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ABSTRACT: There have been a number of recent studies
reporting high-spin d4,6 complexes with three- and four-
coordinate geometry, which exhibit roughly trigonal symmetry.
These include complexes of Fe(II) with general formula L3FeX,
where L = thioether or dialkylphosphine donors of a tripodal
chelating ligand and X is a monodentate ligand on the C3 axis. In
these systems, there is unquenched orbital angular momentum,
which has significant consequences on the electronic/magnetic
properties of the complexes, including magnetic susceptibility,
EPR spectra, and magnetic Mössbauer spectra. We describe here
a simple model using a description of the d orbitals with trigonal
symmetry that along with the application of the spin−orbit
interaction successfully explains the magnetic properties of such
systems. These d orbitals with 3-fold symmetry are complex orbitals with a parameter, a, that is determined by the bond angle, α,
of LFeX. We demonstrate that the E symmetry states in such systems with S > 1/2 cannot be properly “simulated by” or be
“represented by” the Zeeman and second-order zero-field spin Hamiltonian alone because by definition the parameters D and E
are second-order terms. One must include the first-order spin−orbit interaction. We also find these systems to be very
anisotropic in all their magnetic properties. For example, the perpendicular values of g and the hyperfine interaction parameter
are essentially zero for the ground-state doublet. For illustrative purposes, the discussion focuses primarily on two specific Fe(II)
complexes: one with the bond angle α greater than tetrahedral and another with the bond angle α less than tetrahedral. The
nature of the EPR spectra and hyperfine interaction of 57Fe are discussed.

■ INTRODUCTION
This work was initiated by the authors’ concern about the spin
Hamiltonian (eq 1) used by many investigators to represent the
ground state of high-spin d6 complexes (primarily of Fe(II)),
and high-spin d7 complexes (such as of Co(II)), which contain
a C3 symmetry axis.
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The first term is the electronic Zeeman term, and the remaining
terms are called a zero field splitting (zfs) interaction for such
multispin (S > 1/2) systems. Equation 1 was obtained under
the assumption that the ground state was free of angular
momentum.1,2 In eq 1, the g factor is determined by a second-
order (spin−orbit × angular momentum) interaction and D
and E are also determined primarily by a second-order (spin−

orbit × spin−orbit) interaction. If S ≥ 2, then fourth-order
contributions involving S4 terms will also be possible.1,3 As will
become apparent later, it must carefully be noted that in the
EPR community, since the days of Abragam and Bleaney,1 the
letters D and E are reserved for the second-order term in eq 1.
The second-order nature of D means that it is proportional to
(λ2/ΔE) and thus its magnitude is on the order of 1−10 cm−1

because the multielectron spin−orbit coupling constant is λ ≈
−100 cm−1 for Fe2+, and for orbitally nondegenerate systems
the energy splitting between the ground state and relevant
excited states is ΔE ≈ 10000−1000 cm−1.
If there is unquenched angular momentum, then eq 1 will

require an additional term from the first-order spin−orbit
interaction. When a C3 axis is present, this is the case for both
d6 and d7 systems. If, however, eq 1 is used to interpret such
cases then the D values reported in the literature will include
the first-order term. This is why D values have been reported
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with a magnitude of tens of wave numbers, approaching the
order of magnitude of λ, which is not what would be expected
for a second-order term.
We therefore set out to calculate the effect of including the

first-order spin−orbit interaction. In this work, the calculation
will be for d6 systems, namely coordination complexes of
Fe(II). We chose this system, not only because of the
importance of Fe(II) but because the calculation is simpler
than for d7 (only one magnetic quintet state: 5D) and Fe
complexes can be studied by magnetic Mössbauer spectrosco-
py, as well as by EPR.
The chemical basis for our study being so topical is the

recent development of a number of synthetically very beautiful
and versatile tridentate ligands, such as with thioether (S3)
donors,4,5 phosphine (P3) donors,6−9 carbene (C3) do-
nors,10−12 and the continued extensive application of the N3
donor scorpionate ligands.13,14 Other multidentate N donor
ligands, such as trispyridylamine and its analogues15,16 and
tris(pyrrolyl-α-methyl)amines,17−19 have also been extensively
employed. These ligands impose trigonal geometry on the
transition metal ion which they chelate. As a result, in most
cases, the ion has unquenched angular momentum.
Recent interest in high-oxidation state iron complexes has led

to the synthesis and characterization of four- and five-
coordinate Fe(IV) imido20 and oxo complexes,16,21 including
one very recently with the pyrrolide ligand.22 These d4

complexes all have roughly trigonal symmetry that requires
much the same treatment as for the d6 systems. Another,
related synthetic direction has been the preparation of three-
coordinate complexes of Fe(II), with approximate trigonal
planar symmetry23 by use of the β-ketiminate “nacnac” ligand
framework (N2 donor).24

Last, single molecule magnets (SMMs) have engendered
great interest in recent years and some of the complexes
referred to above have been studied for this property.17,18,25,26

The prominent SMM [Mn12O12(CH3COO)16(H2O)4]
27 has 8

Mn(III), d4, ions in octahedral sites, which has the same ground
state as d6 in tetrahedral sites.
Four papers on trigonal Fe(II) complexes have recently

appeared that included relevant theory, with all orders of the
spin−orbit interaction. A crystal field-based equation for spin
Hamiltonian parameters (i.e., eq 1) was reported by Popescu et
al.4,28 A second paper by Palii, et al.,25 did a proper ligand field
theory (LFT) calculation for a trigonal-pyramidal Fe(II)
complex of a tris(pyrrolyl-α-methyl)amine ligand (FeN4)
including the spin−orbit interaction and applied it to magnetic
susceptibility data. They reported that the 5E ground state was
split into three doublet and four singlet states, which showed
that the spin Hamiltonian approach was problematic because

this would give four doublets and two singlets (i.e., two sets
each of one singlet and two doublets). They, however, did not
emphasize that eq 1 was not sufficient. The third paper, by
Atanasov, et al.26 computed the value of D for the same type of
FeN4 complex, and the fourth paper, by Neese and Pantazis27

also computed D for several such FeN4 complexes. These latter
two papers gave the second-order equation for D and E, but
they calculated the complete spin−orbit interaction including
the S2 and S4 terms and the first-order term. They assigned the
complete spin−orbit interaction, including the first-order term,
to D. This is unfortunate because the second-order terms
produce a geometric anisotropy in the Zeeman interaction
while the first-order term does not. The paper by Atanasov, et
al.26 did point out that the reason for the very large anisotropy
in the Zeeman interaction of these complexes is from the
anisotropy in the g tensor. None of the four papers dealt with
interpretation of the EPR or magnetic Mössbauer experiments
that have been done on such trigonal systems.
To understand the effect of introducing the first-order spin−

orbit interaction on the magnetic properties, such as the nature
of the spin Hamiltonian to be used to replace eq 1, we have
chosen a simpler theory instead of the sophisticated computer
models used by others.26,27 The reasons are threefold. One, it is
sufficient for our purposes, two, our approach offers new
insights into the treatment of distorted tetrahedral systems,
three, we have no access to large computer clusters nor
expertise with the relevant programs. This simpler theory
computes quickly and can be used easily to demonstrate the
effect of the spin−orbit interaction upon the various ligand field
states and predicts energies for the lowest 10 levels of the 5E
ground state to a reasonable accuracy.

