Inorganic Chemistry

Dodecanuclear [Cu^{II}₆Gd^{III}₆] Nanoclusters as Magnetic Refrigerants

Alina S. Dinca,[†] Alberto Ghirri,[‡] Augustin M. Madalan,[†] Marco Affronte,*^{,‡} and Marius Andruh*^{,†}

† Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dum[bra](#page-2-0)va Rosie nr. 23, 020464 B[uch](#page-2-0)arest, Romania

‡ CNR, Institute of nanoSciences S3 and Dipartimento di Fisica, Universitàdi Modena e Reggio Emilia, via G. Campi 213/A, 41100 Modena, Italy

S Supporting Information

[AB](#page-2-0)STRACT: [A](#page-2-0) [novel](#page-2-0) [dod](#page-2-0)ecanuclear complex, [{(HL)- $(L)(DMF)Cu^{II}Gd^{III}(DMF)(H₂O)₆~6DMF (1; DMF =$ N,N-dimethylformamide), has been obtained using the ligand resulting from the condensation of 3-formylsalicylic acid with hydroxylamine $(H₃L)$. The exchange interaction between the phenoxo-bridged Cu^{II} and Gd^{III} ions is weak ferromagnetic $(J = +1.01 \text{ cm}^{-1})$. The combination of a high-spin ground state with small anisotropy leads to a significant magnetocaloric effect $[-\Delta S_{\text{m}}(0-7 \text{ T}) = 23.5 \text{ J}$ $K g^{-1} K^{-1}$ at ~2 K].

The chemistry of heterometallic 3d−4f complexes received
a strong impulse from the development of molecular
magnetism $\frac{1}{4}$ The very first Cu^{II} , C^{III} someounds illuminating magnetism.¹ The very first Cu^{II}–Gd^{III} compounds illuminating the ferromagnetic interaction between the two metal ions were reported b[y](#page-2-0) Gatteschi et al. in 1985² and by Okawa et al. in 1990.³ Both compounds have been obtained using multidentate Schiff-base ligands. Okawa's comp[ou](#page-2-0)nd, supposed to be a binu[cle](#page-2-0)ar complex (Chart S1 in the Supporting Information), has been synthesized by employing a compartmental ligand resulting from a 2:1 condensation [between 3-formylsalicyli](#page-2-0)c acid and ethylenediamine. Unfortunately, no crystal structure was reported either for the [Cu^{II}Gd^{III}] complex or for similar complexes with other lanthanides, with the strict binuclear nature of this compound being questionable. The discovery of low-dimensional molecular magnets (single-molecule magnets and single-chain magnets) oriented the interest of chemists and physicists toward the other lanthanides, especially Tb^{III} , Dy^{III} , and Ho^{III}, which have strong magnetic anisotropy, which is a prerequisite for observation of the slow relaxation of the magnetization phenomena.^{1,4} More recently, the isotropic Gd^{III} came back to the attention of scientists because of its ability to generate molecular comp[oun](#page-2-0)ds with a large magnetocaloric effect $(MCE)^5$. MCE implies a temperature drop during the adiabatic demagnetization that can be exploited for refrigeration. Genera[lly](#page-2-0) speaking, a large MCE is obtained with a highly degenerated magnetic ground state and an easy lift of this degeneration by application of an external magnetic field, which, in turn, induces large entropy variation.⁶ One way to obtain this is to get a large spin ground state with small magnetic anisotropy at the same time. In this res[pe](#page-2-0)ct, Gd^{III} is an excellent candidate in the design of molecular magnetic coolers. In addition, a relatively small molecular mass is required to maximize the cooling power available for the external world.⁵

Aiming to get information on the structure of Okawa's compound and, at the same time, to obtain molecules exhibiting a significant MCE, we decided to modify the organic ligand derived from 3-formylsalicylic acid and to react it with Cu^{II} and Gd^{III} ions. The new ligand $(H₃L)$ results from the condensation reaction between 3-formylsalicylic acid and hydroxylamine. Our strategy is based on the observation that two molecules of oxime, one of them with a deprotonated aldoxime group, should generate a supramolecular bicompartmental ligand (Chart S2 in the Supporting Information), which is supported by the well-known hydrogen-bonding interaction observed, for example, in the [classical complex of N](#page-2-0)i^{II} with dimethylglyoxime. Of course, the assembly of the two organic species $(H_2L^-$ and $H_3L)$ into the supramolecular ligand is favored by the coordination of one or two metal ions. We mention also that the main difference between Okawa's ligand and the supramolecular ligand $(H_2 L H \cdots L H_2^-)$ resulting from the H₃L and H₂L[−] molecules arises from the charges they are carrying after deprotonation: four negative charges in the case of Okawa's ligand and five negative charges for the supramolecular ligand.

