
The μ3 Model of Acids and Bases: Extending the Lewis Theory to
Intermetallics
Timothy E. Stacey and Daniel C. Fredrickson*

Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706, United States

*S Supporting Information

ABSTRACT: A central challenge in the design of new metallic
materials is the elucidation of the chemical factors underlying the
structures of intermetallic compounds. Analogies to molecular
bonding phenomena, such as the Zintl concept, have proven very
productive in approaching this goal. In this Article, we extend a
foundational concept of molecular chemistry to intermetallics:
the Lewis theory of acids and bases. The connection is developed
through the method of moments, as applied to DFT-calibrated
Hückel calculations. We begin by illustrating that the third and
fourth moments (μ3 and μ4) of the electronic density of states
(DOS) distribution tune the properties of a pseudogap. μ3 controls the balance of states above and below the DOS minimum,
with μ4 then determining the minimum’s depth. In this way, μ3 predicts an ideal occupancy for the DOS distribution. The μ3-
ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and
that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity
which classifies systems that are electron-poor relative to the μ3-ideal as μ3-acidic, and those that are electron-rich as μ3-basic. The
reaction of μ3 acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize
the μ3 acidity or basicity of the reactants. This μ3-neutralization is traced to the influence of electronegativity differences at
heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ3-acid/base interactions in intermetallic
phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl
type, and structural trends within the Ti−Ni system.

■ INTRODUCTION
The structural chemistry of intermetallic phases is expanding at
a rate far exceeding the development of conceptual models for
rationalizing this diversity or guiding their crystal structures.
And yet, there are tantalizing hints that the same chemical
factors as in molecular chemistry (the steric effects, electron
counts, and electrostatic interactions that form the basic
vocabulary of molecular stability and reactivity) are also at
work in intermetallic structures.1−24 These parallels are
exemplified by the Zintl concept: the notion that when
intermetallic phases form between elements with sufficiently
large electronegativity differences, the resulting structures will
attain closed-shell electron configurations on the atoms through
ionization and covalent bond formation in accordance with the
octet or Wade−Mingos rules.25−27 Many intermetallics,
however, lie outside of the Zintl phase family. Indeed, a fruitful
area for exploratory synthesis has been the field of polar
intermetallics,28−35 in which combinations of elements with
increasingly small electronegativity differences are probed, and
the geometrically identifiable localized bonds of the Zintl
phases vanish into a broad range of densely packed structures.
To illustrate the diversity of these phases (and the challenges

of their analysis with theory), we show in Figure 1 a sampling of
structures occurring in just one binary phase diagram: the
technologically important Ti−Ni system.36 Here, phases form

at three compositions: Ti2Ni, TiNi, and TiNi3.
37 TiNi adopts

the CsCl type at temperatures above 170 °C (a lower-
symmetry variant is obtained upon cooling),38 while TiNi3
forms as an ordered hcp/fcc intergrowth structure; both are
variations on simple sphere packings with little hint of localized
bonding. The Ti2Ni phase crystallizes in a significantly more
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Figure 1. Structures of three binary phases in the Ti−Ni system:
Ti2Ni, TiNi (ht), and TiNi3.
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complex structure in which two substructures of diamond
topology interpenetrate each other, one based on vertex-sharing
stella quadrangula (blue), the other on face-sharing octahedra
(pink). None of these structures can be rationalized using the
Zintl concept.
For such intermetallic phases, the connections to molecular

bonding schemes are far from mature, but tremendous progress
has been made. Some of this progress has been conceptual, as
in interpretation of the Bloch wave functions and band
structures of periodic solids as extended molecular orbitals
(MOs) and MO diagrams, respectively.39−42 Other advances
have been in our techniques for analyzing the output of
electronic structure calculations in terms of chemical bonding.
Examples include the development of the Crystal Orbital
Overlap and Hamiltonian Populations (COOP and
COHP),43−45 the Electron Localization Function and Indicator
(ELF and ELI),46−50 and the bond critical point analysis
component of the Quantum Theory of Atoms in Molecules
(QTAIM).51 The theoretical studies employing such techni-
ques and others commonly associate structural stability with
density of states (DOS) minima at the Fermi energy (EF),
reminiscent of the large HOMO−LUMO gaps of stable
molecules, and often seen for the more polar Zintl phases.
What underlies this connection?
In this Article, we will see that the notion of closed-shell

configurations can be extended to these less-polar intermetallic
phases. In moving away from the Zintl phases, however, we will
need to abandon our focus on localized bonding features and
pursue a connection to another concept in molecular bonding:
the Lewis theory of acids and bases.52,53 Using the Method of
Moments and simple Hückel calculations (calibrated to attain
quantitative agreement with DFT results), we will see that the
elemental phases of the first-row transition metals can be
naturally categorized according to how well their electronic
DOS curves are suited to their electron counts, and that parallel
features can be perceived in the electronic structures of Lewis
acids and bases. In pursuing this connection, the diverse array
of intermetallic structures formed by first row transition metals
will emerge as a variety of acid−base adducts. In this picture,
band gaps or pseudogaps emerge at the EF in a process similar
to the widening of the HOMO−LUMO gap during a Lewis
acid−base interaction.

■ HOW MOMENTS SHAPE THE ELECTRONIC DOS
In seeing how acidity and basicity might extend to metal−metal
interactions, we will need to take a different view of how
geometry and electronic structure are connected than the
association of electron counts with specific bonds or clusters.
Such a connection is provided by the method of mo-
ments,40,54−56 as applied to simple Hückel calculations.57,58

The method of moments focuses on the relationships between
the electronic density of states (DOS) distribution, and its
moments

∫μ =
−∞

∞
E E EDOS( ) dn

n
(1)

which are quantities that measure various aspects of the
distribution’s shape.
For simple Hückel calculations, the moments of the DOS

curve play the role of intermediary between the form of the
DOS distribution and molecular geometry. The simplicity of
the Hückel Hamiltonian allows for the moment μn to be
expressed not only through the integral defined above (Figure

2, right), but also as a sum of products of Hamiltonian matrix
elements (Figure 2, left). The latter equation corresponds to a

sum over closed n-fold paths of orbital interactions within a
crystal structure, and allows for the μn values to be calculated
from knowledge of the structure, without explicitly diagonal-
izing the Hamiltonian and calculating wave functions.
The ability to reconstruct a DOS curve from its moments

values using any of a variety of moments inversion methods
completes the bridge between geometry and the form of the
DOS curve.56,59−62 This bridge has been frequently applied to
correlating differences of stability to the DOS moments, and
ultimately to the structural features that underlie the differences
in the moments.63−67

In this Article, we will apply the method of moments to a
different question: For a given electron count, what are the
optimal values of the moments of a DOS curve? The answer to
this question is closely connected to how the moments relate to
the shape of the DOS distribution. A DOS curve is, in fact,
completely determined by its sequence of moments, {μ0, μ1, μ2,
..., μ∞}.

56 While this is an infinite sequence, experience has
shown that insights into the relative stabilities of competing
structures can often be qualitatively assessed with only the five
lowest order moments, μ0−μ4.

