Topotactic Oxidation Pathway of ScTiO $_3$ and High-Temperature Structure Evolution of ScTiO_{3.5} and Sc₄Ti₃O₁₂-Type Phases^{||}

Shahid P. Shafi,[†] Bradley C. Hernden,[†] Lachlan M. D. Cranswick,[‡] Thomas C. Hansen,[§] and Mario Bieringer*,†

† Department of Chemist[ry,](#page-8-0) University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2

‡ Canadian Neutron Beam Centre, National Research Council Canada, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0

§ Institut Laue Langevine, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France

S Supporting Information

[AB](#page-8-0)STRACT: [The novel ox](#page-8-0)ide defect fluorite phase $ScTiO_{3.5}$ is formed during the topotactic oxidation of ScTiO_3 bixbyite. We report the oxidation pathway of ScTiO_3 and structure evolution of $\text{SCTiO}_{3.5}$, $\text{Sc}_{4}\text{Ti}_{3}\text{O}_{12}$, and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °C using in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO_3 . ScTiO_3 crystallizes in the cubic bixbyite structure in space group $Ia\overline{3}$ (206) with $a = 9.7099(4)$ Å. The topotactic oxidation product ScTiO_{3.5} crystallizes in an oxide defect fluorite structure in space group $Fm\overline{3}m$ (225) with $a = 4.89199(5)$ Å. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion

ordering at high temperatures. The optimized bulk synthesis for phase pure $\text{SCTiO}_{3.5}$ is presented. In contrast to the vanadiumbased defect fluorite phases AVO_{3.5+x} (A = Sc, In) the novel titanium analogue ScTiO_{3.5} is stable over a wide temperature range. Above 950 °C ScTiO_{3.5} undergoes decomposition with the final products being Sc₄Ti₃O₁₂ and TiO₂. Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that $Sc_4Ti_3O_{12}$ also exists in the defect fluorite structure in space group Fm3 m (225) with a = 4.90077(4) Å. Sc $_4$ Ti $_3$ O $_{12}$ undergoes partial reduction in CO/Ar atmosphere to form $Sc_4Ti_3O_{11.69(2)}$.

1. INTRODUCTION

Investigations of formation pathways of inorganic solids play a vital role in deducing structure−property relationships. In contrast to molecular sciences, reaction mechanisms are not well understood for extended solids. The recent advent of laboratory in-situ diffraction techniques allows investigation of solid-state reactions in real time.

 $AVO₃$ phases with trivalent A cations (A = Ln, Sc, In, Y) are known to form either perovskites or bixbyites.¹⁻⁷ The ideal cubic perovskite structure described in space group $Pm\overline{3}m$ (Figure 1a) has a 12-fold-coordinated large A cat[ion](#page-8-0) and 6-foldcoordinated smaller B cation. The B- O_6 octahedra form a corner-[sh](#page-1-0)aring infinite 3-dimensional network. Perovskite phases can undergo a number of distortions and cooperative tilts in order to accommodate differently sized A cations effectively. In contrast, the cubic bixbyite structure (Figure 1) is comprised of edge- and corner-sharing $(A/B)-O₆$ octahedra with statistical A and B cation disorder. Notably, the bix[by](#page-1-0)ite structure accommodates the cations on 2 distinct sites (8b and 24d). The 8b site forms a regular octahedron, whereas the 24d site is at the center of a distorted octahedron. Perovskite structures can be predicted with the Goldschmidt tolerance factor, $G_t = (A-O)/\sqrt{2(B-O)}$, where A–O and B–O

correspond to the respective metal−oxygen bond distances. Perovskite phases are expected for G_t values between 0.8 and 1.1.⁸ For smaller A cations (e.g., Sc^{3+} and In^{3+}) with tolerance factors less than 0.8 the $AVO₃$ compounds may crystallize in the [c](#page-8-0)ation-disordered bixbyite structure (Figure 1b).

We are interested in understanding solid-state reaction pathways with the potential benefit of control[lin](#page-1-0)g structures during synthesis. Understanding reaction sequences and solidstate reactivity will eventually provide insights into reaction mechanisms. Topotactic reactions involve modifications of structures while retaining substantial atomic connectivity of the precursor structures. Consequently, topotactic reactions do not require full reconstruction of the product crystal lattice. A recent review by Ranmohotti et al. discussed topochemical manipulations of perovskites in detail.⁹

Investigation of bixbyite phases and the structurally related fluorite structures with varying conce[nt](#page-8-0)rations of oxide defects is motivated by their potential applications as solid-state oxide ion conductors.²² Controlling the oxide defect concentrations and defect structures as well as evaluation of defect structure

Received: May 16, 2011 Published: January 24, 2012

Figure 1. (a) Ideal cubic ABO₃ perovskite structure with 12-fold-coordinated A cation (blue sphere) and 6-fold-coordinated B cation (yellow spheres). (b) ABO₃ cubic bixbyite structure with A and B cation disorder arranged in $(A/B)-O_6$ regular (green) and distorted (blue) octahedral environment. Oxygen atoms are represented as red spheres in both structures.

stabilities is a crucial ingredient for the design of reliable highperformance oxide ion conductors for use in solid oxide fuel cells.

In 2004, Alonso et al. reported that the bixbyite $ScVO₃$ undergoes topotactic oxidation to form the defect fluorite $SCVO_{3.5}$ under relatively mild conditions.⁴ Shafi et al.¹⁰ showed that further oxidation of $SCVO_{3.5+x}$ results in the metastable intermediate $ScVO_{4-x}$ defect zircon s[tr](#page-8-0)ucture pri[or](#page-8-0) to the topotactic oxidation to the fully oxidized ScVO₄ zircon phase. In addition, our work on the oxidation of $InvO₃$ bixbyite showed a similar metastable intermediate defect fluorite InVO_{3.5+x} (0.00 $\leq x \leq$ 0.22).¹¹ The structural relationship between bixbyite and defect fluorite phases has been discussed in detail.^{11,12} Thus far, bixbyite [ox](#page-8-0)idation pathway analysis has only been reported for vanadium-based compounds.