■ EXPERIMENTAL SECTION
Computer programs are available from the authors that perform the
calculations described herein, providing energy levels, EPR transitions,
etc., for the trigonal 5D or 2D system described herein. The program
Ligfield by Bendix was used for AOM calculations.29

■ RESULTS AND DISCUSSION
General Comments on Theoretical Treatment. Our

calculation is a perturbation calculation using |LMLSMS⟩
functions expressed as Slater determinants. Our calculations
are greatly simplified by creating Slater determinants from d
orbitals that have a C3 axis rather than the real functions used in
octahedral symmetry. We consider this approach accurate
enough because we are interested only in the change of
magnetic properties with the introduction of the first-order
spin−orbit interaction. Thus we are interested in the spin−
orbit splitting of the 5E ground state only. For both EPR and

Figure 1. Plots of Ea1*Ea1. (A) For a
2 = 2/3 (tetrahedral). (B) For a2 = 0.3786 (specific case discussed here).
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magnetic Mössbauer studies, even the excited states within 5E
are relatively unimportant, except for the higher temperature
magnetic Mössbauer studies. Moreover, we are not really
interested in the actual MOs (the large computer programs
excel for this), so we represent the effect of covalency by a
reduction parameter k and the bond angles, which are strongly
affected by the nature of the bonds.
The C3 d Orbitals. In C3 symmetry the five dml orbitals

classify into the A and E representation.30

=A d0 (2a)

= − = ++ − − +E ad bd E ad bd:a a1 2 1 2 2 1 (2b)

= + = −+ − − +E bd ad E bd ad:b b1 2 1 2 2 1 (2c)

In tetrahedral or octahedral systems, a = (2/3)1/2 (b = (1/
31/2)) and Ea and A become the t2(g) orbital set (Eb is the e(g)
orbital set). In tetrahedral and octahedral systems, only Ea has
angular momentum, but in a distorted system Eb also has
angular momentum. These orbitals seem to be little known,
probably because they are complex in nature and have no
simple pictures that can be inserted into textbooks. In
tetrahedral coordination, the t2 orbitals are σ orbitals, while in
octahedral coordination they are π in character. The functions
Ea*Ea and Eb*Eb are, however, real and can be pictured. Ea1*Ea1 is
shown in Figure 1 for a2 = 2/3 and 0.3786. The lower right
lobe is in the xz plane. The Ea2*Ea2 function gives the same
picture but differs in the direction of rotation about the z axis.
The function Eb*Eb also looks the same but is rotated 60° about
z. Notice the change in shape with the change in a2. This will be
discussed below. In tetrahedral symmetry, the Ea functions are
σ bonding as the three lobes below the xy plane point to three
“basal” atoms and the A function points to the “apical” atom on
the C3, z axis.
The C3 symmetry is obvious for the Ea and Eb orbitals, but

this type of plot is not equivalent to plotting the wave function
because the function is positive everywhere. Also, despite the
appearance of Figure 1, the direction of the lobes is not in the
tetrahedral directions (i.e., (3 cos 2θ − 1)). The angle between
the maximum of the lobe in the xz plane and the z axis is given
instead by eq 3 (a, b as in eq 2):

θ = b
a

tan(2 )
2

(3)

This gives θ = 117.37° for a2 = 2/3, for example. If, however,
we do a coordinate transformation by rotating the z axis by α
degrees in the xz plane to the bond axis direction, we find that
Ea1 in eq 2b becomes:

α α α= − + −−−−
⎡
⎣⎢

⎤
⎦⎥E

a
b d

2
3/2 sin 3/2 sin cosa1

2
0

(4)

where d0 has the new z axis in the bond direction. If we
maximize the d0 coefficient by varying the parameter a, we
obtain:

α = − a
b

tan
2

(5a)

which gives the tetrahedral angle of α = 109.47° for a2 = 2/3.
Equation 5a can also be given in terms of a2, which is helpful
for its calculation from an α value determined by molecular
geometry:

α
α

=
+

a
tan

4 tan
2

2

2 (5b)

If there is a trigonal distortion of an octahedral complex where
the σ bonding orbitals are Eb and the above treatment with Eb1
is repeated, then eq 5c results:

α = b
a

tan
2

(5c)

There should be a null surface which includes the bond axis
for the π orbitals, Eb, for a tetrahedral molecule. If one sets Eb1
= 0, then eq 5a results, except the polar angle θ has replaced the
angle α. This means that the null surface of Eb1 is a cone with
angle α and includes all four metal−ligand bonds. Thus Eb1 is a
true π orbital. The same applies for Ea1 for trigonal distorted
octahedral complexes. Thus, a in our starting d orbitals (eqs 2)
is determined geometrically.
All of the above pertains to a single electron orbital, but since

because d4 and d6 conformations have a 5D ground state, it is
obvious we should start our calculations with the following
wave functions, Dml, which behave the same way as dml orbitals:

=A D ;5 5
0 (6a)

= − = ++ − − +E a D b D E a D b D; ;a a
5

1
5

2
5

1
5

2
5

2
5

1 (6b)

= + = −+ − − +E b D a D E b D a D;b b
5

1
5

2
5

1
5

2
5

2
5

1 (6c)

These 25 Slater spin−orbital determinant functions will be the
starting point of the calculation. For completeness, we also
include in the Supporting Information the 10 spin−orbital
functions for the 2D ground state of the d1 and d9 electronic
configurations. The 2D case will not be discussed further,
however.