63,65−67 These low order
moments will be the focus of this paper.
Of these low order moments, the first three, μ0−μ2

correspond to simple statistical quantities.40 The zeroth order
moment

∫μ =
−∞

∞
E EDOS( ) d0 (2)

is simply the total area under the DOS curve. If this is
normalized to 1, the first moment and second moments

∫μ =
−∞

∞
E E EDOS( ) d1

1
(3)

and

∫μ =
−∞

∞
E E EDOS( ) d2

2
(4)

become the average energy of the DOS distribution and the
variance of the distribution around E = 0, respectively. In
essence, μ0−μ2 correspond to properties for the x and y axes for
the DOS plot: μ0 sets the scale along the x-axis, μ1 determines
the location of the origin along the y-axis, and μ2 controls the
scale along the y-axis. Standardizing these values to μ0 = 1, μ1 =
0, and μ2 = 1 allows us to focus on the roles that higher-order
moments play on the DOS shape. These adjustments mean that
integrated DOS values range from 0 for an empty band
structure to 1 for a completely filled one, while energies are

Figure 2. Link provided by the moments (μn) between the geometry
of a structure and its simple Hückel density of states (DOS)
distribution.
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measured relative to the average for the DOS curve in units of
the standard deviation for the distribution, σ, rather than more
familiar units such as electronvolts or Hartrees.
The higher moments μ3 and μ4 determine more significant

characteristics of the shape of the DOS curve. This is illustrated
in Figure 3 with a sequence of DOS curves with differing values

of these two moments. The curves are arranged in a 3 × 4
matrix, with the three rows showing series of curves with μ3
values that are greater than, equal to, or less than zero. When μ3
= 0 (middle panels), the DOS curve is symmetrically
distributed around the average. As μ3 shifts away from zero,
the DOS curve begins to exhibit asymmetry. For μ3 > 0 (top
panels), the bulk of DOS distribution moves below the average,
with a small number of states moving to much higher energies
to maintain the zero average energy. For μ3 < 0 (bottom
panels), the reverse occurs with largest DOS peak now
appearing above the average energy. In this way, μ3 can then
be seen to tune the balance between the numbers of low- and
high-lying states.67,68

μ4 plays a different role in shaping the DOS curve. This role,
however, is obscured by the dependence that the raw fourth
moment has on the preceding lower order moments.67 As is
discussed in ref 67, this dependence can be removed by taking a
modified form of μ4 known as kurtosis (κ): κ = μ4 − μ3

2 − 1
(when μ0 through μ2 are standardized; see ref 67 for the full
unstandardized form). At a high κ value (right panels), the
distributions appear as single broad peaks, with the degree of
asymmetry about E = 0 being determined by μ3. As the κ is
lowered, the single broad peaks become resolved into a pair of
increasingly narrow peaks, with a gap or pseudogap appearing
between them.67,68 At κ = 0, the DOS distribution reduces to a
pair of δ-functions whose relative heights are determined by
μ3.

69

In summary, μ3 tunes the balance between the numbers of
low energy and high energy states, while κ dictates the depth of
a DOS minimum separating them. This can be rephrased in a

simple, chemical fashion: μ3 and κ dictate the character of a
DOS gap or pseudogap. μ3 determines its position, κ its depth.

■ OPTIMIZING μ3 AND κ TO ELECTRON COUNT
The observation that μ3 and κ control the position and depth of
a DOS pseudogap suggests that these variables should be
closely associated with stability of a phase as a function of
electron count. This leads us to a simple question: For a given
electron count, what are the optimal values of μ3 and κ?70 A
pragmatic way of finding the best shape parameters is to choose
an electron count and examine the ability of the DOS
distribution to stabilize these electrons as a function of μ3
and κ. This can be done with the following steps. First, we use a
moments inversion scheme60,71 to construct DOS curves for a
series of μ3 and κ values (for technical details see the
Supporting Information). We then populate each of the DOS
distributions to the prescribed band-filling, and compare their
total energies (Etot).
A vivid way of making this comparison is to plot Etot as a

function of μ3 and κ, as is illustrated in Figure 4 with a contour

map for a 50% band-filling. The landscape of the Etot(μ3, κ)
function has a simple form: The map is dominated by a deep
minimum (black) at the left of plot corresponding to the point
μ3 = 0.0, κ = 0.0. The rest of the terrain funnels into this
minimum.
The form of this contour map can be understood by

inspecting the shape of the DOS distributions and the position
of the EF at a representative sample of points. At the global
minimum (Figure 4a), the DOS curve consists of a symmetric
pair of delta functions, as expected for μ3 = 0 and κ = 0. At the
50% occupation, the EF lies between these peaks. This clear
separation between low-energy filled states and high-energy
empty ones is expected to be highly favorable.
Upon moving away from μ3 = 0 and κ = 0, the situation

becomes less ideal. Increasing μ3 past zero (Figure 4b) shifts
the lower peak to a higher energy value as it accommodates a
larger number of states while leaving μ2 constant. The
placement of EF inside this peak is consistent with the fact
that these additional low energy states have been left

Figure 3. Influence of the third moment (μ3) and kurtosis (κ) on the
shape of a DOS distribution. A comparison of DOS curves with
varying values of μ3 and κ (but equal values for all lower moments)
illustrates that μ3 determines the balance in the numbers of states
above and below a DOS gap or pseudogap, while κ controls how
pronounced the gap is.

Figure 4. Total energy as a function of μ3 and κ for a half-filled DOS
distribution. The form of the DOS curve is given in the left and right
margins for the points (a) μ3 = 0, κ = 0, (b) μ3 > 0, κ = 0, (c) μ3 < 0, κ
= 0, (d) μ3 = 0, κ > 0, (e) μ3 > 0, κ > 0, and (f) μ3 < 0, κ > 0. The total
energies in the plot range from −0.50 σ (black) to −0.10 σ (white).
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unoccupied. Decreasing μ3 below zero leads to a similarly
inefficient distribution of states (Figure 4c). The shrinking of
the low energy peak forces some electrons to occupy states in
the upper peak.
Looking at how the results change as we move away from κ =

0 shows that κ plays a different role in determining stability. If
we begin at the μ3 = 0, κ = 0 minimum, and increase κ (Figure
4d), the band gap shrinks as the higher- and lower-energy peaks
broaden. This shrinkage forces some electrons to populate
states at higher energy levels closer to the EF, leading to an
increase in Etot. This is destabilizing, as is evident in the
lightening of the colors of the contour map on moving from the
minimum to the right. A different result, however, is obtained if
we begin at μ3 values away from the minimum. Along both the
μ3 = 1 and −1 lines (Figure 4e,f), increased κ leads to a
broadening of the partially occupied peak, with the occupied
states at the bottom of that peak being stabilized with no
energetic cost incurred by raising the energies of the
unoccupied states at the top of the peak. Increased κ is now
stabilizing, as can be seen in the darkening of the color on
moving to the right along these lines.
The energetic consequences of the peak broadness governed

by κ can now be inferred: Whereas μ3 determines the optimal
electron count for a distribution, κ tunes the magnitude of this
preference. For κ = 0, the preference for the ideal electron
count is sharpest, while moving to larger κ values dulls this
preference.
These conclusions extend to other band-fillings (BFs). In