We ar[e in](#page-8-0)vestigating the oxidation of $ScTiO₃$ bixbyite¹³ in search of the previously unknown $\text{ScTiO}_{3.5}$ defect fluorite structure. The titanates provide a unique opportunit[y](#page-8-0) to stabilize this phase at high temperature because of the absence of higher oxidation states than $4+$ for titanium. The ScTiO₃ oxidation pathway will enable us to generalize the oxidative pathway of bixbyite phases. In addition, a large concentration of oxide defects can be maintained at high temperatures in air for systematic investigation of oxide defects for oxide ion conductor applications. Our investigation of the $ScTiO₃$ oxidation pathway via in-situ X-ray diffraction covers the entire phase diagram. To the best of our knowledge, very few phases are known in the Sc−Ti−O phase diagram, namely, ScTiO_{3}^{13} $Sc_2TiO_{5}^{14} (Sc_xTi_{1-x})_2O_{3}^{15}$ $Sc_4Ti_3O_{12}^{16,17}$ $Sc_9Ti_{10}O_{31,2}^{18}$ and $Sc_2Ti_2O_7$.^{19−21} We are reporting for the first time the no[vel](#page-8-0) oxygen-[def](#page-8-0)icient phases [of](#page-8-0) ScTiO_{3.5} a[nd S](#page-8-0)c₄Ti₃O_{12-x}. [As](#page-8-0) the maximu[m oxid](#page-8-0)ation state for Ti is 4+, the oxygen stoichiometry in ScTiO_{3.5} is restricted unlike in other AVO_{3.5+x} (A = Sc, In) defect fluorite structures.

2. EXPERIMENTAL SECTION

2.1. Synthesis. Polycrystalline $ScTiO₃$ was prepared by conventional solid-state synthesis. Stoichiometric amounts of Sc_2O_3 (Alfa Aesar, 99.99%), TiO₂ (Alfa Aesar, 99.995%), and Ti metal (Alfa Aesar, 99.99%), according to eq 1, were ground in an agate mortar with acetone and pelletized. The pellet was heated for 4−5 h in a diffusion pump vacuum ($p < 10^{-4}$ mbar) at 1500 °C with one intermediate grinding using a Huettinger TIG 5/300 induction furnace equipped with a copper coil. Bulk ScTiO_{3.5} (~500 mg) was synthesized according to eq 2 by heating ScTiO₃ at 800 °C for 5 h in air.

$$
2Sc_2O_3 + 3TiO_2 + Ti \rightarrow 4ScTiO_3 \tag{1}
$$

$$
\text{ScTiO}_3 + 0.25\text{O}_2 \rightarrow \text{ScTiO}_{3.5} \tag{2}
$$

Polycrystalline $Sc_4Ti_3O_{12}$ was prepared by heating stoichiometric amounts of Sc_2O_3 (Alfa Aesar, 99.99%) and TiO_2 (Alfa Aesar, 99.995%) at 1500 °C in air for 12 h according to eq 3. $Sc_4Ti_3O_{12}$ was reduced in CO/Ar (1:3 ratio) flow in a tube furnace at 1500 $^{\circ}$ C, resulting in formation of the oxide defect phase $Sc₄Ti₃O_{12-x}$ according to eq 4.

$$
2Sc_2O_3 + 3TiO_2 \rightarrow Sc_4Ti_3O_{12} \tag{3}
$$

$$
Sc_{4}Ti_{3}O_{12} + xCO \rightarrow Sc_{4}Ti_{3}O_{12-x} + xCO_{2}
$$
 (4)

2.2. Room-Temperature Powder X-ray Diffraction. All products were identified using a PANalytical X'Pert Pro powder X-ray diffractometer with Cu K $\alpha_{1,2}$ ($\lambda = 1.540598$ Å, 1.544426 Å) radiation equipped with a diffracted beam Ni filter and an X'Celerator detector operated in Bragg−Brentano geometry. The room-temperature diffractograms were collected from 10° to 120° in 2θ with a step width of 0.0083°. Phase identification (using PDF2003), preliminary indexing, and space group determination were carried out with X'Pert Highscore Plus (version 2.1). The powder X-ray diffraction data sets were analyzed in detail by the Rietveld method using FullProf 2008.²³

2.3. High-Temperature Powder X-ray Diffraction. Hightemperature powder X-ray diffraction experiments were carried o[ut](#page-8-0) on a PANalytical X'Pert Pro diffractometer equipped with a diffracted beam Ni filter, an X'celerator detector, and an Anton Paar HTK2000 high-temperature camera. Polycrystalline $ScTiO₃$ was heated on a resistive platinum strip heater from 25 to 1300 °C in air. Using Cu $K\alpha_{12}$ ($\lambda = 1.540598$ Å, 1.544426 Å) radiation diffraction patterns were collected in 20 °C increments covering the angular range $15^{\circ} \leq 2\theta \leq$ 120° with a 0.0167° step size. Using the same conditions thermal expansion experiments were conducted for $ScTiO_{3.5}$ and $Sc₄Ti₃O_{12}$ from 25 to 1300 °C at 50 °C increments in air.

2.4. Multiphase High-Temperature in-Situ Rietveld Refinements. The Rietveld refinements during heating of $ScTiO₃$ in air were conducted with typically 28−37 parameters for 1, 2, and 3 phases depending on the temperature range as indicated below.

- (i) 25 °C $\leq T \leq 220$ °C: 1 phase, ScTiO₃ cubic bixbyite phase
- (ii) 240 °C $\leq T \leq 300$ °C: 2 phases, ScTiO₃ cubic bixbyite and ScTiO_{3.5} defect fluorite phases
- (iii) 320 °C $\leq T \leq 840$ °C: 1 phase, ScTiO_{3.5} defect fluorite phase
- (iv) 860 °C $\leq T \leq 920$ °C: 2 phases, Sc-rich and Ti-rich cubic fluorite defect phases

Figure 2. In-situ X-ray diffraction contour plot ((a) $21^{\circ} \leq 2\theta \leq 38^{\circ}$ and (b) $61^{\circ} \leq 2\theta \leq 64^{\circ}$) of ScTiO₃ oxidation in air from 25 to 1300 °C at 20 °C increments. Diffraction peak intensities are shown as constant increment contours from blue (lowest intensity) to red (highest intensity).

- (v) 940 °C $\leq T \leq$ 1060 °C: 3 phases, Sc-rich and Ti-rich cubic defect fluorite phases and $TiO₂$ rutile
- (vi) 1080 °C $\leq T \leq$ 1240 °C: 3 phases, cubic and rhombohedral $Sc_4Ti_3O_{12}$ phases and TiO_2 rutile
- (vii) 1260 °C $\leq T \leq 1300$ °C: 2 phases, cubic Sc₄Ti₃O₁₂ defect fluorite phase and $TiO₂$ rutile.

