Inorganic Chemistry

Dodecanuclear [Cu^{II}₆Gd^{III}₆] Nanoclusters as Magnetic Refrigerants

Alina S. Dinca,[†] Alberto Ghirri,[‡] Augustin M. Madalan,[†] Marco Affronte,^{*,‡} and Marius Andruh^{*,†}

[†]Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, 020464 Bucharest, Romania

[‡]CNR, Institute of nanoSciences S3 and Dipartimento di Fisica, Università di Modena e Reggio Emilia, via G. Campi 213/A, 41100 Modena, Italy

Supporting Information

ABSTRACT: A novel dodecanuclear complex, [{(HL)-(L)(DMF)Cu^{II}Gd^{III}(DMF)(H₂O)}₆]·6DMF (1; DMF = *N*,*N*-dimethylformamide), has been obtained using the ligand resulting from the condensation of 3-formylsalicylic acid with hydroxylamine (H₃L). The exchange interaction between the phenoxo-bridged Cu^{II} and Gd^{III} ions is weak ferromagnetic ($J = +1.01 \text{ cm}^{-1}$). The combination of a high-spin ground state with small anisotropy leads to a significant magnetocaloric effect [$-\Delta S_m(0-7 \text{ T}) = 23.5 \text{ J}$ K g⁻¹ K⁻¹ at ~2 K].

he chemistry of heterometallic 3d–4f complexes received a strong impulse from the development of molecular magnetism.¹ The very first Cu^{II}-Gd^{III} compounds illuminating the ferromagnetic interaction between the two metal ions were reported by Gatteschi et al. in 1985² and by Okawa et al. in 1990.³ Both compounds have been obtained using multidentate Schiff-base ligands. Okawa's compound, supposed to be a binuclear complex (Chart S1 in the Supporting Information), has been synthesized by employing a compartmental ligand resulting from a 2:1 condensation between 3-formylsalicylic acid and ethylenediamine. Unfortunately, no crystal structure was reported either for the [Cu^{II}Gd^{III}] complex or for similar complexes with other lanthanides, with the strict binuclear nature of this compound being questionable. The discovery of low-dimensional molecular magnets (single-molecule magnets and single-chain magnets) oriented the interest of chemists and physicists toward the other lanthanides, especially Tb^{III}, Dy^{III}, and Ho^{III}, which have strong magnetic anisotropy, which is a prerequisite for observation of the slow relaxation of the magnetization phenomena.^{1,4} More recently, the isotropic Gd^{III} came back to the attention of scientists because of its ability to generate molecular compounds with a large magnetocaloric effect (MCE).⁵ MCE implies a temperature drop during the adiabatic demagnetization that can be exploited for refrigeration. Generally speaking, a large MCE is obtained with a highly degenerated magnetic ground state and an easy lift of this degeneration by application of an external magnetic field, which, in turn, induces large entropy variation.⁶ One way to obtain this is to get a large spin ground state with small magnetic anisotropy at the same time. In this respect, Gd^{III} is an excellent candidate in the design of molecular magnetic coolers. In addition, a relatively small molecular mass is required to maximize the cooling power available for the external world.⁵

Aiming to get information on the structure of Okawa's compound and, at the same time, to obtain molecules exhibiting a significant MCE, we decided to modify the organic ligand derived from 3-formylsalicylic acid and to react it with Cu^{II} and Gd^{III} ions. The new ligand (H_3L) results from the condensation reaction between 3-formylsalicylic acid and hydroxylamine. Our strategy is based on the observation that two molecules of oxime, one of them with a deprotonated aldoxime group, should generate a supramolecular bicompartmental ligand (Chart S2 in the Supporting Information), which is supported by the well-known hydrogen-bonding interaction observed, for example, in the classical complex of Ni^{II} with dimethylglyoxime. Of course, the assembly of the two organic species $(H_2L^- \text{ and } H_3L)$ into the supramolecular ligand is favored by the coordination of one or two metal ions. We mention also that the main difference between Okawa's ligand and the supramolecular ligand $(H_2LH\cdots LH_2^{-})$ resulting from the H₂L and H₂L⁻ molecules arises from the charges they are carrying after deprotonation: four negative charges in the case of Okawa's ligand and five negative charges for the supramolecular ligand.

The heterometallic complex $[{(HL)(L)(DMF)}-Cu^{II}Gd^{III}(DMF)(H_2O)]_6]\cdot 6DMF$ (1; DMF = N,N-dimethylformamide) was obtained as described in the Supporting Information.

The crystallographic investigation of 1 reveals neutral dodecanuclear clusters, with six Cu^{II} and six Gd^{III} ions (Figure 1a). Details on the crystallographic investigation are given in the Supporting Information. The Cu ion is hosted in the N_2O_2 compartment, showing a square-pyramidal geometry with a DMF molecule occupying the apical position [Cu1-O10 =2.330(8) Å]. The basal Cu-N and Cu-O distances vary between 1.942(6) and 1.975(10) Å. The Gd ions are coordinated by eight O atoms, showing a square-antiprismatic geometry. The Gd–O distances are in the range 2.347(6)– 2.427(7) Å. Each Gd ion is coordinated by two phenoxo and four carboxylato O atoms arising from the oximato ligands, as well as by one water and one DMF molecule. The Gd ion is disposed at 1.379 Å above the plane of the four O atoms from the outer compartment, because of their big size. This makes the main difference between the compartmental ligands derived from 3-formylsalicylic acid and the classical Costes' ligands obtained from o-vanillin, in which the methoxy and phenoxo