The heterometallic complex $[\{(HL)(L)(DMF) Cu^{II}Gd^{III}(DMF)(H_2O)$ ₆]·6DMF (1; DMF = N,N-dimethylformamide) was obtained as described in the Supporting Information.

The crystallographic investigation of 1 reve[als neutral](#page-2-0) [dodecanucle](#page-2-0)ar clusters, with six Cu^H and six Gd^H ions (Figure 1a). Details on the crystallographic investigation are given in the Supporting Information. The Cu ion is hosted in the N_2O_2 [co](#page-1-0)mpartment, showing a square-pyramidal geometry with a D[MF molecule occupying](#page-2-0) the apical position [Cu1−O10 = 2.330(8) Å]. The basal Cu−N and Cu−O distances vary between $1.942(6)$ and $1.975(10)$ Å. The Gd ions are coordinated by eight O atoms, showing a square-antiprismatic geometry. The Gd−O distances are in the range 2.347(6)− 2.427(7) Å. Each Gd ion is coordinated by two phenoxo and four carboxylato O atoms arising from the oximato ligands, as well as by one water and one DMF molecule. The Gd ion is disposed at 1.379 Å above the plane of the four O atoms from the outer compartment, because of their big size. This makes the main difference between the compartmental ligands derived from 3-formylsalicylic acid and the classical Costes' ligands obtained from o-vanillin, in which the methoxy and phenoxo

Received: January 24, 2012 Published: March 12, 2012

Figure 1. (a) Perspective view of the dodecanuclear cluster 1. (b) Detail of the molecular structure of 1 showing one supramolecular compartmental ligand and the connectivities between the Gd^{III} ions together with an atom-labeling scheme.

groups delineate a larger compartment able to accommodate the big Ln cations.⁷ We recall also that when the second metal is also a 3d metal, with a smaller radius than the Ln, it is coordi[n](#page-2-0)ated within the plane of the four O atoms.⁸ The aggregation of the dodecanuclear cluster occurs through carboxylato bridges: each carboxylato group is coordin[at](#page-2-0)ed to two Gd ions, with a syn−anti bridging mode (Figures 1b and S1 in the Supporting Information). Each Gd ion is connected by carboxylato bridges to four other Gd ions. The six Gd^{III} ions describe [an octahedron that is in](#page-2-0)scribed into the octahedron generated by the Cu ions. The distance between the phenoxobridged Cu^{II} and Gd^{III} ions is 3.3157(13) Å, and the distances between the Gd ions are Gd1…Gd1' = 5.982 Å, Gd1…Gd1" = 6.075 Å, Gd1…Gd1[‴] = 5.982 Å, and Gd1…Gd1[#] = 6.075 Å (symmetry codes: ', -x + y, -x, z; '', y, -x + y, 2 - z; ''', -y, x $y, z; ^{\#}, x - y, x, 2 - z).$

The magnetic properties of 1 have been investigated. First of all, examination of the $\chi_{\rm M}T$ vs T curve (Figure 2a) shows the onset of a ferromagnetic interaction between the Cu^{II} and Cd^{III} ions, below 50 K. At room temperature, $\chi_{\rm M}T(300~{\rm K}) = 49.0$ cm³ mol⁻¹ K is close to the value expected for six Cu^{II} and six Gd^{III} ions (49.5 cm³ mol⁻¹ K, assuming $g_{Cu} = g_{Gd} = 2$). For T < 2 K, there is no decrease of $\chi_{\rm M}T$, suggesting that the magnetic interaction between the binuclear {CuGd} moieties within the cluster, if any, is very weak. The magnetization versus field curves have been recorded at different temperatures (Figure S2 in the Supporting Information). At 2 K, the magnetization reaches saturation at 48.3 $\mu_{\rm B}$, thus suggesting the presence of a $S = 4$ g[round state for each {Cu](#page-2-0)Gd} moiety. Specific heat C/R versus T curves have been measured in the temperature range 0.3−15 K (Figure 2b). At high temperature, the specific heat is dominated by the lattice contribution, accounted for by the phenomenological law $C_{\text{latt}}/R = 234 (T/\theta_{\text{D}})^{\alpha}$, where $\theta_{\text{D}} = 36 \text{ K}$ and α = 2.4.⁹ For T < 10 K, the magnetic contribution becomes evident; the zero-field curve is generated by two Schottky anomalies, [on](#page-2-0)e peaking at about 2 K and another at $T < 0.3$ K, which shows a clear evolution under an applied magnetic field (B).