For all data sets the unit cell parameters, scale factors, peak shape parameters, temperature factors, background parameters, and sample height were refined. No atomic positions were refined for the hightemperature structures. The χ^2 values for all but two refinements were consistently between 2.0 and 2.9. More details are provided in the Supporting Information.

2.5. Room-Temperature Powder Neutron Diffraction. Roomtemperature powder neutron diffraction data for $ScTiO₃$ were [collected on the med](#page-8-0)ium-resolution 800-wire diffractometer C2 operated by the National Research Council Canada in Chalk River. The diffraction patterns were measured with neutron wavelengths λ = 2.37248(15) Å (4° $\leq 2\theta \leq 84$ °) and 1.33076(10) Å (35° $\leq 2\theta \leq$ 115°) with 0.1° step sizes. Room-temperature powder neutron diffraction data for ScTiO_{3.5} and Sc₄Ti₃O₁₂ were collected on the high flux diffractometer $D20^{24}$ at the Institut Laue-Langevin (ILL) in Grenoble with $\lambda = 1.8674(3)$ Å (germanium (115) reflection with a monochromator takeoff angl[e o](#page-8-0)f 118°). Simultaneous powder neutron and powder X-ray refinements were carried out with FullProf 2008.²³

2.6. Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA). Simultaneous thermogravimetric and different[ial](#page-8-0) thermal analysis (TGA/DTA) experiments were carried out with a Linseis L81 thermobalance. ScTiO₃ (approximately 43 mg) was heated from 25 to 1450 °C and then cooled to room temperature in static air at a rate of 20 °C/min. Experiments were conducted in alumina crucibles with an empty crucible as the reference. The buoyancy correction was carried out with an empty crucible in the sample position. $Sc_4Ti_3O_{12-x}$ (approximately 49 mg) was heated from 25 to 1400 °C at 20 °C/min in oxygen flow and then cooled to room temperature at 60 °C/min. Experiments were corrected for buoyancy and conducted in alumina crucibles with Al_2O_3 as the reference. All products were identified by powder X-ray diffraction.

3. RESULTS AND DISCUSSION

3.1. ScTiO₃ Bixbyite Oxidation Pathway, ScTiO_{3.5}/ $Sc₄Ti₃O₁₂$ Formation, and High-Temperature Order− **Disorder Transitions.** ScTiO₃ crystallizes in the reported¹³ cubic bixbyite structure in space group $Ia\overline{3}$ (206) with scandium and titanium disorder on the 8b and 24d sites. T[he](#page-8-0) unit cell parameter $a = 9.7099(4)$ Å is in agreement with the previously reported value of $a = 9.709(3)$ Å by Reid et al.¹³ Below we report the detailed structure of $ScTiO₃$ as determined by powder X-ray and neutron diffraction. Our previous work on topotactic oxidations of bixbyite phases $10,11$ prompted our in-situ powder diffraction study of the oxidation pathway of ScTiO₃. Figure 2 ((a), $21^{\circ} \le 2\theta \le 38^{\circ}$ a[nd \(b](#page-8-0)), $61^{\circ} \le 2\theta \le$ 64°) is the contour plot of the temperature-dependent powder X-ray diffractograms during $ScTiO₃$ oxidation in air.

The contour plot shows $ScTiO₃$ persisting up to approximately 300 \degree C; the onset of new peaks belonging to an intermediate phase at around 240 °C indicate oxidation of ScTiO₃. This intermediate phase is stable up to 840 °C. The diffractograms of this novel phase resemble that of $SCVO_{3.5}$ ⁴ and $InvO_{3.5}^{11}$ and can be indexed on a cubic unit cell with spac[e](#page-8-0) group $Fm\overline{3}m$. In analogy to ScVO_{3.5} and InVO_{3.5} the novel inter[med](#page-8-0)iate is an oxygen-deficient fluorite phase with composition ScTiO_{3.5}. The low oxidation temperature (250− 300 \degree C) suggests that oxidation proceeds topotactically. This is also in agreement with the close structural relation between the bixbyite and the fluorite structure.^{4,11,12}

Above 920 °C, ScTiO $_{3.5}$ undergoes decomposition into TiO₂ (rutile) and another scandium tit[anate](#page-8-0) phase consistent with space group $Fm\overline{3}m.$ The diffraction pattern of the defect fluorite phase observed at $T \geq 940$ °C matches $Sc_4Ti_3O_{12}$ (ICDD powder X-ray diffraction reference code 00-031-1227). At 1080 °C $\leq T \leq$ 1240 °C the appearance of new peaks can be observed in Figure 2a and very prominently in Figure 2b. These additional peaks can be indexed on a rhombohedral unit cell in $R\overline{3}$ space group and are consistent with the anion-ordered $Sc_4Ti_3O_{12}$ structure.¹⁶ Since the anion-ordered (rhombohedral) and cation-disordered (cubic) $Sc_4Ti_3O_{12}$ phases coexist between $T = 1080$ and 1240 °C, the disorder-order phase transition is first order.

3.1.1. Unit Cell Dimension Evolution During Oxidation and Annealing. Figure 3 (top) shows the cubic unit cell volume evolution of $Sc_vTi_2O_{3+x}$ as a function of temperature during insitu oxidation of ScTiO_3 . The initial linear volume increase is due to thermal expansion of $ScTiO₃$ (blue solid circles) followed by an up-turn, indicating oxygen uptake until 300 °C has been reached. From 250 °C the unit cell volume of the oxygen defect fluorite structure ScTiO_{3.5−x} (red solid circles) increases until all Ti^{3+} has been oxidized to Ti^{4+} . The concave rather than linear volume evolution between 400 and 700 °C is possibly due to oxide defect randomization in the $\text{ScTiO}_{3.5}$ structure. The thermal expansion of fully characterized (see below) ScTiO_{3.5} and Sc₄Ti₃O₁₂ were determined in two