Figure 5, we plot contours for a range of percent BF from 5% to

95%. These have similar appearances to that presented for BF =
50%, with each having a minimum along the κ = 0 line.
However, the position of this minimum changes along the μ3-
axis with the value of BF. At BF = 5% the minimum occurs at
about μ3 = −4. As BF is increased, the minimum ascends the
μ3-axis, passing through μ3 = 0 at BF = 50%, and reaching μ3 =
+4 at BF = 95%. We also note that the minimum is relatively
shallow at high and low occupancies, and becomes deepest at
BF = 50%. This reflects the larger range of possible total

energies for a half-filled DOS distribution than for nearly filled
or vacant ones. Indeed, the corresponding surfaces for BF = 0%
and 100% are flat.
From the contour plots in Figure 5 several clues to the

question of the optimal μ3 and κ values for a given electron
count are evident. For each electron count a minimum appears
in the Etot(μ3, κ) surface, corresponding to these optimal values.
The μ3 value of this minimum increases monotonically as the
occupation is increased, and its κ value is always zero.
The observation that the minimum invariably occurs at κ = 0

leads to considerable simplification. With κ = 0, the DOS
distribution simply consists of two δ-functions (Figure 6a). As

is demonstrated in the Supporting Information, the minimum
Etot is obtained for the μ3 value that makes the fraction of states
in the lower DOS peak equal to BF so that the EF separates the
two peaks. In the process of proving this intuitive result,
equations emerge relating the BF to the μ3 and Etot values at the
minimum:

μ = −
−

2BF 1

(BF BF )
3 2 1/2

(5)

= − −E (BF BF )2
tot

1/2
(6)

These equations encode simple relationships between BF
and the ideal values of μ3 and Etot as is shown with graphs in
Figure 6b,c, respectively. The curve of optimal μ3 shows a
monotonic increase in μ3 with BF, with μ3 reaching −∞ and
+∞ at the limits of BF = 0% and 100%, respectively, and a
slightly upward-running linear region at intermediate BF values.
The curve provides a direct translation between BF and its ideal

Figure 5. Total energy of a DOS curve as a function of μ3 and κ at a
series of band-filling (BF) values between 5% and 95%. Across the
plots, the energies range from −0.50 (black) to −0.01 σ (white).

Figure 6. Solution to the question of the optimal μ3 and κ values for a
given band-filling (BF). (a) The DOS curves corresponding to the
minima in the total energy function, Etot(μ3, κ), for a series of BF
values. In all cases the minimum occurs at κ = 0, with the μ3 value
increasing monotonically with the BF value. (b) Curve of the ideal μ3
values for a DOS distribution as function of BF. (c) The Etot value at
the minimum as a function of BF. Roman numerals mark
corresponding points in the three panels.
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μ3 value. In fact, one can reverse the relationship to obtain the
ideal BF as a function of μ3:

μ

μ
= +

+
BF

1
2 2 4

3

3
2

(7)

From this equation, the monotonic increase of the ideal BF
with μ3, and its value of 1/2 at μ3 = 0 can be confirmed.
The connection between BF and Etot has a similarly

uncomplicated form. A plot of the ideal total energy as a
function of BF is shown in Figure 6b. The plot has the shape of
the letter “U” or half-pipe skateboard ramp with Etot being zero
at the filled and empty limits, and ballooning downward to a
rounded minimum at 50% occupancy. This shape represents
the strong potential for bonding stabilization for half-filled
systems of orbitals, and the absence of bonding stabilization for
completely filled or empty systems.
With the above equations and the plots in Figure 6, we have

come to a solution of the question of the optimal values of the
μ0−μ4 moments for a given electron count. The optimal μ3
value is strongly dependent on the electron count, and
increases from −∞ to +∞ as the DOS distribution is
populated. The ideal κ value, on the other hand, is uniformly
zero. This leads to the largest possible band gap between filled
and unfilled levels.
These results yield predictions of the optimal μ3 for the

electron count of a phase. When are these predictions expected
to be obeyed by experimentally observed compounds? A look
through the DOS curves in the figures above helps answer this
question. Curves generated from the moments μ0−μ4 have a
limited range of forms, extending from single broad peaks (high
κ) to sharp bimodal distributions (low κ). Additional flexibility
is provided by the possibility of the curve being either nearly
symmetric (small |μ3|) or asymmetric (large |μ3|). A low-order
moment model of this form will thus not be able to reproduce
the DOS distribution for a complicated system involving
interactions between orbitals centered at many different energy
levels.
Instead, this method would be expected to apply best to a

system with a very limited basis set of valence orbitals whose
interactions lead to a distinct set of bonding and antibonding
levels. The success of the above analysis in predicting μ3 values
from electron count or vice versa will depend on our ability to
isolate the essential orbital interactions underlying stability. We
will see in the following that such severe simplifications lead to
a surprisingly fruitful view of bonding in intermetallic phases.

■ μ3 OPTIMIZATION IN THE ELEMENTAL PHASES OF
THE TRANSITION METALS

With the relationships between the electron count populating a
DOS curve and the curve’s ideal values for μ3 and κ in hand, we
can now evaluate how well the electronic structures of metals
and intermetallics achieve these ideal moment values. As we
described above, the predictions of the low-order moment
model are expected to be best obeyed by systems governed by
interactions between valence orbitals centered over a narrow
range of energies. Such are provided by the transition metal
elements, whose DOS curves are dominated by a relatively
dense block of states arising from the valence d orbitals. Indeed,
in one of the early applications of the Method of Moments,
Burdett and Lee demonstrated that the trend in the preferences
for close-packed (hcp or fcc) versus bcc structures for the d-
block of the periodic table could be well-reproduced with a d-

orbital-only model using moments up to μ4.
63 Other studies

have shown that the d-valence shell is the most important for
determining the geometrical structure of transition metal
alloys.72,73 The precedents for using a d-only model for
understanding the electronic structure of transition metal alloys
also extend to surface chemistry.74

How well are the moments values for the DOS curves of the
elemental phases of the transition metals optimized for their
electron counts? To answer this, we perform Hückel
calculations on each of the 3d metals using an spd basis set,
the parameters of which are optimized against the results of
GGA-DFT calculations.75,76 We then read the occupancy of the
3d orbitals for each phase (consistently near the total number
of valence electrons minus one electron/atom for the sp states,
as assumed in ref 63), and truncate the Hückel calculations to a
d-only, low order moment model as follows: we first extract the
Hamiltonian matrix elements (Hij’s) for interactions among the
3d orbitals. From these sets of Hij’s we then calculate the
standardized μ3 and κ for each phase, and construct
approximate DOS curves from these values. Finally, we
populate the resulting DOS distribution to the 3d orbital
occupancy from the full Hückel calculations to obtain an
approximate total energy for the system of d orbitals.
The results of this analysis are presented in Figure 7. The

total energies obtained for each of the 3d elements are

represented with dots plotted along with the curve of ideal total
energies versus band-filling, the “U”-shaped curve of Figure 6c.
The point corresponding to each element hovers above the
curve of ideal values, and the sequence of points on going from
left to right on the periodic table roughly follows the shape of
the curve. The placement of the points at higher energy than
the ideal value is not unexpected: the ideal values correspond to
DOS curves built from two δ-functions. This is far from realized

Figure 7. Plot of the μ0−μ4, d-only total energy (Etot) versus band-
filling (BF) for the first row transition metals Sc−Cu in their elemental
phases relative to the ideal values (black curve). From each (BF, Etot)
point a line is drawn to the position on the ideal curve corresponding
to the optimal Etot and BF calculated from the μ3 of the DOS curve for
that atom. Color is used to indicate the degree of μ3 acidity for each
site: red for acidic (electron-poor relative to the ideal electron count),
green for neutral (electron count approximately equal to ideal), and
blue for basic (electron-rich relative to the ideal).
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in metallic systems; the κ value for these phases is expected to
be universally higher than ideal.
μ3 turns out to be an easier parameter to optimize. In Figure

7, we represent the deviation of the μ3 value for a phase from its
the ideal value in the following way: we draw a line connecting
a phase’s (BF, Etot) point to the point on the ideal curve
predicted by the μ3 value. The component of that line along the
BF-axis then gives the difference between the actual and ideal
BF values for that element.
The resulting lines in Figure 7 create a “V”-shaped pattern.