To quantify the strength of the magnetic interactions, we model the system as six independent {CuGd} pairs, with $S(Cu^{II}) = \frac{1}{2}$ and $S(Gd^{III}) = \frac{7}{2}$ ions coupled by the following Hamiltonian (eq 1):

$$
H = -JS_{\text{Cu}}S_{\text{Gd}} + \mu_{\text{B}}(g_{\text{Cu}}S_{\text{Cu},z} + g_{\text{Gd}}S_{\text{Gd},z})B \tag{1}
$$

Figure 2. (a) Temperature dependence of the $\chi_{\rm M}T$ product for 1. (b) Specific heat versus temperature curves measured under an applied magnetic field for a thin pellet of 1. The solid lines represent calculations with the parameters reported in the text. The dashed lines in panel b represent distinct contributions to the zero-field specific heat curve due to the lattice (C_{latt}) and extra Schotty anomaly (C_{ext}) . The dotted line displays the zero-field specific heat calculated without C_{ext}

The first term refers to the isotropic exchange interaction between the phenoxo-bridged Cu^H and Gd^{III} ions and the second term quantifies the Zeeman interaction with the applied field. The calculated $\chi_M T(T)$ and $[M(B)]_T$ curves, shown respectively in Figures 2a and S2 in the Supporting Information, show good agreement with the set of experimental data by choosing the following parameters: $J = +1.01$ cm⁻¹ and $g_{Cu} = g_{Gd} = 2.00$. As a consequence of the ferromagnetic [exchange](#page-2-0) [co](#page-2-0)nstant, the ground-state multiplet has a spin $S = 4$, while the first excited-state multiplet $(S = 3)$ is found at the energy $\Delta E = 4J = 4.04$ cm⁻¹. .

For simulation of the specific heat curve, we first added an axial anisotropic term $H_{\text{anis}} = D_{\text{Gd}} [S_{\text{Gd},z}^2 - \frac{1}{3} S_{\text{Gd}} (S_{\text{Gd}} + 1)],$

Inorganic Chemistry Communication **Communication**

with $D_{\text{Gd}} = -0.02 \text{ cm}^{-1}$,¹⁰ to eq 1. These simulations fit well to , the overall experimental $[C(T)]_B$ data, yet it fails to reproduce th[e](#page-1-0) bump of the zero-field curve at $T < 1.5$ K (dotted line in Figure 2b) that reveals the effects of weak, but sizable, direct exchange interactions between Gd^{III} ions. So, to better fit the low-te[mp](#page-1-0)erature specific heat, we tentatively added an effective two-level Schottky anomaly (C_{ext}) with degeneracy ratio $g_0/g_1 =$ $\frac{1}{2}$, introducing a phenomenological energy splitting. While more information is required to describe these interactions in details, this numerical fit fixed a maximum limit for $J_{\text{Gd-Gd}}$ of about 0.7 cm[−]¹ . Within this simple picture, the magnetic entropy $S_m(T)$ can be calculated from the partition function Z $=\sum_{i} \mathrm{e}^{-E_i(B)/(k_B T)}$ for fixed B:

$$
S_{\rm m}(T)_{B} = \left\{ N_{A} k_{B} \frac{\partial}{\partial T} (T \ln Z) \right\}_{B}
$$

The entropy change is then $\Delta S_{\text{m}}(T)$ [0−7 T] = $S_{\text{m0}}(T)$ – $S_{m,7}$ T(T). This curve can be compared with ΔS_m directly evaluated from the specific heat and magnetization data (Figure 3). Starting from the specific heat, the entropy is calculated

Figure 3. Entropy S/R versus T curves calculated for different magnetic fields B (solid lines). Entropy variation ΔS_m for $\Delta H = 0-7$ T (markers). ΔS_m [0−7 T] directly evaluated from the specific heat and magnetization experimental data using Maxwell's relations (dashed line).

according to the formula $S(T)_B = \int (C/T)_B dT + S_0$, where S_0 is an additive constant that accounts for the experimental "blindness" of the specific heat curve for $T < 0.3$ K and that allows one to match the saturation value at high temperature. The entropy change for compound 1 can also be estimated according to the Maxwell equation, using the magnetization data $\Delta S_{\text{m}}(T)_{\Delta B} = \int [\partial M(T,H)/\partial H]_B \, dB$.