Figure 3. (Top) Formula unit volume evolution for cubic $Sc_vTi₂O_{3+x}$ structures as a function of temperature during in-situ powder X-ray diffraction in air. Bixbyite evolution is shown in blue solid circles, $ScTiO_{3.5}$ defect fluorite structure evolution in red solid circles, and $Sc₄Ti₃O₁₂$ defect fluorite structure evolution in green solid rectangles. Unit cell volume evolution due to thermal expansion for $ScTiO_{3.5}$ and $Sc₄Ti₃O₁₂$ is shown by the red solid line and green solid line, respectively. (Bottom) Temperature stability range for various phases observed during oxidation of $ScTiO₃$ bixbyite. Ti-rich regime is represented as $Sc_3Ti_4O_{12.5}$ and Sc-rich regime as $Sc_4Ti_3O_{12}$ for the temperature range $T = 860-1060$ °C for convenience. Letters in the parentheses stand for $c = \text{cubic}$ and $r = \text{rhombohedral}$.

separate in-situ diffraction experiments in air; unit cell evolutions are plotted as solid lines in Figure 3(top). The nearly linear increase between 700 and 850 °C (red solid circles) is attributed to the thermal expansion of the vacancy randomized $\text{ScTiO}_{3.5}$ structure since it is consistent with thermal expansion data for annealed $\text{SCTiO}_{3.5}$ (red solid line), which was measured independently. It is noteworthy that the unit cell volume (red solid circle) of the topotactic product during oxidation of the bixbyite phase is in perfect agreement with that of $\text{ScTiO}_{3.5}$ (red solid line) during thermal expansion at 800 °C. From 860 to 1060 °C the existing phases have closely related unit cell dimensions; both are cubic phases in *Fm* $\overline{3}$ *m* space group. Figure 3(top) shows that between this temperature range the unit cell volume of the phases deviate from the thermal expansion data for $\text{ScTiO}_{3.5}$ (red solid line); this suggests that $ScTiO_{3.5}$ undergoes phase separation into Scrich and Ti-rich defect fluorite phases. Interestingly, the phase with the larger unit cell volume (solid green rectangles) agrees with the thermal expansion of $Sc₄Ti₃O₁₂$ (green solid line) indicative of a Sc-rich phase, and the phase with smaller unit cell volume (red circles) falls below the thermal expansion of $ScTiO_{3.5}$ (red solid line) indicative of a Ti-rich phase. The Ti-rich phase must be part of the solid solution $Sc_{3+x}Ti_{4-x}O_{12+\delta}$ $(0 < x < 0.5)$ but for convenience will be written as $Sc₃Ti₄O_{12.5}$ for the remainder of the text. Loss of TiO₂ begins at $T \approx$ 940 \degree C; this would most probably be occurring from the Ti-rich phase (assigned as $Sc₃Ti₄O_{12.5}$) in a continuous fashion until it reaches the composition $Sc₄Ti₃O₁₂$. Loss of TiO₂ increases the effective cationic radius on the 4a site due to the Sc^{3+} to Ti^{4+} ratio increase which is observable by the increase in slope of the unit cell volume (red solid circles to green solid rectangles). Thermal expansion of $Sc₄Ti₃O₁₂$ (green solid line) is in very good agreement with this increased slope (green solid rectangles), and hence, the composition at high temperature during the in-situ study can be assigned as $Sc₄Ti₃O₁₂$. The bottom panel in Figure 3 represents the temperature ranges for various observed phases during oxidation of $ScTiO₃$. The Tirich regime is represented as $Sc₃Ti₄O_{12.5}$ and the Sc-rich regime as Sc₄Ti₃O₁₂ for the temperature range T = 860–1060 °C for convenience in Figure 3(bottom). A small (peak height <6%) X-ray diffraction peak at $2\theta \approx 31.7^\circ$ was observed between 1000 and 1160 °C and excluded from the refinements. This peak matches the hexagonal $Sc₉Ti₁₀O_{31.2}$ phase (ICDD powder X-ray diffraction reference code 00-031-1228).

3.1.2. Phase Fraction Analysis during in-Situ Oxidation and Annealing. The phase fractions during the entire process were also determined through Rietveld refinements of hightemperature in-situ X-ray diffraction data. The results are summarized in Figures 4 and 5. Figure 4 shows the phase

Figure 4. Phase fraction (%) of $Sc_zTi_vO_{3+x}$ from 25 to 1300 °C (blue = ScTiO₃, red = ScTiO_{3.5}, light green = Sc-rich cubic Sc₄Ti₃O₁₂, magenta = Ti-rich cubic $Sc_3Ti_4O_{12.5}$, dark green = rhombohedral $Sc_4Ti_3O_{12}$, $gray = TiO₂$).

fraction (%) of $Sc_yTi_zO_{3+x}$ from 25 to 1300 °C. Formation of the topotactic oxidation product begins at 240 °C, and all of the ScTiO₃ bixbyite (blue region) oxidized at 320 °C to the defect fluorite ScTiO_{3.5} (red region). At 860 °C the ScTiO_{3.5} phase segregates into Sc-rich (light green region, represented as $Sc₄Ti₃O₁₂$ in Figure 4) and Ti-rich (magenta region, represented as $Sc_3Ti_4O_{12.5}$ in Figure 4) phases. With the increase in temperature the phase fraction of the Sc-rich phase increases and that of the Ti-rich phase decreases; this is consistent with the onset of $TiO₂$ rutile phase formation, which is observed at 920 °C. At 1080 °C the Ti-rich phase disappears as it completely converts to $Sc_4Ti_3O_{12}$ expelling TiO_2 . At 1080 °C a fraction of the $Sc₄Ti₃O₁₂$ phase undergoes a phase transition from the cation-disordered cubic (light green region) to an oxide defect-ordered rhombohedral structure (dark green region). The rhombohedral phase (dark green region) disappears at 1260 °C and forms the entropically favored

Figure 5. Flowchart of the proposed mass unbalanced reaction pathway for ScTiO₃ bixbyite oxidation. For convenience, Sc-rich and Ti-rich phases are represented as $Sc_4Ti_3O_{12}$ and $Sc_3Ti_4O_{12.5}$, respectively. Letters in the parentheses stand for $c = c$ cubic and $r = c$ rhombohedral.

cation-disordered cubic structure (light green region) at high temperature.

3.1.3. Summary of in-Situ Oxidation and Annealing. The entire reaction process is summarized below and presented as a flowchart in Figure 5.

