal (magnesium, zinc, or aluminum), an alkali metal such as
lithium or sodium, and a variable number of ligands have
received the general term of “ate” complexes.1 These species
have revealed a remarkable structural diversity and different
reactivity patterns in comparison with the homometallic
precursors.2

Recently, we have studied reactions of the μ 3-alkylidyne
compounds [{Ti(η 5-C5Me5)(μ-O)}3(μ 3-CR)] [R = H (1), Me
(2)]3 with different group 13 homoleptic alkyl and halide
derivatives and reported the formation of the corresponding
adducts [{E3M}(μ 3-O)(μ-O)2{Ti(η

5-C5Me5)}3(μ 3-CR)] (R =
H, Me; M = B, Al, Ga; E = alkyl, halide).4 Surprisingly,
analogous reactions with different lithium alkyl reagents led to
coordination of the lithium atom through the three bridging
oxygen atoms, dehydronation of the μ 3-CR apical moieties, and
coupling of two formed units to give the dicubane complexes
[Li(μ 4-O)(μ 3-O)2{Ti3(η

5-C5Me5)3(μ 3-X)}]2 (X = C−,
CCH2

−).5

Now we are interested in studying the reactions of lithium
aluminate derivatives with the mentioned μ 3-alkylidyne
compounds. Herein we provide details about these reactions
and illustrate the cocomplexation of the lithium aluminate
moieties through different coordination modes in the solid-
state structures.
The reaction of 1 and 2 and the aluminum “ate” compounds

Li[Al(OAr)R′3] (R′ = Et, Ph; Ar = 2,6-Me2C6H3)
6 in hexane at

room temperature allowed us to obtain the aluminum−
lithium−titanium species [{R′3Al(μ-OAr)Li}(μ 3-O)3{Ti(η

5-
C5Me5)}3(μ 3-CR)] [R = H, R′ = Et (5), Ph (7); R = Me, R′
= Et (6), Ph (8)],7 as outlined in Scheme 1 (path A).
While complexes 5 and 6 were obtained with an acceptable

purity by this method,8 7 and 8 contained some impurities. In
fact, only when the adducts [{Ph3Al}(μ 3-O)(μ-O)2{Ti(η

5-
C5Me5)}3(μ 3-CR)] [R = H (3), Me (4)]4b were isolated and
then treated with LiO-2,6-Me2C6H3 were complexes 7 and 8

obtained in a pure form (Scheme 1, path B). In both synthetic
protocols, after stirring, the resulting yellow (5 and 7) or red (6
and 8) microcrystalline solids were collected by filtration. The
complexes, scarcely soluble in hexane but soluble in toluene,
were characterized by analytical8 and spectroscopic methods.
The NMR spectra in benzene-d6 of complexes 5−8 are in

agreement with the structures depicted in Scheme 1. The single
set of signals corresponding to the η 5-C5Me5 ligands is
noteworthy, indicating a local C3v symmetry for the μ 3-
alkylidyne moieties. The AlR′3 group and the O-2,6-Me2C6H3
ligand show characteristic signals, and the μ 3-alkylidyne (μ 3-
CR) unit exhibits resonances in the range found for species
containing such moieties.9,4b

Crystals of 6 were grown from a toluene/hexane solution by
cooling at −35 °C and crystallized with one molecule of
toluene.10 The molecular structure of 6 and selected distances
and angles are given in Figure 1. The structure shows how the
μ 3-alkylidyne metalloligand [{Ti(η 5-C5Me5)(μ-O)}3(μ 3-
CMe)] (2) stabilizes the lithium aluminate through tridentate
coordination to the lithium atom, building a cube-type
[LiTi3O3C] core with Li−O bond lengths in the range of
2.134(6)−2.273(6) Å. These distances are comparable to those
found for [{Li(μ 4-O)(μ 3-O){Ti3(η

5-C5Me5)3(μ 3-C)}]2
[2.03(1)−2.39(1) Å] if we take into account the difference
between the tetrahedral environment of lithium in 6 and the
trigonal pyramid in the dicubane species.5a The distance from
the alkoxide atom O1 to Li1 [1.853(6) Å] is clearly shorter
than those of the core but compares well with other lithium
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derivatives, containing bridging alkoxo groups, found in the
literature.11 The [Li{μ-O(C71)}Al] unit is planar, and the
phenoxo ligand is almost perpendicular [83.7(1)°] to this
plane. The C−Al [av. 1.994(7) Å] and Al1−O1 [1.861(2) Å]
lengths are similar to those observed in other organoaluminium
adducts.12

Whereas complexes 5, 6, and 8 are stable in benzene-d6
solutions for long periods of time, the analogous compound 7
undergoes a chemical rearrangement to give complex 9, which
contains the lithium dicubane fragment [Li{(μ 3-O)3Ti3(η

5-
C5Me5)3(μ 3-CH)}2]

+ and the unprecedented lithium bis-
(aluminate) anion [Li{(μ-O-Me2C6H3)AlPh3}2]