Calculation of Spin−Orbit and Zeeman Interactions.
In this calculation, we will assume that we have determined the
energy of the five symmetry defined states (eqs 6) before
application of the spin−orbit and Zeeman interactions. This
could be done by spectroscopic interpretations, AOM
calculations, or DFT or ab initio calculations. These will be
input values for the program found in the diagonal terms of the
25 × 25 energy matrix and will be labeled as: E(A), E(Ea), and
E(Eb). We have made this simplification because we are
primarily interested in the energies of the ten components of
the 5Eb state, which determine the magnetic properties. It will
be shown later that the energies of these 10 lowest states is very
little affected by the values of E(A), E(Ea). For reasons that will
become apparent later, we will do first only the largest term, the
spin−orbit interaction. This interaction is generally of the form:

Table 1. Identification and Numbering of Wave Functions for 5D System in Trigonal Symmetry

1 A(+2) 6 Ea1(+2) 11 Ea2 (+2) 16 Eb1(+2) 21 Eb2(+2)
2 A(+1) 7 Ea1(+1) 12 Ea2(+1) 17 Eb1(+1) 22 Eb2(+1)
3 A(0) 8 Ea1(0) 13 Ea2 (0) 18 Eb1(0) 23 Eb2(0)
4 A(−1) 9 Ea1(−1) 14 Ea2(−1) 19 Eb1(−1) 24 Eb2(−1)
5 A(−2) 10 Ea1(−2) 15 Ea2(−2) 20 Eb1 (−2) 25 Eb2(−2)
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λ= ̂· ̂L SLS (7)

The spin−orbit parameter λ is positive for d4,3 and negative for
d6,7 configurations.
We will label the 25 functions as: A(MS), Ea1(MS), Ea2(MS),

Eb1(MS), and Eb2(MS), where MS is the spin number (−2, −1, 0,
+1, +2). We now label the 25 wave functions as shown in Table
1.
Application of LS leads to a 25 × 25 matrix which, upon

close inspection, can be broken down into two 8 × 8 matrices
and one 9 × 9 matrix. These three matrices are given
respectively in eqs S1, S2, and S3 (Supporting Information).
The first two matrices are identical except for some changes in
the sign of off-diagonal elements. This means both matrices
when diagonalized will give the same set of eight energies.
Examining the above three matrices tells us that the spin−orbit
interaction splits the 5A states into two doublet levels and one
singlet level, while the 5Ea and 5Eb states are each split into
three doublet levels and four singlet levels.
We next consider the application of an external magnetic

field. The electronic Zeeman interaction operator is:

β= ̂ + ̂ ̂g S kL B( )Z e e (8)

where βe is the Bohr magneton, ge is the free electron g value
(2.0023), and k is the orbital reduction factor used to crudely
estimate molecular orbital effects. The major orbital effects are
handled by proper choice of the parameter a as discussed
above. Because we have axial symmetry in C3 point group
symmetry, we use for the magnetic field the two vectors: Bz =
B0 cos θ and Bx = B0 sin θ. The Bz component makes the first
and second matrices nonequivalent and splits the eight doublet
states. The Bx component produces off diagonal matrix
elements outside the three matrices described above (that are
given in Supporting Information), which makes it necessary to
diagonalize the total 25 × 25 matrix.
We will find later that in order to understand the EPR and

magnetic Mössbauer spectra at low temperatures, it is necessary
to distort the molecule slightly from strict C3 symmetry if there
is degeneracy in the ground state. The Jahn−Teller effect is
sufficient, or there may be slight structural deviations from
trigonal symmetry due to crystal packing, etc. To allow for
small distortions from C3 symmetry, we have assumed, for
convenience, a distortion to planar symmetry with the xz plane
as the reflection plane. This leads to two new, rhombic
distortion parameters, Vn (n = 1, 2):

= − = −−V E E V E E;x y xy xz yz2 12 2 (9)

Because d±1 is an equal mixture of dxz and dyz, V1 splits d±1, and
V2 does the same for d±2. Values of Vn much greater than the
spin−orbit parameter λ quench the angular momentum, and
the two functions become the two real orbitals. This quenching
is complete only when V1 and V2 are both are much larger than
1000 cm−1. The matrix elements this interaction leads to are
given in Supporting Information.31 The introduction of these
terms makes the y direction different and for magnetic
resonance calculations would require the introduction of
magnetic Zeeman terms involving the polar azimuthal angle
ϕ, resulting in a matrix with complex numbers. We have not
done this because the distortions are small. It should be pointed
out that a simple change in the sign of the parameter V1 will
give the solution for yz plane. We have used this to calculate
differences for the magnetic field in the x and y directions and

find no significant differences in the results for the distortion
values used in this work.

The Ground State of Fe(II) in a Tetrahedrally
Coordinated Complex with a Trigonal Distortion. For
our first use of this program, we will calculate the effect of the
parameter a upon the 10 components of 5Eb. This is the ground
state for the Fe(II) ion in a tetrahedrally coordinated complex
with a trigonal distortion, as in FeL3X complexes, where L3
represents a tripodal thioether ligand, such as in [PhTttBu]Fe-
(Me),4 or a tripodal trialkylphosphine ligand, such as in
[PhBPiPr

3]FeCl.
8 Before we use the complete program, it will

be useful to examine only the first-order perturbation
calculation. For the 5Eb ground state there are no off-diagonal
spin−orbit interaction components among the 10 5Eb functions
and, therefore, a first-order perturbation calculation gives the
following energies (in ascending/descending order, depending
on the sign of λ). The left column gives the energy and the
right column gives the symmetry of the orbitals and their spin.

λ

λ

λ

λ

= − + −

= − + −

=

= − − − +

= − − +

E a E E

E a E E

E E E

E a E E

E a E E

(5) 2(2 3 ) ( 2); ( 2)

(4) (2 3 ) ( 1); ( 1)

(3) 0 (0); (0)

(2) (2 3 ) ( 1); ( 1)

(1) 2(2 3 ) ( 2); ( 2)

b b

b b

b b

b b

b b

2
2 1

2
2 1

2 1

2
2 1

2
2 1 (10)