The V’s point represents an ideal occupancy of about 44%
shared by all of these elements, despite the differences in crystal
structures that occur across the series (Sc−Ti are hcp; V, Cr,
and Fe are bcc; Co−Cu are fcc; Mn prefers the more complex
α-Mn type under ambient conditions77). As the ideal
occupancy is essentially fixed, the actual occupancies exhibit
different degrees of mismatch from this ideal over the row of
the periodic table. At the farthest left, the elements are electron
deficient relative to the ideal, while those at the right have an
excess of electrons. Near the middle of the series at V and Cr,
the elements are very close to realizing the optimal electron
count.

■ μ3-ACIDS AND BASES: GENERALIZING THE LEWIS
THEORY

From the distribution of (BF, Etot) in Figure 7, we may
conclude that there is little correlation between the μ3 values
for the elemental phases and their electron counts. But what
about their reactivities? The placement of the actual BF values
for Sc and Ti to the left of the ideal value suggests that these
elements could gain stability by either gaining electrons or
engaging in new interactions that tune their μ3 values to
accommodate their lower electron counts. In the same way, the
placement of the (BF, Etot) points for Mn−Cu to the right of
the ideal electron count predicts that the mismatch in electron
count could be soothed by the elements either losing electrons
or engaging in interactions that raise the μ3 value to better suit
their higher electron counts.
The vocabulary of chemistry offers numerous terms for

describing such electron-poor or -rich atoms, such as electron
acceptors/donors or nucleophiles/electrophiles. Over the
remainder of this Article, we will see with increasing clarity
that an analogy to the concept of Lewis acids and bases is
especially productive. Atoms such as Sc and Ti whose electron
counts fall short of the μ3 ideal are in a position to accept
electrons like Lewis acids. We will refer to these as μ3 acids. In a
similar way, Mn−Cu, whose electron counts exceed the μ3
ideal, are poised to donate electrons, just as are Lewis bases. We
will call these μ3 bases. V and Cr, whose electron counts closely
approximate the ideal for their μ3 values are then considered to
be essentially μ3 neutral.
In the Lewis theory of acids and bases, bases are defined as

electron-pair donors, while acids are electron-pair acceptors.78

These characteristics can usually be traced to the presence in
the molecular orbital (MO) diagrams of the species of a high-
lying occupied MO (for bases) or low-lying unoccupied MO
(for acids) whose shape is poised for intermolecular
interactions. The reaction between a Lewis base and an acid
to form a stable adduct is dominated by the interaction between
these frontier orbitals. In Figure 8, we illustrate this process
schematically for the classic example of the formation of an
adduct between NH3 and BF3.

79 The frontier orbitals for these
two molecules are first sketched out separately in panel a, and

then their interaction to form bonding and antibonding MOs is
shown in panel b. Here, the creation of a filled bonding orbital
and a large HOMO−LUMO gap provides the standard account
for the stability of this complex.
An alternative perspective can be obtained, however, if we

follow the projected DOS curves for the Lewis base (B) and
acid (A) orbitals, as well as their μ3’s, during this interaction.
The DOS curves for orbitals A and B before adduct formation
(Figure 8a) each appear as single δ-functions. The standardized
μ3 values for both are zero. This corresponds to an ideal BF
value of 1/2, i.e., one electron/orbital. This ideal BF is far from
the actual occupations: the basic orbital B is occupied by an
electron pair (BF = 1), while the acidic orbital A is empty (BF
= 0). The shapes of the DOS curves for these two orbitals are
clearly poorly optimized for their occupations.
This changes upon adduct formation. The μ3 for orbital B is

raised through the interaction of the higher energy A to help
accommodate its electron excess. This shift in μ3, in
combination with some electron transfer to orbital A, leads to
perfect consistency between the μ3 value for orbital B and its
electron count. The shape of the DOS distribution for orbital A
is likewise optimized. Interaction with the lower energy orbital
B to lower its μ3 and the acceptance of electrons leads to a
match between the μ3 value and orbital occupation. The net
result is that the DOS shapes for both B and A now consist of
pairs of δ-functions, with the lower energy peak completely
filled and the upper peak completely empty. These curves have
achieved both the optimum μ3 and κ for their occupations.

Figure 8. Lewis acids and bases as a specific case of μ3 acids and bases.
(a) A schematic view of the electron pair donor orbital of a Lewis base,
the electron pair acceptor orbital of a Lewis acid, and their projected
DOS (pDOS) curves. The fraction occupations (BFs) of the base and
acid orbitals are too large and too small, respectively, relative to the
ideal counts dictated by their μ3 values. (b) Upon formation of a Lewis
acid−base adduct, the shapes of the pDOS curves and the electron
populations of the orbitals change to achieve an exact correspondence
between the actual and μ3-ideal BF values.
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In the course of Lewis adduct formation, the reactivities of
the acid and base are neutralized from the perspectives of both
the Lewis and μ3 models of acids and bases. As we will see in
the coming sections, the moments-based interpretation of
acidity advances the Lewis theory of acids and bases beyond
simple electron-pair transfer to any interaction which better
sculpts a DOS distribution to its occupancy. This view will be
particularly applicable to the formation of intermetallic phases.
In this translation between the Lewis and μ3-based pictures of
acidity, the large HOMO−LUMO gap of the Lewis adduct
becomes the DOS pseudogap determined by μ3 and κ.

■ μ3-NEUTRALIZATION THROUGH BINARY PHASE
FORMATION

The analogy between the electron deficiency or excess in
transition metal elemental phases and the Lewis acid/base
theory becomes productive in its implication of the possibility
of “neutralization” reactions between μ3-acidic and basic metals.
As a first test of this idea, we now turn to binary phases formed
between the most extreme cases in Figure 7: Sc and Cu, the
atoms of which are 2.7 electrons under and 5 electrons over the
μ3 ideal, respectively. The Sc−Cu phase diagram exhibits
several binary phases, an indication of favorable interactions
between these elements: ScCu (CsCl-type), ScCu2 (MoSi2-
type), and ScCu4 (structure type unknown).
Let us begin with the simplest of these, the CsCl-type 1:1

phase (Figure 9a). Our procedure for analyzing this compound

is similar to that described for the elemental phases above. We
first perform a Hückel calculation on the ScCu phase with spd
basis sets for both atoms (with Hückel parameters optimized to
reproduce the GGA-DFT band structure and projected DOS
curves of ScCu; see Supporting Information), and extract the
occupancies of the d-orbitals for Sc and Cu. Next, we strip
down the basis set to simply the Sc and Cu 3d orbitals, and
calculate the μ3 and κ values for both atoms. Finally, we
construct approximate atomic DOS curves, populate them to
obtain total energies, and compare the calculated and ideal Etot
values, as well as the actual and ideal band-fillings.
The results of this analysis are presented in Figure 9b, where