In Figure 3, the ΔS_{m} values obtained with the different methods compare very well to one another. The entropy saturation is obtained for $T > 10$ K, and it corresponds to the expected value of 6R ln(16). The peak of $\Delta S_m(T)$ is found at about 2.3 K with a maximum value of $\Delta S_{\text{m}}[0-7 \text{ T}] = 13.8R$, in molar units, or $\Delta S_{\text{m}}[0-7 \text{ T}] = 23.5 \text{ J kg}^{-1} \text{ K}^{-1}$. This value is comparable to those observed for other Co^{II}–Gd^{III} complexes recently reported.^{5b}

In conclusion, we obtained a novel dodecanuclear $\left[\mathrm{Cu}^{\mathrm{II}}\text{}_6\mathrm{Gd}^{\mathrm{III}}\text{}_6\right]$ nanocluster showing a significant MCE. This synthetic procedure can be applied for the other lanthanides and can be extended toward luminescent isostructural $[Zn_{6}^{II}Ln_{6}]$ clusters. The ability of the new supramolecular bicompartmental oximato ligand to generate various heterometallic complexes is currently under investigation in our laboratory.

■ ASSOCIATED CONTENT

6 Supporting Information

X-ray crystallographic data in CIF format, synthesis of compound 1, crystallographic data, and magnetization versus field curves. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTH[OR INFORMATIO](http://pubs.acs.org)N

Corresponding Author

*E-mail: marius.andruh@dnt.ro (Marius Andruh), marco. affronte@unimore.it (Marco Affronte).

Notes

[The authors declare](mailto:marco.affronte@unimore.it) [no](mailto:marius.andruh@dnt.ro) [competin](mailto:marius.andruh@dnt.ro)g financial interest.

■ ACKNOWLEDGMENTS

A.S.D. acknowledges POSDRU 107/1.5/S/80765 for financial support (a Ph.D. fellowship).

ENDERGERMINIST REFERENCES

(1) (a) Andruh, M.; Costes, J.-P.; Gao, S. Inorg. Chem. 2009, 48, 3342. (b) Sessoli, R.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2328. (c) Sakamoto, M.; Manseki, K.; Okawa, H. Coord. Chem. Rev. 2001, 219−221, 379.

(2) Bencini, A.; Benelli, C.; Caneschi, A.; Carlin, R. L.; Dei, A.; Gatteschi, D. J. Am. Chem. Soc. 1985, 107, 8128.

(3) Matsumoto, N.; Sakamoto, M.; Tamaki, H.; Okawa, H.; Kida, S. Chem. Lett. 1990, 853.

(4) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, U.K., 2006.

(5) For example, see: (a) Sessoli, R. Angew. Chem., Int. Ed. 2012, inpress. (b) Evangelisti, M.; Brechin, E. K. Dalton Trans. 2010, 39, 4672 and references cited therein..

(6) (a) Manoli, M.; Johnstone, R. D. L.; Parsons, S.; Murrie, M.; Affronte, M.; Evangelisti, M.; Brechin, E. K. Angew. Chem., Int. Ed. 2007, 46, 4456. (b) Evangelisti, M.; Candini, A.; Ghirri, A.; Affronte, M.; Brechin, E. K.; Mcinnes, E. J. L. Appl. Phys. Lett. 2005, 87, 072504. (c) Zheng, Y.-Z.; Evangelisti, M.; Tuna, F.; Winpenny, R. E. P. J. Am. Chem. Soc. 2012, 134, 1057. (d) Guo, F.-S.; Leng, J.-D.; Liu, J.-L.; Meng, Z.-H.; Tong, M.-L. Inorg. Chem. 2012, 51, 405. (e) Evangelisti, M.; Roubeau, O.; Palacios, E.; Camón, A.; Hooper, T. N.; Brechin, E. K.; Alonso, J. J. Angew. Chem., Int. Ed. 2011, 50, 6606. (f) Zheng, Y.-Z.; Evanghelisti, M.; Winpenny, R. E. P. Angew. Chem., Int. Ed. 2011, 50, 3692. (g) Langley, S. K.; Chilton, N. F.; Moubaraki, B.; Hooper, T.; Brechin, E. K.; Evanghelisti, M.; Murray, K. S. Chem. Sci. 2011, 2, 1166.

(7) Costes, J.-P.; Dahan, F.; Dupuis, A.; Laurent, J.-P. Inorg. Chem. 1996, 35, 2400.

(8) See, for example, the classical Kahn's heterobimetallics: (a) Kahn, O.; Galy, J.; Journaux, Y.; Morgenstern-Badarau, I. J. Am. Chem. Soc. 1982, 104, 2165. (b) Morgenster-Badarau, I.; Rerat, M.; Kahn, O.; Jaud, J. Inorg. Chem. 1982, 21, 3050.

(9) Evangelisti, M.; Luis, F.; de Jongh, L. J.; Affronte, M. J. Mater. Chem. 2006, 16, 2534.

(10) Stoian, S. A.; Paraschiv, C.; Kiritsakas, N.; Lloret, F.; Munck, E.; Bominaar, E. L.; Andruh, M. Inorg. Chem. 2010, 49, 3387.