The first-order spin−orbit interaction gives five equally split
doublet states with the highest and lowest energy levels being
MS = ±2 spin states. Note that the ground state is always an MS
= ±2 doublet, no matter the sign of λ or whether a2 is greater
or less than 2/3. The inclusion of the second-order terms will
remove the even spacing in the energy levels and converts two
of the doublets into four singlets. Also, the energy spacing is in
no way similar to that predicted by eq 1. Note also that the
actual ground state is different for elongated (a2 < 2/3) and
compressed (a2 > 2/3) complexes even though both are
doublet MS = ±2 states.
We now will calculate the energy levels of these ten states as

a function of a2 from the complete program. For this
calculation, we use E(A) = E(Ea) = 7000 cm−1 and λ = −107
cm−1. This spin−orbit coupling constant for 5D is that
definitively determined by Bendix et al. for free-ion Fe2+ (ζ =
427 cm−1 = 2Sλ).29 A plot of these energies is shown in Figure
2.
In Figure 2, there are no labels as to the composition of the

wave functions for each line because this composition changes
dramatically with the value of a2. To show these changes,
consider the ground state. At a2 = 0, the energies are given by
eq 10, with the ground state being E(5) and the first excited
state being E(4). At a2 = 1, the energies are again given by eq
10 but the ground state is now E(1) and the first excited state is
E(2). Thus from eqs 6, for a2 = 0, the Dml(MS) ground state is
D−2(+2); D+2(−2), and for a2 = 1, the ground state is
−D−1(−2); D+1(+2). When a2 = 2/3, the 10 states are all zero
to first order, but are split by second-order interactions which
produce states that are a mixture of spin functions. It is
therefore not possible to use simple symmetry and spin labels
to represent the various energy states across the range of a2.
The energy separation between the 5Ea and 5Eb states is

reasonable for illustrative purposes and is comparable to that
obtained from DFT studies of a trigonal Fe(II) complex.4 In
principle, the energies of the 5Ea and 5A states would be
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dependent on the distortions from Td symmetry, as well as
bonding parameters. However, we have found that the general
features shown in Figure 2 will be preserved, regardless of the
5Ea and

5A states’ energies because the first-order spin−orbit
coupling determines the behavior within the Eb ground state.
Thus, in Figure 2, the five doublet energy pattern (i.e., the first-
order result from eq 10) is present over almost all values of a2,
except two of the doublets are slightly split into two pairs of
singlets (red lines in Figure 2). These splittings into singlets are
due to second- and fourth-order terms in the spin−orbit
interaction, which are at least an order of magnitude smaller
than the first-order terms.
Note that in the region of Td symmetry (Figure 2, inset), the

5Eb state is still split into five levels, but the degeneracy of these
levels is 1:3:2:3:1. The ground state will be a singlet and is
therefore not a magnetic state. There will be no EPR, ENDOR,
or magnetic Mössbauer detected from this ground state. The
doubly and triply degenerate excited states are also relatively
unaffected by the magnetic field, but magnetic susceptibility will
be found because other excited states contribute to that
property. The spread of energies for the 10 levels is minimized
for a2 = 2/3 because for Td symmetry there is no angular
momentum in the 5Eb state. As a result, splitting of the 5Eb
levels results only from higher-order spin−orbit interactions,
which can still be significant due to the small size of 10Dq in
tetrahedral complexes.
When a2 is less than 0.635, there will be magnetic doublet

states split by a magnetic field, which will allow for detection of
EPR, ENDOR, or magnetic Mössbauer spectra. In this case, the
doublet ground state consists mainly of the two wave functions:

ψ

ψ

= +

= −
+

−

E

E

( 2) and

( 2)

b

b

1

2

which will be split by the magnetic field into MS = ±2 states.
Above a2 ∼ 0.70, we have a different situation because the

two singlet states are not degenerate in zero-field; they become
degenerate only when a2 = 1.0. These two states approach each

other closely enough to allow for detection of EPR, ENDOR,
or magnetic Mössbauer, e.g., for a2 = 0.80, the separation is
0.125 cm−1. This doublet consists mainly of two wave
functions:

ψ ψ= − + +

= − − + +
+ −E E

E E

0.7038 ( 2) 0.7029 ( 2) and

0.7038 ( 2) 0.7030 ( 2)

b b

b b

1 2

1 2

Note that the two states have their spin quenched (i.e., each has
nearly equal contributions of opposite spins, in this case ±2)
due to the zero field interaction. We will see below that when a
magnetic field is applied, this quenching will be removed.

Effect of the Magnetic Field on the Doublet States
and the EPR Spectrum. Because there are two different
magnetic ground states depending on the value of a2, we will
first discuss an example from the literature for a2 < 2/3.

Case of Elongation along the C3 Axis. For the case of a
2 <

0.635, we will use the tripodal thioether Fe(II) complex
reported by Popescu et al.,4 [phenyltris((tert-butylthio)-
methyl)borate]-methyliron(II), [PhTttBu]Fe(Me). From the
average C−Fe−S bond angle of 122.6° and eq 5b we obtain
a2 = 0.3786. In our calculations, we have used values of 5000
cm−1 and 8000 cm−1, respectively, for the energy differences
E(Ea) − E(Eb) and E(A) − E(Eb). These were obtained from
our AOM (see Supporting Information, Figure S1 and Table
S4) and are sufficient for illustrative purposes. We have chosen
to adjust the V2 value in eq 9 and have found the splitting of the
ground state doublet in zero magnetic field to be approximately
10−4 that of V2. We have chosen a value of 140 cm−1 for V2
because it gives a value for the zero-field splitting of 0.0263
cm−1, which is close to the 0.03 cm−1 estimated from
Mössbauer spectra.4 We use a value of the covalency reduction
parameter k = 0.8, as is reasonable for a covalent complex. In
Table 2 are given the energies for the 10 levels of the 5E ground

state. The second column is calculated as outlined above. The
third column gives energies calculated by the program Ligfield,
which includes all 210 d6 microstates (the AOM and other
input parameters are given in Figure S1 and Table S4,
Supporting Information). The fourth column is calculated from
our program but with the E(Ea) − E(Eb) and E(A) − E(Eb)
values interchanged to test the sensitivity of the calculation to

Figure 2. Plot of the 10 energy levels of the 5Eb ground state for
tetrahedral d6 as a function of trigonal distortion, given by the
parameter a2 (a2 = 2/3 ≈ 0.67 corresponds to ideal tetrahedral
geometry; the inset shows an expansion of this region). Other
parameters are given in the text. The four singlet states (which are in
two nearly degenerate pairs, as is most easily seen in the inset) are
each shown with a red line; the three doublet states (one of which is
the ground state for a2 ≲ 0.64) are each shown with a black line.