(BF, Etot) points for both Sc and Cu are connected to the
positions on the ideal U-shaped curve predicted by their μ3
values. The original points for the elemental phases are also
given for comparison. Similarities and differences between the
results for the binary and elemental phases are seen. In terms of
similarities, the band-filling values for both Sc and Cu show
little change on going from the elements to the intermetallic
compound, indicating that at this approximate level of theory
essentially no electron transfer has occurred between the d
orbitals of Sc and Cu. In fact, a consistent feature of the Hückel
calculations presented in this paper is that the d-orbital
occupation for any given atom remains virtually constant on
going from an elemental phase to an intermetallic. In this way,
the low-order moment/d-orbital-only models yield largely
covalent pictures of the bonding in these phases.
Differences occur in the other aspects of the graph. Whereas

the μ3 ideal BF values for elemental Sc and Cu are nearly equal
at about 44%, a significant splitting arises in ScCu. The ideal BF
for Sc has moved to the left all the way from 44% to 11%. This
more than corrects for the electron deficiency calculated for
elemental Sc. An even more significant change is seen in the
ideal BF for Cu, from 44% to 97%. The ideal BF value now lies
essentially under the Cu (BF, Etot) point, such that consistency
between electron count and μ3 value has been achieved. Indeed,
for both Cu and Sc, participation in the CsCl-type phase offers
substantially improved agreement between the level of
occupation of their d orbitals and their μ3 values (and Etot
values closer to the ideal curve).
In Figure 9c, we show a more compact way of displaying

these results. For both Sc and Cu, bars are drawn
corresponding to the number of electrons in excess or
deficiency relative to the ideal number calculated from the
atomic μ3. Bars filled with hashed lines give the electron count
mismatch for the elemental phases, while those drawn with
solid bars show the mismatch for the same element in the
binary phase. Upon the formation of ScCu from its component
elements, Sc goes from being deficient by 2.7 electrons/atom to
having an electron excess of 0.4 electrons/atom. For Cu, the
5.05 electrons/atom excess of the elemental phase is relieved to
a slight deficit of 0.13 electrons/atom in ScCu. During the
reaction Sc + Cu → ScCu, the μ3-acidic and basic characters of
Sc and Cu, respectively, have transformed to being relatively μ3-
neutral. A quantitative measure of this change is the net
neutralization per atom: the average decrease in the mismatch
from the μ3-ideal per atom on forming the intermetallic phase
from its component elements. In the case of ScCu, the net
neutralization is 3.59 electrons/atom.
As the basis of the μ3 acidity concept lies in the third

moment’s control of the position of a DOS minimum, we may
expect that μ3-neutralization will inscribe a signature on the
DOS curves, similar to the large HOMO−LUMO gap seen in

Figure 9. μ3-acidity analysis of the formation of ScCu from its
component elements. (a) The CsCl-type structure of ScCu. (b) A plot
of (BF, Etot) points from μ0−μ4 models for Sc and Cu atoms in their
elemental phases and in ScCu relative to the ideal values (black curve).
See caption to Figure 7 for plotting conventions and the significance of
colors. (c) Bar graphs illustrating the deviation from the ideal electron
counts calculated from the μ3 for atoms of Sc and Cu in their
elemental phases (hashed bars) and in ScCu (solid bars).
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Lewis acid−base adducts. While this can indeed be seen for
ScCu (see Supporting Information), the effect is more clear in
the pairing of elements with less extreme μ3 acidity and basicity,
such as Ti and Fe. In Figure 10a, we plot the (BF, Etot) values

for Ti and Fe in the CsCl-type phase TiFe. The resulting graph
shows features analogous to those obtained for ScCu: while Ti
and Fe appear as a μ3-acid and base, respectively, in their
elemental phases, they achieve nearly perfect neutralization
through the formation of the intermetallic phase.
In Figure 10b, we show how changes in the model Ti and Fe

3d DOS curves underlie this neutralization. For the elemental
phases, both Ti and Fe show bimodal DOS curves, with a DOS

minimum roughly dividing the curves into equal parts. The
ideal BF value of 44% gives a Fermi energy (dotted line) that
lies right in the middle of this pseudogap. The actual
occupancies of the bands (as indicated by the shaded regions)
miss this ideal BF by substantial margins, with the Ti DOS
distribution being under-filled relative to the ideal and that of
Fe being overfilled. Upon forming the TiFe compound, the
weight of the Ti DOS distribution shifts to higher energies,
with only a small minority of states remaining under the
pseudogap. A change in the opposite direction occurs for the Fe
curve: the bulk of the Fe states now lie below the pseudogap. In
this process, the Ti and Fe DOS curves adopt shapes more
consistent with their low and high occupancy by electrons,
respectively. The final curves are reminiscent of the projected
DOS curves of the Lewis acid and base orbitals in the adduct of
Figure 8, re-enforcing the analogy to the Lewis view of acids
and bases.
ScCu and TiFe are but two members of a large family of

intermetallic compounds formed between the first-row
transition metal elements. In Figure 11, we show the results
of applying this μ3 acidity analysis to DFT-calibrated Hückel
models for other members of this family. μ3-Neutralization bar
graphs are plotted for 17 phases chosen to span a wide range of
electronegativity differences, as well as some of the structural
diversity in this family.37,80−116

The phases are first grouped according to their μ3 acid: Sc,
Ti, or V. Each series is then arranged according to the total
number of excess electrons on the μ3-basic atoms in the
compound’s formula relative to the number of deficient
electrons on the acidic atoms. We have adopted this
arrangement in order to emphasize an important trend: for
each acidic element, the acid goes from being underneutralized,
to neutral, and finally to overneutralized as the number of basic
electrons increases. We will return to the theme of matching
the strengths of μ3 acids and bases in optimizing phase stability
in a later section of this Article. For now we will simply note
that all of the phases in Figure 11 are united by a common
theme. In each there is a net neutralization of the atoms
involved. All of these phases can then be viewed as μ3 acid/base

Figure 10. μ3-Neutralization of TiFe in the CsCl-type. (a)
Comparison of (BF, Etot) points for Ti and Fe relative to their μ3-
ideals before and after forming the intermetallic. (b) The
reconstructed DOS curves from the μ3 and κ values for Ti and Fe
before and after intermetallic phase formation. For each DOS curve,
filled states are denoted with shading, and the Fermi energy
corresponding to the ideal BF (EF

ideal) is marked with a dashed line.

Figure 11. μ3-Neutralization bar graphs for a selection of intermetallic phases chosen to sample the compositional and structural diversity of binary
compounds forming between first-row transition metals. The compounds are grouped into three series based on the acid element: Sc, Ti, or V.
Within each series, the compounds are arranged in order of increasing excess electrons per formula unit of the sublattice of the basic element; e.g., in
Sc3Co the Co sublattice has 3.0 excess electrons/Co × 1 Co = 2.1 excess electrons total that require neutralization, which is smaller than that of the
Fe sublattice of ScFe2 (2.1 electrons/Fe × 2 Fe = 4.2 excess electrons). The conventions of the bar graphs follow those given in the caption of Figure
9, except that here the thicknesses of the bars have been made proportional to the stoichiometric coefficient of the corresponding element in the
formula for the compound. The areas of the bars then reflect the total number of excess or desired electrons on the basic and acidic sublattices of the
phases. The structure types for the phases presented are: CaCu5-type: ScNi5; Al3Os2-type: Ti2Cu3; MgZn2-type: ScFe2, TiFe2, TiMn2; MgCu2-type:
TiCr2; AuCu3-type: TiCo3; Al3Ti-type: VNi3; Al3Pu-type: VCo3; MoSi2-type: ScCu2, VNi2; Cr3Si-type: V3Co; and eponymous structure types, the
remaining phases.
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adducts which (with varying degrees of success) have reduced
the electron excess or deficiency of their component elements.