At 240 °C, shown as step a in Figure 5, ScTiO_3 oxidizes topotactically to $ScTiO_{3.5}$

$$
ScTiO3 + 0.25O2 \rightarrow ScTiO3.5
$$

(240 °C $\leq T \leq 840$ °C) (a)

The second step $b + c$ in Figure 5 represents phase separation of ScTiO_{3.5} into Sc₄Ti₃O₁₂ and Sc₃Ti₄O_{12.5}

ScTiO_{3.5} →
$$
xSc_4Ti_3O_{12} + (1 - x)Sc_3Ti_4O_{12.5}
$$

(860 °C ≤ T ≤ 920 °C) (b + c)

Step d indicates loss of TiO₂ from $Sc₃Ti₄O_{12.5}$ with formation of $Sc_4Ti_3O_{12}$

$$
(1 - x)Sc3Ti4O12.5 \rightarrow 0.75(1 - x)Sc4Ti3O12
$$

+ 7/4(1 - x)TiO₂
(940 °C $\leq T \leq 1060$ °C) (d)

Step e corresponds to the cubic (c) to rhombohdral (r) phase transition of a fraction of $Sc₄Ti₃O₁₂$

$$
Sc_{4}Ti_{3}O_{12} + TiO_{2} \rightarrow (1 - y)Sc_{4}Ti_{3}O_{12}(c)
$$

+
$$
ySc_{4}Ti_{3}O_{12}(r) + TiO_{2}
$$

(1080 °C $\leq T \leq 1240$ °C) (e)

In the final step f the rhombohedral $Sc₄Ti₃O₁₂$ phase fraction converts back to the entropically favored cubic structure

$$
(1 - y)Sc_{4}Ti_{3}O_{12}(c) + ySc_{4}Ti_{3}O_{12}(r) + TiO_{2}
$$

\n
$$
\rightarrow Sc_{4}Ti_{3}O_{12}(c) + TiO_{2}
$$

\n
$$
(1260 °C \le T \le 1300 °C)
$$
 (f)

The complex reaction pathway involves topotactic oxidation, phase segregation, and order−disorder phase transitions. Notably, our findings based on unit cell volume evolution (which is traced back to diffraction peak positions) and phase fraction analyses (which can be traced back to diffraction peak intensities) are in excellent agreement. The fact that all phases with the exception of the high-temperature rhombohedral structure are cubic is advantageous for this detailed analysis.

The TGA/DTA data in Figure 6 complement the in-situ powder X-ray diffraction experiments. The simultaneous

Figure 6. TGA/DTA oxidation of $ScTiO₃$ in air from 25 to 1450 °C at a heating rate of 20 °C/min. Red and blue lines indicate TGA and DTA curves, respectively, the solid arrow indicates the mass gain observed from room temperature to 800 °C, and the dashed line is only a guide to the eye.

presence of an exothermic peak at 375 °C in the DTA curve and the mass gain in the TGA data (inflection point at 375 $^{\circ}$ C) correspond to oxidation of ScTiO_3 to $\text{ScTiO}_{3.5}$. The observed mass gain of 5.33% (shown as a solid arrow in Figure 6) indicates that the product at 800 °C is $ScTiO_{3.47(2)}$. The plateau of the TGA curve beyond 500 °C suggests complete oxidation with no further mass changes upon extended heating. The poorly resolved broad DTA feature at $T \approx 900 \degree C$ is likely due to formation of $TiO₂$ rutile, phase segregation into the Sc-rich and Ti-rich phases, as well as the onset of the ordered rhombohedral $Sc_4Ti_3O_{12}$ phase. The final product only consisted of cubic $Sc₄Ti₃O₁₂$ and $TiO₂$ rutile at room temperature.

From these experiments the appropriate conditions for the bulk preparation of ScTiO_{3.5} were determined. ScTiO_{3.5} \Box _{0.5} (where \Box denotes oxide defects) crystallizes in the fluorite structure with 0.5 oxide defects (12.5% of the fluorite oxide lattice). Oxidizing ScTiO₃ ex situ for 5 h at 800 °C in either air or oxygen is sufficient to form a fully equilibrated $\text{ScTiO}_{3.5}$ oxide defect fluorite sample. The in-situ studies showed a lack of randomization of the oxide defects in $ScTiO_{3.5}$ at lower temperatures, possibly due to insufficient annealing time during the relatively fast in-situ experiment.

The in-situ powder X-ray diffraction experiments of $ScTiO_{3.5}$ and ScVO_{3.5+x}¹¹ in air contrast their respective stability ranges. ScVO_{3.5} oxidizes to ScVO₄ at approximately 425 °C, whereas ScTiO_{3.5} is stable up to 925 °C subsequently forming $Sc_4Ti_3O_{12}$ and $TiO₂$.

3.2. Structural Analysis of ScTiO₃, ScTiO_{3.5}, and $Sc₄Ti₃O₁₂$ Phases Involved in the Topotactic Oxida**tion.** 3.2.1. ScTiO₃ Structure. We report the first powder neutron diffraction study on the $ScTiO₃$ bixbyite phase. The neutron data are particularly important in order to identify Sc/ Ti preference on the two cation sites, to accurately determine the oxygen sublattice, and consequently to obtain reliable coordination polyhedra. The 4-histogram Rietveld refinement was carried out for one X-ray and three neutron diffractograms using FullProf 2008.²³ A total of 38 parameters including neutron wavelength, zero point, unit cell parameter, scale factors, peak shape [pa](#page-8-0)rameters, temperature factors, atomic positions, and site occupancies were refined. It should be noted that the site occupancies were constrained to be fully occupied; thus, the Sc/Ti ratios were refined independently for both sites. The background was fitted for the initial least-squares cycles using a cubic spline and fixed for the following cycles. The Rietveld plots are shown in Figure 7, and the structural details

Figure 7. Rietveld plots for $ScTiO₃$ room-temperature refinement. Powder X-ray diffraction data Cu $K_{\alpha1,2}$ radiation and powder neutron diffractograms $\lambda = (a)$ 1.3295(2) and (b) 2.3726(5) Å. Red circles = experimental data, black line = best fit, blue line = difference, black tick marks = Bragg positions.

are provided in Table 1. The refined occupancies indicate a site preference of Ti^{3+} for the 8b site and a small Sc^{3+} preference for the 24d site. The refi[ne](#page-6-0)d composition $Sc_{0.969(6)}Ti_{1.025(6)}O_3$ is in excellent agreement with the nominal composition. The bond valences (determined with VaList²⁵) confirm these cation preferences. There is no indication of cation ordering in $ScTiO₃$.