Table 2. Energies of Lowest 10 Energy Levels (in cm−1) of
[PhTttBu]Fe(Me) Calculated by Our Method Compared to
That by the Ligfield Program

level
no.

calcd in
cm−1a

calcd by
Ligfieldb

calcd with inverted excited
statesc

1 0 0 0
2 0.0263 0.0048 0.0346
3 85.72 83.42 84.57
4 94.01 100.39 98.88
5 149.12 179.90 167.51
6 235.58 180.69 204.58
7 291.95 263.35 279.78
8 292.21 264.41 279.85
9 373.67 342.24 370.67
10 373.83 343.18 370.77

aCalculation using 5D model with a2 = 0.3786 and (in cm−1): E(Ea) −
E(Eb) = 5000, E(A) − E(Eb) = 8000, V2 = 140, λ = −107. bCalculation
using full d6 basis set with parameters given in Table S4 (Supporting
Information). cCalculation as in (a), except (in cm−1): E(Ea) − E(Eb)
= 8000, E(A) − E(Eb) = 5000.
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these energies. We can see that our simple method is successful
and that the details of the AOM for this complex, for which
there are no electronic spectroscopic data available to
determine energy levels,4 are not critically important.
Why is our rather simplistic model so successful in

calculating these energies? The answer is due to three factors:
(1) The energies of the 10 levels in 5Eb is due to the spin−orbit
interaction, (2) the spin−orbit interaction is almost completely
due to the d orbital component of the nonbonding MOs
containing unpaired electrons, (3) the magnitude of the spin−
orbit interaction is due to the nature of the hybridization
coefficient a, which, in turn, is determined by the bond
directions. The bond directions are determined by the covalent
interactions, of course.
Our calculations show that the two wave functions for the

doublet are basically [ψ+ = Eb1(+2), ψ− = Eb2(−2)], and with
the magnetic field in the z direction the doublet is split into two
states with energies of

β β= = ±E g BM g B2e S e (11)

Note that we will use eq 11 as our definition of g. Much of the
literature treats the two energy levels as pseudo spin 1/2
systems with an effective geff = 4g.
The problem here is that these wave functions would not

give a detectable EPR signal because the intensity would be
zero. Popescu et al.4 and others studying analogous complexes,8

assumed that they could model the ground state doublet as the
MS = ± 2 states of an S = 2 zero-field spin Hamiltonian (eq 1)
but ran into this same problem. They solved it by assuming
there was a distortion from C3 symmetry, which in their model
meant that they gave a nonzero value to the E parameter. This
produced a small admixture of other spin states, which in turn
allowed for a small intensity in the ΔMS = 4 transition. We will
have to do the same thing using V2. This is also accomplished
by use of the real geometry in the AOM, which is not perfectly
trigonal (Figure S1, Supporting Information).
A plot of the energy of the lowest four states as a function of

the magnetic field applied along the z and x axes for V2 = 140
cm−1 is given in Figure 3.
Popescu et al.4 performed magnetic Mössbauer measure-

ments at various temperatures to obtain the energy of the
lowest excited state and obtained a range of 90−102 cm−1.

They analyzed their results in terms of eq 1, so that this value
was assigned to the energy of MS = ±1, which should be equal
to 3D, so D ≈ 30 cm−1. As seen in Figure 3, our calculated
average energy of MS = ±1 (upper red lines; these have a zero-
field splitting of ∼8 cm−1) above the ground state is 90.1 cm−1,
the same value as reported. Most of this energy comes from the
first-order spin−orbit interaction.
The gz value for the MS = −2 state (from the slope of the

lowest energy black line at higher fields in Figure 3 and eq 11)
is 2.014. The gx value is 0.2. No EPR transition could be seen
with Bx < 1.5 T. The gz value for the MS = +2 state (from the
slope of the second lowest energy black line at higher fields) is
2.404. Popescu et al.4 reported gz = 2.5 from their Mössbauer
studies. An EPR measurement of the transition MS = −2 to +2
would give an average of the two g values (2.21).
To understand the shape of the resulting EPR spectrum, we

need to examine how the wave functions behave as the
magnetic field changes. What is important for low temperature
EPR is the ground state doublet wave function, ψ±, which can
be written as follows:

ψ = + + + + −

+ −

+ <

± ± ± ±

±

c E c E c E

c E

c

( 2) ( 2) ( 2)

( 2)

other terms with 0.1

b b b

b

1 1 2 2 3 2

4 1

(12)

In Table 3 are given the coefficients of ψ± as a function of the
magnetic field.

The smaller value for the sum of coefficients squared,
∑i = 1

4 ci
2, for 8 T is due to sizable contributions from the excited

MS = ±1 states. The small rhombic distortion gives rise to a
dramatic change in the ground state doublet’s wave functions.
At zero magnetic field, they change from MS = ±2 spin
functions to a quenched mixture of the two spin states. This
quenching is completely removed only at magnetic fields much
larger than the zero field splitting of the doublet. This is what
allows detection of EPR and magnetic Mössbauer spectra. Also,
at all field values, the Eb2(+2) and Eb1(−2) functions now make
a significant contribution. We now consider the actual EPR
spectrum resulting from this doublet, which is easiest for a
spectrometer with the oscillating field, B1, parallel to the main
field, B0. Such a configuration is indeed fruitfully employed to
study such systems by EPR.8,32,33

Figure 3. Plot of lowest four states energies versus magnetic field for
case of a2 = 0.3786 and V2 = 140 cm−1 when the magnetic field is in
the z (∥, black lines) and x (⊥, red lines) directions.

Table 3. Wave Function Coefficients of the Ground State
Doublet, ψn, n = ±, for a2 = 0.3758

B (T) n c1 c2 c3 c4 ∑i = 1
4 ci

2

0 + −0.6095 −0.3412 0.6097 −0.3412 0.9761
− 0.6095 0.3412 0.6097 0.3421 0.9761

0.05 + 0.8479 0.4650 −0.1555 0.1315 0.9767
− 0.1558 −0.1303 0.8479 0.4653 0.9768

0.10 + 0.8583 0.4779 −0.0807 0.0720 0.9768
− 0.0810 −0.0707 0.8583 0.4779 0.9766

0.15 + 0.8603 0.4808 −0.0541 0.0491 0.9766
− 0.0544 −0.0478 0.8604 0.4807 0.9767

0.20 + 0.8610 0.4820 −0.0407 0.0372 0.9767
− 0.0410 −0.0359 0.8611 0.4817 0.9765

0.80 + 0.8617 0.4839 −0.0101 0.0099 0.9769
− 0.0104 −0.0086 0.8622 0.4826 0.9765

8.0 + 0.8919 0.3701 −0.0007 0.0003 0.9325
− −0.0011 −0.0005 0.9028 0.3527 0.9394
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The intensity of an EPR transition for B0,1 along the z axis
will be proportional to:

ψ ψ|⟨ | | ⟩|

= + − −

+ − − − +

+ −

+ − + − + − + −

+ − + − + − + −

S

c c c c c c c c

a c c c c c c c c

[4( )

(2 3 )( )]

z
2

1 1 2 2 3 3 4 4
2

1 1 2 2 3 3 4 4
2

When the magnetic field is at angle θ to the z axis the intensity,
I, is

θ ψ ψ= |⟨ | | ⟩|+ −I Scos z
2 2

because the intensity components in the x and y directions are
zero. As the angle θ becomes larger, the magnetic field for the
transition becomes rapidly larger in magnitude, but the
intensity drops off rapidly as well. In a powder sample, the
chance of the molecule’s orientation being at a given θ becomes
larger as well, which partly compensates for the lower intensity.
Thus we would expect a peak in the absorption spectrum near
geff = 4gz. In Figure 4 is a simulated EPR spectrum for our a2 =
0.3786 system, presented in first derivative mode, as in
conventional EPR.