■ ORBITAL ORIGINS OF μ3-NEUTRALIZATION
How does μ3-neutralization arise in these examples of
intermetallic phase formation? The simplicity of the Hückel
Hamiltonian allows a transparent connection between the
crystal structure of a phase and the DOS features related to μ3
acidity. According to the relationships shown schematically in
Figure 2, the moments of the electronic DOS link the shape of
the DOS to structure by being expressible either as integrals
over the DOS curve

∫μ =
−∞

∞
E E EDOS( ) dn

n
(8)

or as sums of products of Hamiltonian matrix elements

∑ ∑ ∑μ = ... H H ...Hn
i i i

i i i i i i
n

n
1 2

1 2 2 3 1
(9)

The connection to geometry is contained in the mapping of
the Hamiltonian matrix elements in the last equation to closed
n-step paths through the structure. In our analysis of μ3-acidity,
we are principally interested in DOS curves for individual
atoms, rather than for the full compound. This is achieved by
limiting the first index, i1, to include only orbitals on the atom
of interest (AOI), i.e., i1 ∈ AOI. The remaining indices, i2, i3, ...,
in, go over all orbitals in the basis set.
Upon standardizing the DOS curve to μ1 = 0, the above

equations simplify substantially. When we limit our basis set for
each atom to include a single degenerate set, such as the 3d
orbitals on a Sc atom, μ1 = 0 for the DOS of the AOI is
achieved by simply adjusting the zero of the energy axis so that
Hii = 0 for that element. The diagonal matrix elements of the
Hamiltonian matrix now measure on-site energies relative to
this new reference point, rather than absolute ionization
energies. As a consequence, all products of Hamiltonian matrix
elements involving in-place steps on atoms of the same element as
the AOI are now zero.
This greatly facilitates the geometrical decomposition of μ3.

μ3 for an atomic DOS curve is calculated as the sum of the
products of Hij’s for closed 3-step paths beginning and ending
on the AOI:

∑ ∑ ∑μ =
∈

H H H
i i i

i i i i i i3
AOI1 2 3

1 2 2 3 3 1
(10)

With Hi1i1 = 0, only two geometrical features contribute to
this summation: (1) 3-fold rings in which i1 ≠ i2 ≠ i3, and (2)
heteroatomic contacts, along which a closed 3-fold path can be
constructed by stepping from the AOI to an atom of a different
element (Hi1i2), stepping in place on that heteroatom (Hi2i2≠0),
and then returning to the AOI (Hi2i1). Both are entirely focused
on the first coordination sphere of the AOI, as it is not possible
to venture further away from the AOI and still return using only
three steps. Upon going from an elemental phase to an
intermetallic compound, changes to the μ3 sums may then be
divided into two classes: changes in the 3-fold ring terms, and
the introduction of the terms from heteroatomic contacts
(which are of course absent in elemental phases).
These two types of changes may be probed separately by

considering a hypothetical process by which the coordination
environment of an atom in an elemental phase is gradually

transformed to that of an intermetallic phase. We begin with an
atom in an elemental phase. Then, in step 1, we change the
atom’s coordination environment to match the atomic
positions of the intermetallic phase while leaving the elements
unchanged, creating an elemental model of a binary compound.
Changes in the μ3 during this step of the transformation
entirely reflect differences in coordination number and bond
topology. Next, in step 2, we adjust the Hii values of the
positions corresponding to heteroatoms in the coordination
environment to represent differences in ionization energy. This
represents the introduction of terms for heteroatomic contacts
into the μ3 summation. Finally, in step 3, we complete the
transformation to the intermetallic coordination environment
by adjusting the Hij values for the heteroatomic contacts
according to the Wolfsberg−Helmholtz approximation.117

In Figure 12a, we apply this process to the formation of the
CsCl-type ScCu phase from elemental Sc and Cu. Between
pictures of the elemental and binary structures at the top and
bottom of the panel, respectively, we show μ3-acidity bar graphs

Figure 12. The orbital origin of μ3-neutralization in ScCu and Ti2Ni.
(a) The μ3 acidity differences for Sc (left) and Cu (right) are followed
along a stepwise transformation from their elemental phases (striped
bars) to their coordination environments in ScCu. Step 1: the
coordination environments are changed to match that of the binary
phase (without the introduction of heteroatoms). Step 2: the proper
ΔHii values are introduced into the coordination environments of Sc
and Cu in the CsCl-type phase. Step 3: the remaining adjustments are
made to complete the transformation to the ScCu phase. (b) The
analogous process for each of the symmetry-distinct sites in Ti2Ni. (c)
The coordination environments of the symmetry distinct sites in
Ti2Ni, shown in the context of the structural motifs highlighted in
Figure 1.
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for each step of the transformation. On going from the
coordination environments in their elemental phases to
elemental models of their coordination environments in the
binary phases (step 1), the bar for Sc shortens slightly while the
Cu bar increases, but the change for both is fairly negligible.
The electron counts for both remain far from the ideal. Upon
introducing the proper ΔHii values into the coordination
environment (step 2), a much larger change in the μ3-acidity
occurs. In fact, in the course of this step both Sc and Cu
overshoot the ideal by a small degree. In completing the
transformation to the binary coordination environments
through adjustments of the Hij values (step 3) a small change
occurs as in step 1. In this final step, the bars have moved a little
closer to the ideal.
This progression of μ3-acidity values suggests that these steps

are not of equal importance. The impact of the change in the
coordination geometry (step 1) and the modifications of the
interaction strengths along the interatomic contacts (step 3) are
dwarfed by that of the introduction of differences in the onsite
energies (step 2). In Figure 12b, the same breakdown is shown
for each of the symmetry distinct sites in Ti2Ni. Ti2Ni is a much
more complicated structure, marking a much more substantial
change from the simple geometries of most elemental metals
than ScCu. Despite this added complexity, the neutralization is
again dominated by the introduction of the ΔHii terms. As is
shown in the Supporting Information, we have performed
similar analyses for a variety of transition-metal-based
intermetallics. These results highlight the key role of the ΔHii’s
(and, more generally, heteroatomic contacts) in μ3-neutraliza-
tion.
The large role played by the introduction of ΔHii values can

be understood by reference to the most familiar of molecular
orbital (MO) diagrams: that of two s-orbitals interacting to
produce a bonding MO and an antibonding MO, as is shown in
Figure 13. When the two s-orbitals are of the same energy
(Figure 13a), each orbital contributes equally to the bonding
and antibonding MOs. The projected DOS distributions for the
two orbitals are then symmetric about the energy of the
original, noninteracting orbitals, Hii. The μ3 value for both
distributions is zero. When we introduce an Hii difference
between the two s-orbitals, this symmetry is lost (Figure 13b).
The bonding MO now contains a larger contribution from the
lower energy s-orbital, while the antibonding MO has a larger
coefficient from the higher energy s-orbital. The resulting DOS
distributions for the lower energy s-orbital are now weighted
more heavily on the lower energy level; this corresponds to μ3
> 0. The DOS distribution for the higher energy s-orbital, on
the other hand, has a larger weight on the higher energy level;
i.e., its μ3 value is negative.
These MO diagrams provide a specific example of a general

rule: when Hii differences are introduced between interacting
atomic orbitals, the μ3 value of the lower energy orbital will
increase, leading to an increase in its ideal electron count. The
μ3 value for the higher energy orbital, conversely, decreases,
with the ideal electron count likewise decreasing. This leads us
to a general principle for μ3-neutralization in transition-metal-
based intermetallics that encompasses the μ3-neutralization
results that we have seen thus far. μ3-Basic atoms, with their
electron excess, are expected to be stabilized by replacing
homoatomic interactions with heteroatomic ones with atoms
with higher Hii values (e.g., lower electronegativity). μ3-Acidic
atoms would then be stabilized by the introduction of atoms
into their coordination environments with lower Hii values

(higher electronegativity). The most fortuitous interactions are
then expected to arise in combinations between relatively
electropositive μ3-acids and relatively electronegative μ3-bases.