−, as shown in
Scheme 2. Compound 9 could be isolated in its pure form after

several recrystallization steps in a two-pot reaction. First, the
adduct complex [{Ph3Al}(μ 3-O)(μ-O)2{Ti(η

5-C5Me5)}3(μ 3-
CH)] (4)4b reacts with LiO-2,6-Me2C6H3 in hexane to give 7.
Then, the isolated compound is dissolved in toluene and left to
stir for 1 day to afford 9 as a light-orange microcrystalline solid
in moderate yield.13

The NMR spectra for complex 9 in benzene-d6, consistent
with the X-ray structural study,10 reveal the presence of
characteristic signals for μ 3-CH, phenyl, alkoxide, and η 5-
C5Me5 groups.
Single crystals of 9 were formed by slow cooling at −35 °C in

toluene after several weeks. The structure of the molecule,
determined crystallographically (see Figure 2), confirms the

existence of the corner-shared double cube [LiTi6O6] unit and
the lithium bis(aluminate) fragment shown in Scheme 2. The
coordination geometry about Li1 is best described as trigonal
antiprismatic, with O−Li−O angles spanning 75.9(2)−
104.1(2)°. In this arrangement, the two trinuclear [Ti3O3C]
units are situated in a relative alternate disposition because of
hindrance of the pentamethylcyclopentadienyl groups. Bond
lengths and angles within these units are very similar to those of
the μ 3-alkylidyne starting materials.3a

On the other hand, the anion presents the lithium atom
linked to two aluminate units, with Li−O bond distances of
1.84(1) and 1.87(1) Å, similar to that found for complex 6, and
compares well to those reported for other lithium complexes
with Li−O bonds,14 but are slightly shorter than those found
f o r t h e i o n s y s t e m [ ( H 5 C 2 ) A l -
(OC6H5)3

−···Li+···−(H5C6O)3Al(C4H9)]
− published by Bock

and co-workers.15 However, if we take into account the short
interaction Li3···C91 of 2.59(2) Å, the environment of this
lithium atom should be considered as tricoordinate.16 As shown
in Figure 2, the aluminum atoms present a tetrahedral
environment with Al−O bond lengths of ≈1.80 Å, slightly
shorter than that of complex 6. The low quality of the crystals
precluded a deep study about possible weak interactions
between the AlPh3 phenyl rings.
In summary, the molecular organometallic oxide moiety

[Ti3O3C] shows the capability of supporting heteroleptic
aromatic lithium aluminum “ate” fragments. This process can
be performed in two ways, by incorporation of the lithium
aluminate fragment by coordination through the three oxygen

Figure 1. Crystal structure of complex 6. Hydrogen atoms have been
omitted for clarity. Average of selected lengths (Å) and angles (deg):
C1−C2 1.518(4), Ti−C1 2.117(2), Al1−C 1.994(7), C71−O1
1.366(4), Al1−O1 1.861(2), Li1−O1 1.853(6), Li1−O23 2.134(6),
Li1−O12 2.185(6), Li1−O13 2.273(6), Ti−O 1.853(4); Ti−C1−Ti
84.5(1), O1−Al1−C 101.2(1)−111.6(2), C−Al1−C 110.9(2), O1−
Li1−O 122.9(3)−147.5(3), C71−O1−Li1 120.3(3), C71−O1−Al1
122.5(2), Li1−O1−Al1 116.9(2), Ti−O−Ti 100.4(4), Ti−O−Li1
89.4(2)−94.0(2), O−Ti−C1 87.2(3).

Scheme 2

Figure 2. Crystal structure of complex 9. Average of selected lengths
(Å) and angles (deg): Ti−C1 2.056(8), Li1−O 2.23(4), Li1···Ti
2.94(1), Li3−O2 1.84(1), Li3−O1 1.87(1), Ti−O 1.841(9), Ti···Ti
2.82(1), Al1−O1 1.805(6), Al2−O2 1.807(6), Al1···Li3 2.91(1),
Al2···Li3 3.01(1), Li3···C91 2.59(2); Ti−C1−Ti 86.7(2), O−Li1−O
75.9(2)−104.1(2), Ti−O−Ti 100.1(4), Ti−O−Li1 91.5(9), O−Ti−O
97.9(6), O−Ti−C1 86.3(3), O1−Li3−O2 133.7(8), Al1−O1−Li3
104.5(5), Al2−O2−Li3 111.3(5), O1−Al1−C 97.8(3)−111.9(3),
O2−Al2−C 99.8(3)−113.5(3), C−Al1−C 107.6(4)−117.7(4), C−
Al2−C 107.5(4)−113.7(4).
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atoms or by encapsulation of one lithium cation and
simultaneous coordination of its aluminate moiety to other
lithium aluminate units. Extension of these investigations is
being actively developed.
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Kudo, H.; Kondo, Y.; Uchiyama, M.; Wheatley, A. E. H. J. Am. Chem.
Soc. 2008, 130, 16193−16200. (b) Conway, B.; Garcıá-Alvarez, J.;
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P.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; Robertson, S. D. Angew.
Chem., Int. Ed. 2010, 49, 9388−9391. (d) Armstrong, D. R.; Blair, V.
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49, 8401−8410.
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