The EPR simulation program was necessary because most
simulation programs require a spin Hamiltonian, and we are in
the process of demonstrating that eq 1 is not a proper one for
the system considered here. We used our theory to calculate
the intensity at a large number of orientations of the magnetic
field in an organized pattern and convert the results to create
our simulation. This is what all simulation programs do. We will
propose a suitable spin Hamiltonian later that could be used
with other simulation programs.
The above simulation appears to differ from the EPR

spectrum for B1 parallel with the main field reported by
Popescu et al.,4 but that is due to a 180° difference in the
spectrometer’s phase. The spectrum of Hendrich et al.8 is
similar to Figure 4. The EPR spectra reported for other trigonal
Fe(II) complexes18,23 are also similar to Figure 4. We
recommend taking all EPR spectra for these systems with B1
parallel to the main field because this detection mode will
always lead to greater signal intensity.

We will show below that the best application of EPR in these
systems is to estimate the magnitude of the zero-field splitting
of the ground state. In Figure 4, the peak of the first derivative
is about 100 G (10 mT) above the field that marks the
appearance of the EPR spectrum.
The most important outcome of the above calculations is the

absence of any Zeeman interaction when the magnetic field is
perpendicular to the symmetry axis. This tells us to expect large
anisotropies in magnetic properties, such as Zeeman
interactions, hyperfine coupling interactions, magnetic suscept-
ibility, magnetic Mössbauer, or ENDOR spectroscopy.
Many researchers have attempted to simulate the ground

state doublet for a trigonally distorted tetrahedral d6 complex
using eq 1 and S = 2 with a negative D value and assumed a
significant rhombic splitting (nonzero E parameter) to make
the MS = ±2 levels split at zero field. We have shown here that
it is possible to generate such an EPR spectrum, enhanced in
parallel mode detection, without any signif icant rhombic
distortion.

Case of Compression along the C3 Axis. In this case, the
ground state changes (see Figure 2) and the ground state
doublet is not degenerate even when there is a C3 axis. We
chose for this case the trigonal pyramidal iron(II) trispyrrolyl-
amine complexes, [Fe(tpaR)]−.17,18 These have the Fe(II) ion
nearly in the plane of three pyrrolide nitrogen atoms of the
ligand (N(pyrrolideeq)) and have an axial amine nitrogen
(N(amineax)). For this arrangement, a2 will be nearly unity.
This makes the ground state 5D±1. The two wave functions are:

ψ = + + − +± ± ±c E c E( 2) ( 2) other very small termsb b2 2 4 1

We chose this system because it has been treated theoretically
by Atanasov et al.,26 and we can compare our results to theirs.
The first comparison is the ground state. Atanasov et al.26

report the ground state to be a mixture of dxz and dyz, which is
our d±1. We will use their N-electron valence perturbation
theory (NEVPT2) calculations for [Fe(tpat‑Bu)]− (tpat‑Bu =
tris(5-tert-butyl-1H-pyrrol-2-ylmethyl)amine trianion). From
their calculation we use E(Ea) = 8760 cm−1 and E(A) = 7400
cm−1. The N(amineax)−Fe-N(pyrrolideeq) bond angle of
82.55°17,26 gives a2 = 0.9360 (eq 5b). We use V1 = 0 because
we need no distortion to produce a separation in the ground
doublet. The energies for the 10 levels of the 5Eb ground state
are listed in Table 4 along with the values calculated by
Atanasov et al.26

For comparison, as was the case above with [PhTttBu]Fe-
(Me), we also applied the AOM to [Fe(tpat‑Bu)]− using the
complete d6 basis set. In this case, however, the parameters are
well determined, as Atanasov et al. performed extensive
correlations between their ab initio calculations and LFT.26

Table 4 presents the lowest 10 energy levels calculated using
their parameters and a geometrical model, which to the best of
our knowledge, corresponds exactly to theirs. Considering the
simplicity of our theory, the differences from both LFT and ab
initio calculations are small, reaching only 10% in the higher
levels.
We have demonstrated that the first-order spin−orbit

interaction is the largest term in the spin−orbit interaction
and it is improper to assign the symbol D to the total spin−
orbit interaction. Thus, eq 1 is not a good representation of the
ground state. It is unfortunate that many workers came to
assume that the spin−orbit interaction has no zero-order term
when the big computer programs were calculating it. We are

Figure 4. Simulated EPR spectrum for distorted tetrahedral d6 with a2

= 0.3786 with B1 parallel to z (B0). Red line is for Gaussian broadening
and black for Lorentzian broadening. Line width is 300 G in each case.
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gratified that our simple theoretical approach was better than
we expected.
We now go on to use it to learn more about the nature of the

EPR spectrum and the electron−nuclear hyperfine interactions
in these systems.
Spin Hamiltonian for the Ground State. A spin-

Hamiltonian that represents the ground state doublet has
been proposed:23,34

β= + Δ ++ −g BS S S
48

( )e z
4 4

(13)

with the spin functions |MS = ±2⟩. The first term is the Zeeman
interaction that has no x and y terms, as has been found
experimentally in these systems. The second term is just the
zero-field splitting of the ground state doublet. It would seem
that one could represent it by the term (1/4)ΔSz, but this
would not give the quenched spin states that are predicted by
our theory when the Zeeman interaction is less than Δ.
Equation 13 is valid only when the first-order spin−orbit
interaction is much larger than the second-order contributions,
which is true for the systems considered here. If the first-order
spin−orbit interaction is small, then eq 1 prevails.
The solution for eq 13 is in the Supporting Information,

which gives the following equation for the energy difference in
the doublet:

β θ νΔ = Δ + =E g B h16 cose
2 2 2 2 2

0 (14)

where θ is the angle between B and the z axis and ν0 is the EPR
frequency. If Δ is greater than hν0, no EPR can be seen until B
is large enough to make (Δ2 + 16g

2βe
2Bstart

2 )1/2 > hν0, where Bstart
is the minimum field value to allow onset of an EPR signal. In
our earlier discussion of the spin state, we found that the
highest intensity of the EPR signal occurs at fields only slightly
larger than Bstart. Thus as Δ increases, the absorption peak
moves to lower fields. This means we can determine Δ from
the position of the field. If Bstart can be estimated, then eq 14
can be solved for Δ:

ν βΔ = −h g B( ) 16 e
2

0
2 2 2

start
2

(15)

In the few simulations we have done, we find a reasonable value
for Bstart to be about 150 G (15 mT) below the first derivative
peak in the EPR spectrum. The best method is to create a
simulation program from eq 14. Of course, one has to know the
g value. This can be done by recording EPR spectra at multiple
frequencies so that different Bstart values are determined.
As an example of using the above equations, we will use EPR

spectra given by Andres et al. for (nacnac)FeX, where X = Cl,
CH3.

23 The planar, three-coordinate (nacnac)FeX complexes
do not have C3 symmetry, but it is obvious from the observed
large energy separation of the ground state doublet and the first
excited state that they have a large first-order spin−orbit
interaction. Thus eq 13 will apply. We estimate that Bstart = 145
G for (nacnac)Fe−Cl and 450 G for (nacnac)FeCH3. Equation
15 yields Δ = 0.30 cm−1 for (nacnac)FeCl and 0.23 cm−1 for
(nacnac)FeCH3. Andres et al. used eq 13 and geff to estimate Δ
and obtained Δ = 0.255−0.284 cm−1 for (nacnac)FeCl and
0.03 cm−1 for (nacnac)FeCH3.

23 Unfortunately, their method
broke down for CH3.

The Nuclear Spin-Electron Spin Hyperfine Interaction. The
electron−nuclear hyperfine interaction in these types of Fe(II)
complexes has been detected in magnetic Mössbauer studies
only by measurement of the “internal field”. The interpretation
of the magnetic Mössbauer spectra was based on a theory that
assumed the ground state could be modeled using only a
second-order zero-field spin Hamiltonian. This works reason-
ably well for low to moderate magnetic fields and very low
temperatures but should fail when excited states contribute,
which occurs for Mössbauer measurements at high magnetic
fields and/or higher temperatures than liquid He.
We will not attempt to fully analyze the Mössbauer results

because we have neither the data nor the expertise to do so, but
we will comment on published results not only for the tripodal
thioether complex4 but also on the planar three-coordinate
complex of Andres et al. because they also reported magnetic
Mössbauer data.23

We will begin by calculating the hyperfine interaction
relevant for these C3 systems. This interaction in general
consists of three terms which are commonly represented by the
operator:35

∑

∑

κ

β β

= − ·

− · − · ·

+ ·

−

P s I

g g r s I s r I r r

P L I

[ ( ) 3( )( )]

( )

i
i

e N N e
i

i i i i i i

IS

2 3

(16a)

where

Table 4. Energies of the 10 Lowest Energy Levels (in cm−1)
of 5Eb for [Fe(tpa

t‑Bu)]−

level no.
(symmetry
label in
D3*)

a

energy from
our 5D-based
calculationb

energy from ab
initio (NEVPT2)

calculationc

energy from LFT
calculation based on
NEVPT2 calculationd

1, 2 (A1, A2) 0 0 0
0.006 0.001 0.078

3, 4 (E) 77.4 83.4 80.1
77.4 83.5 80.1

5, 6 (E) 159.8 168.2 171.2
159.8 183.2 171.2

7 (A1) 235.7 259.2 247.1
8 (A2) 261.7 300.1 308.2
9, 10 (E) 342.7 389.1 390.0

342.7 389.2 390.0
aSymmetry label in D3* given to provide correspondence with
Atanasov et al.26 bCalculation using 5D model with a2 = 0.9360 and (in
cm−1): E(Ea) − E(Eb) = 8760, E(A) − E(Eb) = 7430, V2 = 0, λ =
−107. cCalculation done by Atanasov et al.26 dCalculation done here
using the Ligfield program with LFT (AOM) parameters determined
by Atanasov et al.26 as corresponding to (derived from) their ab initio
(NEVPT2) calculation. The parameters (in cm−1) are as follows (see
their Table 6b26): ζ = 494, B = 1213, C = 3372, eσ

eq = 7540 (σ-
bonding to three equivalent, equatorial pyrrolide N donors: Neq ≡ N1,
N1E, N1K), eσ

ax = 2330 (σ-bonding to the axial amine N donor: Nax ≡
N2). We used the molecular structure of this complex as reported by
Harman et al.17 (CSD code: OSUBIO), with θ defined for the AOM
by ∠Nax−Fe−Neq = 82.55° and ϕ set equal to 0° (N1), 120° (N1E),
and 240° (N1K), as the molecule has crystallographically imposed 3-
fold symmetry (space group P213); inclusion of ψ ≠ 0 had no effect in
our model. This calculation gives (in cm−1) E(A) = 7640 and E(Ea) =
8510 − 9400 (mean energy 8970), however, with ζ = 0, one obtains
E(A) = 7429.0 and E(Ea) = 8760.5; values identical to those given in
Table 4 of Atanasov et al.,26 which suggests that our AOM is
equivalent to theirs. The complete LFT results are given in Table S5
(Supporting Information).
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β β= ⟨ ⟩−P g g re N N e
3

av (16b)

The first term is the Fermi contact interaction between
electronic and nuclear spins and κ is a parameter for its
magnitude. The second term is the dipolar interaction between
the electronic and nuclear spins. The third term is the nuclear
spin−orbit term, which is of secondary importance in systems
with a ground state with no angular momentum (“quenched”)
but is a dominant term when the ground state possesses angular
momentum (“unquenched”). When there is a well separated
doublet ground state in a system that really has S > 1/2, it is
common to treat it as an effective S′ = 1/2 system with an
effective geff value. Thus for the two cases we are considering,
the geff value is 8−10. For an S = 1/2 system, the two hyperfine
parameters are calculated from the two equations.