■ IMPORTANCE OF MATCHING μ3 ACID AND BASE
STRENGTHS: STABILITY RANGE OF THE CsCl TYPE

Above, we saw that reacting elemental Sc and Cu to form ScCu
almost completely neutralizes their μ3-acidity and basicity. This
was traced to the difference in Hii for the 3d orbitals of these
elements. The resulting connection between ΔHii for pairs of
metals and the μ3-neutralization arising from their reaction can
be used to understand how the picture for ScCu is affected
when Sc or Cu is replaced by a weaker μ3-acid or base,
respectively.
At the top of Figure 14, we show μ3-neutralization graphs for

a series of phases in which the Cu of ScCu is substituted by its
neighbors to the left on the periodic table: ScNi, ScCo, ScFe,
ScMn, and ScCr. Across this series two properties of the μ3-
basic metal change. First, the electron count of the elemental
phase becomes closer to the μ3-ideal (Figure 7); the μ3-basicity
thus decreases as we move left. Second, the electronegativity of
the μ3 base decreases, and as a consequence, the Hii value of the
3d orbitals increases on going from Cu to Mn.
The μ3-neutralization results for ScCu through ScCr reflect

these changes in μ3-basicity and Hii. The largest effect is found
for the neutralization of the μ3 base. Elemental Cu is basic by
4.82 electrons/atom, and reaction with Sc leads to over-
neutralization of 0.13 electrons. As we move from Cu to the
weaker bases to its left, the large changes in μ3-acidity upon
interaction with Sc become increasingly overwhelming. The

Figure 13. Influence of heteroatomic contacts on the μ3 values of
atomic DOS curves illustrated using diatomic molecules. (a) The
interaction between two s orbitals with the same ionization energy
leads to DOS curves for both orbitals that are symmetrically
distributed between the bonding and antibonding levels (μ3 = 0).
(b) The introduction of a difference in ionization energy increases the
μ3 value of the lower energy orbital, while decreasing that of the higher
energy one.
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overneutralization of 0.13 electrons for Cu in ScCu increases to
0.38 for Ni in ScNi, 0.83 for Co in ScCo, 1.37 for Fe in ScFe,
1.88 for Mn in ScMn, and 2.43 for Cr in ScCr. By the time we
reach ScMn and ScCr, the degrees of overneutralization of Mn
and Cr exceed their original basicities. In other words, the Sc
becomes increasingly too strong of an acid for the μ3-bases on
moving from ScCu to ScCr.
These results can be correlated with experimental data on the

existence of CsCl-type phases in binary systems between
transition metals. CsCl-type phases are observed for ScCu,
ScNi, and ScCo, while no such phase occurs in the Sc−Fe, Sc−
Mn, or Sc−Cr systems. The nonexistence of ScFe, ScMn, and
ScCr can be rationalized as due to the overneutralization of the
Fe, Mn, and Cr. The effect of these substitutions is much
smaller on the Sc; the large bandwidth of the Sc DOS
distribution stemming from the diffuse nature of the Sc d
orbitals means that the changes in the base Hii are relatively
unimportant.
We now try replacing Sc in ScCu with less acidic elements.

The left side of Figure 14 presents μ3-neutralization graphs for
ScCu along with TiCu, VCu, and CrCu. Sc in ScCu is already
overneutralized by 0.426 electrons/atom. The lower μ3-acidity
of Ti, V, and Cr causes this overneutralization to increase to
1.42 electrons/atom for Ti in TiCu, 2.80 for V in VCu, and
3.47 for Cr in CrCu. Just as Sc is too strong an acid for Cr, Mn,
and Fe in the formation of CsCl-type phases, Cu is too strong a
base for Ti, V, and Cr. In parallel with this increasing
overneutralization of the acid is a small effect on the base: the
lower Hii values on moving from Sc to Cr leads to slight
decreases in the neutralization of the Cu.
It seems that properly matching μ3 acid and base strengths is

essential for the formation of a CsCl-type phase between these
metals. This is confirmed by μ3-neutralization calculations on
the remaining M1M2 (M1 = Sc, Ti, V, Cr; M2 = Cu, Ni, Co,

Fe, Mn, Cr) CsCl-type structures. In Figure 14, we plot a
structure map for this family with the μ3-acidity of the M1
element plotted along the y-axis, and the μ3-basicity of the M2
metal along the x-axis. Dots are given in this map for
experimentally observed CsCl-type phases. These cluster along
the diagonal from ScCu to elemental Cr. Overlaid on this plot
are contours corresponding to the average magnitude of the
mismatch of the BF value for each atom from the μ3-ideals, a
quantity that may be termed the average residual acidity of the
atoms, calculated for a CsCl-type phase for each M1−M2 pair.
A valley of low residual acidity values can be perceived along
the same diagonal that contains the observed phases. The
structure map confirms that a poor degree of neutralization
correlates well with the nonexistence of a CsCl-type compound.
These results complement earlier studies which trace the

stability range of intermetallic CsCl-type phases to the valence
electron concentration (VEC).118 Each of the experimentally
observed phases indicated in the map exhibit VEC values in the
range 6−7 electrons per atom. The μ3-acidity analysis interprets
this result through the correlation of μ3 acid and base strength
with the group number of the element: taking a step to the left
in the periodic table for the acid is countered by a step to right
for the base.