3.2.2. ScTiO $_{3.5}$ Structure. Room-temperature X-ray and neutron powder diffraction data were collected on a bulk sample of $\text{ScTiO}_{3.52}$ and the Rietveld analysis was carried out with FullProf 2008.²³ ScTiO_{3.5} crystallizes in the defect fluorite structure in space group $Fm\overline{3}m$ (225) with $a = 4.89199(5)$ Å. For the 2 histogr[am](#page-8-0) refinements a total of 19 parameters including peak shape parameters, scale factors, neutron wavelength, unit cell parameter, temperature factors, cation occupancies, and zero points were refined. The backgrounds were fitted using a cubic spline during the initial cycles and fixed for subsequent cycles. The Rietveld plots for $ScTiO_{3.5}$ refined in space group $Fm\overline{3}m$ are shown in Figure 8, and structural details are provided in Table 2. The Sc^{3+}/Ti^{4+} cations occupy the $4a(0, 0, 0)$ site in a disordered fashion, and the

Figure 8. Rietveld plots of $ScTiO_{3.5}$ room-temperature refinement. Powder X-ray diffraction data Cu $K\alpha_{1,2}$ radiation and powder neutron diffractogram (insert) with $\lambda = 1.8671(2)$ Å. Red circles = experimental data, black line = best fit, blue line = difference, black tick marks = Bragg positions. In the neutron powder diffractogram (insert), top tick marks are $\text{ScTiO}_{3.5}$ Bragg position and bottom marks are that of Al_2O_3 . Pt peaks originating from the sample container in the neutron data have been excluded from the refinement.

oxide anion is located on the 8c $(1/4, 1/4, 1/4)$ site with an occupancy of 0.875. The bond valences (determined with VaList²⁵) indicate the presence of Sc^{3+} (BV = 3.9) and Ti⁴⁺ (BV = 3.5) on one site. The large oxygen temperature factor of 5.15 (3) A^2 is due to the large defect concentration and the associated disorder on the oxide sublattice in that structure. The absence of superstructure peaks in the X-ray and neutron diffractograms rules out any potential ion/defect ordering. The powder neutron diffraction pattern showed a broad peak at $d \approx$ 2.14 Å which is not observed in the X-ray diffraction pattern. A similar feature was observed in $\text{AVO}_{3.5+x}$ neutron diffraction patterns, and it has been suggested that this is due to oxygen defect clusters.¹⁰ Small impurity peaks from Al_2O_3 corundum which was used as a thermocouple sleeve for the hightemperature m[ea](#page-8-0)surements was found in the room-temperature neutron powder diffractogram for $ScTiO_{3.5}$; the Bragg peak positions are shown in Figure 8 (insert) as bottom tick marks. In the fluorite structure cations form a cubic close-packed structure with anions in the tetrahedral interstitials. The average oxide defect fluorite structure can be derived from the parent fluorite structure as illustrated in Figure 9. In this defect fluorite structure one of the eight oxide ion positions is vacant. The randomly chosen oxide ion vacancy i[s](#page-6-0) shown as the yellow sphere in Figure 9. As expected during a topotactic oxidation of $ScTiO₃$ to $ScTiO_{3.5}$ no cation migration occurs. The oxygen uptake increases [t](#page-6-0)he average cation coordination from six to seven. Formation of defect fluorite $\text{ABO}_{3.5}$ is entirely dependent on the structure of the $ABO₃$ bixbyite starting material; our previous work has shown that perovskite phases do not form this metastable product during oxidation.^{7,11} Ex-situ experiments showed that at elevated temperatures $T > 800 \degree C$ ScTiO_{3.5} decomposes into TiO₂ rutile and c[ubic](#page-8-0) Sc₄Ti₃O₁₂. We suggest that the driving force behind the decomposition of $ScTiO_{3.5}$ is the thermodynamic stability of the rutile phase.

3.2.3. $Sc_4Ti_3O_{12}$ Structure. It is noteworthy that there are only two entries in the ICSD and PDF2003 corresponding to $Sc₄Ti₃O₁₂$, namely, an anion ordered rhombohedral structure and a cation-disordered cubic defect fluorite structure. Diffraction patterns obtained at $T \ge 900$ °C during in-situ

Table 1. Structural Parameters, Bond Angles, and Average Bond Distances for ScTiO₃ Bixbyite Phase (space group $Ia\overline{3}$ (No. 206)) As Obtained from Rietveld Refinements against Three Neutron and One X-ray Diffraction Room Temperature

 a X-ray: K_{α1,2}, λ = 1.540598 Å, 1.544426 Å, 10° $\leq 2\theta \leq$ 90°, Δ2 θ = 0.0167°, 4781 data points, weight in refinement = 0.25. NPD-1: λ = 1.3295(2) Å, 4.4° $\leq 2\theta \leq 84^{\circ}$, $\Delta 2\theta = 0.1003^{\circ}$, 795 data points, weight in refinement = 0.25. NPD-2: $\lambda = 1.3295(2)$ Å, 35.4° $\leq 2\theta \leq 115^{\circ}$, $\Delta 2\theta = 0.1003^{\circ}$, 795 data points, weight in refinement = 0.25. NPD-3: $\lambda = 2.3726(5)$ Å, $4.4^{\circ} \le 2\theta \le 84^{\circ}$, $\Delta 2\theta = 0.1003^{\circ}$, 795 data points, weight in refinement = 0.25.

Table 2. Structural Parameters, Bond Angles, and Average Bond Distances for ScTiO_{3.5} Oxygen-Deficient Cubic Fluorite Phase (space group $Fm\overline{3}m$ (No. 225)) as Obtained from Rietveld Refinements against One Neutron and One X-ray Diffraction Pattern Measured at Room Temperature

^aX-ray: K_{α1,2}, λ = 1.540598 Å, 1.544426 Å, 10[°] $\leq 2\theta \leq 120^{\circ}$, Δ2θ = 0.0083 $^{\circ}$, 13 158 data points, weight in refinement = 0.3. NPD-1: λ = 1.8671(2) Å, $0.1^{\circ} \le 2\theta \le 150.9^{\circ}$, $\Delta 2\theta = 0.1001^{\circ}$, 1508 data points, weight in refinement = 0.7.

oxidation of ScTiO_3 matched the cubic defect fluorite phase $Sc₄Ti₃O₁₂$. The structural characteristics of $Sc₄Ti₃O₁₂$ were established via combined Rietveld refinements against powder X-ray and neutron diffraction data measured on bulk samples using FullProf 2008.²³ A total of 20 parameters including peak shape parameters, scale factors, neutron wavelength, unit cell parameter, tempera[tur](#page-8-0)e factors, occupancies of cations, and zero points were refined. The Rietveld refinement plots are shown in Figure 10, and the structural details are provided in

Figure 9. Fluorite structure with Sc^{3+}/Ti^{4+} cations in blue and O^{2-} anions in red. Randomly chosen oxygen defect is shown in the tetrahedral environment as a yellow sphere.