ψ ψ

ψ ψ

= − ⟨ | ′ | ⟩

= + ⟨ | ′ | ⟩
− −

⊥ + −

A

A

2 ( ) ,

2 ( )

z

x

IS

IS (17)

in which the ′IS operator is the LS operator with the loss of
the appropriate Iz or Ix operator. Thus, for A∥ we use the
operator:

∑κ β β θ′ = − − −

+

−PS g g r s
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( ) ( ) (1 3cos )z z e N N e
i

i zi

z

IS
2 3

(18)

to give the following equation for A∥:

ψ ψ
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(20)

Examination of the coefficients in Table 3 shows that at low
magnetic fields, each state in the ground state doublet, Ψ±, has
equal amounts of ±2 spin giving no net spin and therefore A∥ is
also zero. However, A∥ rapidly becomes larger in magnitude as
the field becomes larger than the zero-field splitting of the
doublet. Because A∥ depends on the magnetic field, we have
used our program to calculate it at 8.0 T, which is the external
magnetic field at which the Mössbauer studies were done.4 For
a2 = 1.0 and B = 8.0 T, eq 19 becomes

κ

κ

= − − +

= − +

A P P P

P P

3.9900 0.2846 1.8043

3.9900 1.5595 (21)

and for a2 = 0.3786

κ

κ

= − + +

= − +

A P P P

P P

3.9882 0.2456 1.4295

3.9882 1.6751 (22)

Popescu et al. reported a value of 24.6 T for A∥ in their
elongated complex and used the value of P = 68 MHz or 49 T

for their analysis.4 Equation 22 thus yields κ = −0.126. Andres
et al.23 reported an A∥ = 41 T for their planar triangular
complex for which eq 21 yields κ = 0.181.23 These κ values are
comparable to values found in other first row transition metal
complexes.35 The theory presented here easily explains why
Andres et al.23 found much larger internal fields in their
complexes than did Popescu et al.4 It is due to the large nuclear
spin−orbit term for the planar three-coordinate complex.
Our theory finds that for magnetic field values below 1 T,

there is no Zeeman splitting when the magnetic field is in the x
or y direction and the spin states are mixed as they are at zero
field. It follows, therefore, that there is no hyperfine interaction
and A⊥ is zero. For the case of a2 = 1.0 this continues even up
to 10 T and explains why Andres et al. found no evidence of
any internal field in the x direction even at an external field of 8
T.23 However, for a2 = 0.3786, a weak Zeeman interaction is
seen due to admixture of the MS = ±1 states from the first
excited doublet states, which explains why Popescu et al. were
able to detect small internal fields at 8 T applied in the x
direction.4

There are two points to be noted here about the value of A∥:
(1) the largest magnitude component is the angular
momentum term which is positive for both the elongated
complex and the compressed complex, (2) the dipolar term is
negative for compressed complexes and positive for elongated
complexes. The contact term is basically −4κP due to the
doublet state being an MS = ±2 state (a true S = 1/2 state
would have a contact term of −κP). The problem of earlier
analyses of the magnetic Mössbauer spectra of these complexes
resulted from their assumption that the ground doublet was the
result of zero field interaction, which could be treated as an
effective S′ = 1/2 system with gx values different from zero.
They further assumed that the hyperfine Hamiltonian terms
were identical in behavior to those found in true S = 1/2
systems. That is, they would not change in value with B, the
contact term would be isotropic, the dipolar term would
average to zero, and the angular momentum contribution
would be second-order in magnitude. None of this simple
behavior was the case here, where all interactions contribute
only to the z hyperfine term.
Analogously to the situation here, an anisotropic Fermi

contact term has been detected in NMR studies of uranocene
([(cot)2U], U(IV), 5f

2),36 which has even higher symmetry
than the complexes studied here, namely an 8-fold symmetry
axis. Uranocene has a 3H4 ground term and the ground state is
a doublet state with MJ = ±4, which is thus similar to the 5D
systems considered here. It also has a magnetic moment only in
the z direction.

■ CONCLUSIONS
We started this work because we were concerned that the S = 2
spin Hamiltonian (eq 1) is not appropriate for d6 tetrahedral
systems with a C3 symmetry axis and a large angular
momentum in the ground state, despite its popularity. This
equation becomes inappropriate when the separation between
the ground state doublet and the first excited state is of the
same order of magnitude as the spin−orbit interaction
constants. We have also shown that the habit of many
investigators in the field to assign the total spin−orbit
interaction to the D term of the zero field Hamiltonian is
wrong and contrary to the definition of the parameters D and E.
For Fe(II), this applies to systems when the first excited state is
greater than 20 cm−1. We expected the source of the high
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energy for the first excited state to be due to the first-order
spin−orbit interaction, which appears to have been ignored by
most investigators of these complexes. The work above
demonstrates that we were correct in our assumptions.
The simple model we developed starting with the 5D free-ion

ground state for high-spin 3d6 Fe(II) (and 3d4 Fe(IV)) turned
out to be very good in predicting the energies of the 10 levels in
the 5E ground state. At least the results were close to the values
given by two more comprehensive computer programs. The
success of our simple theory is primarily due to our decision to
start our calculation with Slater wave functions made from
atomic d orbitals that already have C3 symmetry. The shapes of
these orbitals depend on the parameter a, which is determined
by the bond angles. Thus the magnitude of the first-order
spin−orbit interaction is dependent on the bond angles, which
are due to the nature of the bonds. The angle between the bond
along the z (C3) axis and the three other bonds must be
between 99° and 118° to have a first-order spin−orbit
interaction less than 30 cm−1, at which point the second-
order terms become important. Outside 99−118°, the first-
order spin−orbit interaction becomes dominant.
The Zeeman splitting from an applied magnetic field is also

included. Two representative cases are considered: a four-
coordinate complex of type L3FeX (L3 = tridentate ligand, X =
CH3) with nearly ideal C3v symmetry and a complex of type
L4Fe (L4 = tetradentate ligand) of C3 symmetry where the
Fe(II) atom is close to the plane of three equatorial N atoms of
L4. The method used here reproduces the EPR spectra reported
for these complexes and the magnetic Mössbauer results for the
L3FeX and planar L2FeX (L2 = bidentate ligand) complexes
We extended our theoretical calculations to the nature of the

EPR spectrum and the hyperfine interaction. The EPR
spectrum had previously been simulated using only eq 1,
while the hyperfine interaction was assumed to be the same as
found for systems with no first-order angular momentum.
In light of our success in using the C3 d orbitals in the D

ground state, we believe it would also be useful to re-examine
Jesson’s work on systems with the F ground state,37 such as d7

of Co(II), using these orbitals. Many researchers have also
ignored the first-order spin−orbit interaction in these systems
and assumed a zero-field spin Hamiltonian instead.
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