■ RETURNING TO THE Ti−Ni SYSTEM, THIS TIME
WITH μ3-ACIDITY IN HAND

At the beginning of this Article, we attempted to illustrate the
vast range of structures offered by intermetallic phases with a
look at the diversity present in just one binary system, Ti−Ni.
Having now developed a chemical picture for a driving force
underlying the formation of these phases, we are now in a
position to rationalize some of the structural aspects of the
compounds in this system.
In Figure 15, we show μ3-neutralization bar graphs for the

Ti2Ni, TiNi (CsCl-type), and TiNi3 phases, below pictures of
the corresponding structures. Let us start by considering the
simplest of these compounds, TiNi, keeping in mind the
guideline that the degree of μ3-neutralization is determined by
the balance in the strengths of homoatomic and heteroatomic
interactions. TiNi’s μ3-neutralization bar graph (Figure 15b)
indicates that its Ni atom are almost perfectly neutralized, while
Ti is slightly overneutralized. This high degree of neutralization
indicates that the Ti and Ni μ3-acid/base strengths are well
balanced. In observing this close balance, we might anticipate
that changing the Ti/Ni ratio to form other compounds would
tend to upset this neutralization, either by overshooting the
perfect neutralization of the Ni through the incorporation of
more Ti, or by deepening the overneutralization of the Ti
through the addition of Ni.
One way by which such compounds can cope with these

trends is through their choice of crystal structure. If we increase
the Ti content by moving to the Ti2Ni phase, we can expect
that Ni will have to take on more Ti nearest neighbors as the
ratio of Ti to Ni increases. In order to preserve the stability that
Ni experiences in TiNi the Ni atoms in Ti2Ni maximize their
homoatomic contacts by clustering into Ni4 tetrahedra (Figure
15a), with closer Ni−Ni distances arising here than in TiNi (2.8
vs 3.0 Å, respectively86,119). In this way, the Ni atoms
essentially huddle back-to-back against overneutralization by
the Ti majority. The result is that the Ni atoms in Ti2Ni are
only slightly overneutralized relative to TiNi, despite a doubling
of the Ti content. The Ti atoms, on the other hand, take
advantage of the higher availability of other Ti neighbors to

Figure 14. Contour map of the total residual μ3-acidities calculated for
CsCl-type phases formed between first-row transition metals, as a
function of the μ3-acidity of the elemental phases of the component
acid (y-axis) and base (x-axis). Experimentally observed CsCl-type
phases are indicated in the map with points.37,96−116 Accompanying
μ3-neutralization bar graphs are given for the phases on the top and
left edges of the map, to show trends in the neutralization as the Sc
and Cu in ScCu are replaced with weaker acids and bases, respectively.
Due to the small size of the data set, a cubic spline interpolation was
used to smooth the map. The range of residual acidity values in the
contour plot is 0.2 (dark gray) to 1.9 (light gray) electrons/atom.
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form their own pyrochlore network, which allows the Ti to
reduce its involvement with Ni relative to its coordination
environment in TiNi.
If we move instead from TiNi to TiNi3 where the base is the

majority element, we would expect that Ni would need to
maximize its contact with the Ti atoms in order to maintain as
much of its neutralization as possible. The structure adopted is
an hcp/fcc intergrowth where the first coordination sphere of
Ti is entirely occupied by Ni, with no close Ti−Ti contacts
being present (Figure 15c). The Ti atoms pay a price in this
arrangement, with their overneutralization being increased over
that in TiNi. However, as Ti is now outnumbered 3 to 1, the
net neutralization for the phase is still positive.
In summary, the series of crystal structures observed across

the Ti−Ni phase diagram can be rationalized as tuning the
balance of Ti−Ti, Ni−Ni, and Ti−Ni interactions with
changing composition in order to maximize the μ3-neutraliza-
tion of its elements. This conclusion has been reached through
qualitative reasoning (of the kind used at the outset of many
synthetic experiments), but with further developments using
the Method of Moments a more quantitative foundation could
be laid. We plan to illustrate this in an upcoming article tracing
structural trends in intermetallics to the optimization of μ3-
acid/base interactions.

■ CONCLUSIONS

In this work, we have used the Method of Moments and DFT-
calibrated Hückel calculations to extend the molecular bonding
concept of Lewis acids and bases to the domain of intermetallic
phases. In this generalization, we move from considering the
donation and acceptance of whole electron pairs to the broader
case of interactions between atoms with electron counts above
or below the optimum, as determined from the μ3 of the
projected DOS curve. The result is categorization of elemental
metals into μ3 acids and bases, whose electron counts are below
and above the μ3 ideal, respectively. Using the first-row
transition metals and the compounds formed between them as
examples, we saw that the intermetallic phase formation
frequently reduces these deviations for the atoms involved,
and that the matching of the acid−base strength plays an
important role in determining phase stability and structural
preferences.
An important parallel emerges between Lewis acid−base

adducts and intermetallic phases. In both classes of compounds,
the acid−base interactions underlying them result in an
enhanced separation in energy between filled bonding states
and empty antibonding states. For Lewis acid−base adducts,
this separation manifests itself in the form of a HOMO−
LUMO gap, while in intermetallics it appears as a band gap or
pseudogap in the electronic DOS states. However, whether the
neutralization adopts the form of a gap between molecular
energy levels or a minimum in a DOS curve, in both cases
increased stability is a result. The enhanced oxidation resistance
so frequently observed for intermetallic phases relative to their
component elements can be rationalized along these lines.
The μ3-acidity approach that has resulted from our analysis

bears similarities and differences to the Zintl concept. Like the
Zintl concept, the μ3-acidity analysis overlays a bonding picture
onto the geometrical features of a crystal structure. The two
models approach bonding and their electron count require-
ments from different viewpoints. For Zintl phases, bonding
pictures are built up from bonds and lone pairs, with the
optimal electron counts being determined by the number of
these features recognizable in the connectivities of the
structures. μ3 acidity instead examines how the cumulative
impact of heteroatomic interactions sculpts an atom’s projected
DOS, without regard to the geometrical details of its
coordination environment. This more diffuse view of orbital
interactions is in line with the different degrees of bonding
localization evident in Zintl phases and the less-polar
intermetallics with which we have developed the μ3 acid/base
concept.
It will be interesting to see how these points of view merge as

we attempt to apply μ3 acidity analysis to increasingly more
polar combinations of metals. Moving in this direction will
require extending the μ3 acidity concept beyond the transition-
metal-based phases discussed in this Article. Generalizing the
method is made challenging by the need for DOS curves that
are well-described by their low order moments, μ0−μ4. This
criterion is met well by the d-band-only models of the first-row
transition metals, both in their elemental phases and in
intermetallic phases. It is not met, however, by the d orbital
projected DOS curves from DFT calculations, where
interactions with the s and p orbitals lead to more complicated
shapes. The method thus relies on a simple Hückel-type
Hamiltonian involving a limited set of valence orbitals. In
identifying such a set for, say, main group elements, one

Figure 15. Structural trends within the Ti−Ni system viewed through
the concept of μ3-neutralization. μ3-Neutralization bar graphs are given
for the phases (a) Ti2Ni, (b) TiNi, and (c) TiNi3 below structural
images of each phase. In TiNi, where the Ti/Ni ratio is equal to 1, Ti is
moderately overneutralized while Ni has achieved essentially complete
neutralization. Increasing the Ti content to create Ti2Ni (a) would be
expected to relieve the Ti overneutralization by adding more Ti−Ti
contacts, but threatens to overneutralize the Ni through increased Ti−
Ni interactions. The Ni atoms counter this by clustering into Ni4
tetrahedra. Upon decreasing the Ti content from TiNi to obtain TiNi3
(c), the smaller number of Ti atoms endangers the perfect
neutralization of the Ni. To counter this, the Ni maximizes Ti−Ni
contacts through exclusive occupancy of the Ti coordination
environment, with a higher overneutralization being thrust upon the
minority Ti atoms. See captions to Figures 9 and 11 for conventions
used in the bar graphs.
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encounters ambiguities. Should we consider the s and p orbitals
of an element separately or as a combined set of valence
orbitals? How much does the answer to this change from
element to element, or from compound to compound?
Providing answers to these questions will probably require a
trial and error approach but has the potential to lead to a
general theory of acid−base interactions that is applicable
across the spectrum of inorganic compounds.
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