Table 3. $Sc_4Ti_3O_{12}$ exists in the defect fluorite structure in space group $Fm\overline{3}m$ with unit cell parameter $a = 4.90077(4)$ Å which is lar[ger](#page-7-0) than that of $\text{ScTiO}_{3.5}$ due to more Sc^{3+} ions in the former phase (Shannon radii $Sc^{3+}(VI) = 0.745$ Å, $Ti^{4+}(VI) =$ 0.605 Å). The cations Sc^{3+}/Ti^{4+} occupy the 4a $(0, 0, 0)$ site in a disordered fashion, and the oxide anion is located on the 8c (1/4, 1/4, 1/4) site with an occupancy of 0.88. The bond valences (determined with VaList²⁵) indicate the presence of Sc^{3+} (BV = 3.8) and Ti^{4+} (BV = 3.5) on one site. The particularly large oxygen temperature fact[or o](#page-8-0)f 6.91(9) \AA^2 is due to the large defect concentration in the structure. The composition calculated from the Rietveld refinement is $Sc_{2.16(1)}Ti_{1.84(1)}O_{7.03(4)}$ with $Z = 2$.

3.3. Partial Topotactic Reduction of ScTiO $_{3.5}$ and $Sc₄Ti₃O₁₂$. Under strongly reducing conditions both defect fluorite phases ScTiO_{3.5} (H₂ gas, 700 °C) and Sc₄Ti₃O₁₂ (CO gas, 1500 °C) showed partial reduction of Ti^{4+} ions indicated by the

Figure 10. Rietveld plots for cubic $Sc₄Ti₃O₁₂$ at room temperature. Powder X-ray diffraction data, Cu $K\alpha_{1,2}$ radiation: (a) powder neutron diffractogram (D20) with $\lambda = 1.8668(1)$ Å. Red circles = experimental data, black line = best fit, blue line = difference, black tick marks = Bragg positions. Pt peaks originating from the sample container in the neutron data have been excluded from the refinement.

Table 3. Structural Parameters, Bond Angles, and Average Bond Distances for $Sc_4Ti_3O_{12}$ Oxygen-Deficient Cubic Fluorite Phase (space group $Fm\overline{3}m$ (No. 225)) as Obtained from Rietveld Refinements against One Neutron and One X-ray Diffraction Pattern Measured at Room Temperature

^aX-ray: K_{α1,2}, λ = 1.540598 Å, 1.544426 Å, 10[°] $\leq 2\theta \leq 120^{\circ}$, Δ2θ = 0.0083 $^{\circ}$, 13 158 data points, weight in refinement = 0.3. NPD-1: λ = 1.8668(1) Å, $0.1^{\circ} \le 2\theta \le 150.9^{\circ}$, $\Delta 2\theta = 0.1001^{\circ}$, 1508 data points, weight in refinement = 0.7.

sample color change as well as the peak shift in the diffraction pattern. X-ray data for the (111) reflection of $Sc_4Ti_3O_{12}$ and $Sc₄Ti₃O_{12-x}$ and their respective sample colors are shown in Figure 11. These two materials are visibly distinguishable as $Sc₄Ti₃O₁₂$ is pale yellow while $Sc₄Ti₃O_{12-x}$ is black. Both phases produce the same diffraction patterns with an obvious peak position shift. $Sc_4Ti_3O_{12}$ peaks (red peaks) are shifted to lower angles compared to those of $Sc₄Ti₃O_{12-x}$ (green). Also, the XRD pattern of the mixture of these two phases (blue pattern shown as an insert in Figure 11) showed double peaks indicating that the phases have different unit cell dimensions. Figure 12 shows the TGA/DTA plot during oxidation of $Sc₄Ti₃O_{12-x}$ in oxygen with a single exotherm and a single-step

Figure 11. Powder X-ray diffraction patterns zoomed in to the (111) reflection of $Sc_4Ti_3O_{12}$ (red), $Sc_4Ti_3O_{12-x}$ (green), and the mixture (blue). Sample colors of $Sc₄Ti₃O₁₂$ and $Sc₄Ti₃O_{12-x}$ are compared on the righthand side.

Figure 12. TGA/DTA oxidation of $Sc_4Ti_3O_{12-x}$ in air from 25 to 1400 °C at a heating rate of 20 °C/min. Red and blue lines indicate TGA and DTA curves, respectively, the solid arrow indicates the mass gain observed from room temperature to 1100 $^{\circ}$ C, and the dashed line is only a guide to the eye.

mass gain. The mass gain of 0.97% during oxidation indicates the composition of this unreported phase to be $Sc_4Ti_3O_{11.69(2)}$. The fully oxidized $Sc₄Ti₃O₁₂$ phase has a larger unit cell due to its larger oxygen content in comparison to the reduced $Sc₄Ti₃O_{12-x}$ phase. This trend is consistent with the redox behavior of the defect fluorite phases $\text{AVO}_{3.5+x}$ (A = Sc, In) where unit cell expansion was observed with increasing oxygen stoichiometry rather than cell contraction due to substitution of the larger V^{4+} with the smaller V^{5+} cation.¹¹

4. SUMMARY AND CONCLUSIONS

We are reporting for the first time the synthesis, stability, and structure of the novel oxygen defect fluorite $ScTiO_{3.5}$. Oxidation of $ScTiO₃$ has been followed via in-situ X-ray diffraction and TGA/DTA experiments. The topotactic oxidation of the bixbyite phase $ScTiO₃$ resulted in formation of the related oxide defect structure $ScTiO_{3.5}$; this is an

extension of the previously published oxidation pathways of the vanadium-bearing bixbyite phases $ScVO₃$ and $InVO₃$ and therefore clearly illustrates a structure−reactivity relation. With this the present study emphasizes a generalized topotactic oxidation pathway for bixbyite phases. In addition to the initial topotactic oxidation step the present in-situ study has revealed complex phase equilibria between cubic $\text{ScTiO}_{3.5}$, $\text{Sc}_{3}\text{Ti}_{4}\text{O}_{12.5}$, and $Sc₄Ti₃O₁₂$ phases and an oxide ordered rhombohedral defect fluorite phase. $ScTiO_{3.5}$ crystallizes in the defect fluorite structure (space group $Fm\overline{3}m$) with Sc^{3+}/Ti^{4+} disorder on the 4a site and O^{2-} anions occupying the 8c site with 1/8 disordered defects. Neutron diffraction data suggest possible oxide defect clustering in $\text{ScTiO}_{3.5}$; the same has been reported for the vanadium analogues.¹⁰ Only prolonged annealing of ScTiO_{3.5} at 800 °C just below the initial formation temperature of $Sc_4Ti_3O_{12}$ results in a phase-pure homogeneous $ScTiO_{3.5}$ sample. Only at temperatures above 840 °C the cations become sufficiently mobile for phase separation into Sc-enriched as well as Sc-depleted cubic defect fluorite structures. Below that temperature the ion mobility and therefore the chemical reactivity appears to be limited to the oxide sublattice: the topotactic regime. The average coordination number of both cations in $\text{ScTiO}_{3,5}$ is seven. It appears that the observed phase transitions and phase separations are driven by enabling octahedral Ti⁴⁺ coordination. This is the case for the rutile structure, which is found as a byproduct during $Sc_4Ti_3O_{12}$ formation and during oxide ordering where the resulting rhombohedral structure also has an octahedral site, which is assumed to be exclusively occupied by Ti^{4+} . Controlling the reactivity of sublattices and the corresponding ion mobilities in those oxide defect structures is particularly important for ion conductors and consequently for solid-state electrolytes in fuel cell applications. In-situ diffraction has matured into a powerful tool for tackling reaction pathway analysis for solid-state reactions and thus provides important information for the controlled synthesis of extended solids.

■ ASSOCIATED CONTENT

6 Supporting Information

Details regarding the temperature-dependent Rietveld refinements against the powder X-ray diffraction data collected during in-situ $ScTiO₃$ oxidation. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATI[ON](http://pubs.acs.org)

Corresponding Author

*Phone: (204) 474-6258. Fax: (204) 474-7608. E-mail: Mario_ Bieringer@umanitoba.ca.

Notes

∥ [Deceased.](mailto:Mario_Bieringer@umanitoba.ca)

■ ACKNOWLEDGMENTS

M.B. acknowledges NSERC and CFI for operating and infrastructure support. S.P.S. is thankful for graduate student support (UMGF) from the University of Manitoba. Dr. Holger Kleinke and Jackie Xu are acknowledged for synthesis of $ScTiO₃$. We thank the Institut Laue-Langevin (ILL) for providing neutron beam time and technical support. We acknowledge the National Research Council−Canadian Neutron Beam Centre (NRC−CNBC) for access to the neutron diffractometer C2 and technical support.

■ REFERENCES

- (1) Mizokawa, T.; Khomskii, D. I.; Sawatzky, G. A. Phys. Rev. B 1999, 60, 7309.
- (2) Ren, Y.; Palstra, T. T. M.; Khomskii, D. I.; Pellegrin, E.; Nugroho, A. A.; Menovsky, A. A.; Sawatzky, G. A. Nature 1998, 396, 441.
- (3) Nguyen, H. C.; Goodenough, J. B. Phys. Rev. B 1995, 52, 324.

(4) Alonso, J. A.; Casais, M. T.; Martinez-Lope, M. J. Dalton Trans. 2004, 9, 1294.

(5) Miyasaka, S.; Okimoto, Y.; Iwama, M.; Tokura, Y. Phys. Rev. B 2003, 68, 100406.

(6) Lundgren, R. J.; Cranswick, L. M. D.; Bieringer, M. J. Solid State Chem. 2006, 179, 3599.

(7) Lundgren, R. J.; Cranswick, L. M. D.; Bieringer, M. Chem. Mater. 2007, 19, 3945.

(8) Rao, C. N. R.; Raveau, B. Transition Metal Oxides; John Wiley & Sons: New York, 1988.

(9) Ranmohotti, K. G. S.; Josepha, E.; Choi, J.; Zhang, J.; Wiley, J. B. Adv. Mater. 2011, 23, 7309.

(10) Shafi, S. P.; Kotyk, M. W.; Cranswick, L. M. D.; Michaelis, V. K.; Kroeker, S.; Bieringer, M. Inorg. Chem. 2009, 48, 10553.

(11) Shafi, S. P.; Lundgren, R. J.; Cranswick, L. M. D.; Bieringer, M. J. Solid State Chem. 2007, 180, 3333.

(12) Ambrosini, A.; Duarte, A.; Poeppelmeier, K. R.; Lane, M.; Kannewurf, C. R.; Mason, T. O. J. Solid State Chem. 2000, 153, 41.

(13) Reid, A. F.; Sienko, M. J. Inorg. Chem. 1967, 6, 521.

- (14) Kolitsch, U.; Tillmanns, E. Acta Crystallogr. 2003, E59, i36.
- (15) Rice, C. E.; Robinson, W. R. J. Solid State Chem. 1977, 21, 155.
- (16) Rossell, H. J. J. Solid State Chem. 1976, 19, 103.

(17) Lyashenko, L. P.; Shcherbakova, L. G.; Belov, D. A.; Knotko, A. V. Inorg. Mater. 2009, 45, 543.

(18) Pokrovskii, B.; Isaeva, E. V. Russ. J. Inorg. Chem. 1977, 22, 1103.

- (19) Knop, O.; Brisse, F.; Castelliz, L. Can. J. Chem. 1969, 47, 971.
- (20) Brixner, L. H. Inorg. Chem. 1964, 3, 1065.

(21) Komissarova, L. N.; Shatskii, V. M. Zh. Prikl. Khim. 1966, 39, 2211.

- (22) Goodenough, J. B. Nature 2000, 404, 821.
- (23) Rodríguez-Carvajal, J. FullProf. 2k, Vers. 4.40; 2008.
- (24) Hansen, T. C.; Henry, P. F.; Fischer, H. E.; Torregrossa, J.;
- Convert, P. Meas. Sci. Technol. 2008, 19, 034001.
- (25) Wills, A. S. VaList for Windows, Vers. 1.5.8; 1998.