Received: January 24, 2012 Published: March 12, 2012

Figure 1. (a) Perspective view of the dodecanuclear cluster 1. (b) Detail of the molecular structure of 1 showing one supramolecular compartmental ligand and the connectivities between the Gd^{III} ions together with an atom-labeling scheme.

groups delineate a larger compartment able to accommodate the big Ln cations.⁷ We recall also that when the second metal is also a 3d metal, with a smaller radius than the Ln, it is coordinated within the plane of the four O atoms.8 The aggregation of the dodecanuclear cluster occurs through carboxylato bridges: each carboxylato group is coordinated to two Gd ions, with a syn-anti bridging mode (Figures 1b and S1 in the Supporting Information). Each Gd ion is connected by carboxylato bridges to four other Gd ions. The six Gd^{III} ions describe an octahedron that is inscribed into the octahedron generated by the Cu ions. The distance between the phenoxobridged Cu^{íí} and Gd^{III} ions is 3.3157(13) Å, and the distances between the Gd ions are Gd1…Gd1' = 5.982 Å, Gd1…Gd1" = 6.075 Å, Gd1…Gd1''' = 5.982 Å, and Gd1…Gd1[#] = 6.075 Å (symmetry codes: ', -x + y, -x, z; ", y, -x + y, 2 - z; ", -y, x - zy, z; #, x - y, x, 2 - z).

The magnetic properties of 1 have been investigated. First of all, examination of the $\chi_M T$ vs T curve (Figure 2a) shows the onset of a ferromagnetic interaction between the Cu^{II} and Gd^{III} ions, below 50 K. At room temperature, $\chi_M T(300 \text{ K}) = 49.0$ cm³ mol⁻¹ K is close to the value expected for six Cu^{II} and six Gd^{III} ions (49.5 cm³ mol⁻¹ K, assuming $g_{Cu} = g_{Gd} = 2$). For T <2 K, there is no decrease of $\chi_{\rm M}T$, suggesting that the magnetic interaction between the binuclear {CuGd} moieties within the cluster, if any, is very weak. The magnetization versus field curves have been recorded at different temperatures (Figure S2 in the Supporting Information). At 2 K, the magnetization reaches saturation at 48.3 $\mu_{\rm B}$, thus suggesting the presence of a S = 4 ground state for each {CuGd} moiety. Specific heat C/Rversus T curves have been measured in the temperature range 0.3-15 K (Figure 2b). At high temperature, the specific heat is dominated by the lattice contribution, accounted for by the phenomenological law $C_{\text{latt}}/R = 234 (T/\theta_{\text{D}})^{\alpha}$, where $\theta_{\text{D}} = 36$ K and $\alpha = 2.4.9$ For T < 10 K, the magnetic contribution becomes evident; the zero-field curve is generated by two Schottky anomalies, one peaking at about 2 K and another at T < 0.3 K, which shows a clear evolution under an applied magnetic field (B).

To quantify the strength of the magnetic interactions, we model the system as six independent {CuGd} pairs, with $S(Cu^{II}) = \frac{1}{2}$ and $S(Gd^{III}) = \frac{7}{2}$ ions coupled by the following Hamiltonian (eq 1):

$$H = -JS_{\mathrm{Cu}}S_{\mathrm{Gd}} + \mu_{\mathrm{B}}(g_{\mathrm{Cu}}S_{\mathrm{Cu},z} + g_{\mathrm{Gd}}S_{\mathrm{Gd},z})B \tag{1}$$

Figure 2. (a) Temperature dependence of the $\chi_M T$ product for 1. (b) Specific heat versus temperature curves measured under an applied magnetic field for a thin pellet of 1. The solid lines represent calculations with the parameters reported in the text. The dashed lines in panel b represent distinct contributions to the zero-field specific heat curve due to the lattice (C_{latt}) and extra Schotty anomaly (C_{ext}). The dotted line displays the zero-field specific heat calculated without C_{ext} .

The first term refers to the isotropic exchange interaction between the phenoxo-bridged Cu^{II} and Gd^{III} ions and the second term quantifies the Zeeman interaction with the applied field. The calculated $\chi_M T(T)$ and $[M(B)]_T$ curves, shown respectively in Figures 2a and S2 in the Supporting Information, show good agreement with the set of experimental data by choosing the following parameters: $J = +1.01 \text{ cm}^{-1}$ and $g_{\text{Cu}} = g_{\text{Gd}} = 2.00$. As a consequence of the ferromagnetic exchange constant, the ground-state multiplet has a spin S = 4, while the first excited-state multiplet (S = 3) is found at the energy $\Delta E = 4J = 4.04 \text{ cm}^{-1}$.

For simulation of the specific heat curve, we first added an axial anisotropic term $H_{\text{anis}} = D_{\text{Gd}}[S_{\text{Gd},z}^2 - \frac{1}{3}S_{\text{Gd}}(S_{\text{Gd}} + 1)]$,

with $D_{\rm Gd} = -0.02 \text{ cm}^{-1,10}$ to eq 1. These simulations fit well to the overall experimental $[C(T)]_B$ data, yet it fails to reproduce the bump of the zero-field curve at T < 1.5 K (dotted line in Figure 2b) that reveals the effects of weak, but sizable, direct exchange interactions between Gd^{III} ions. So, to better fit the low-temperature specific heat, we tentatively added an effective two-level Schottky anomaly ($C_{\rm ext}$) with degeneracy ratio $g_0/g_1 = 1/_2$, introducing a phenomenological energy splitting. While more information is required to describe these interactions in details, this numerical fit fixed a maximum limit for $J_{\rm Gd-Gd}$ of about 0.7 cm⁻¹. Within this simple picture, the magnetic entropy $S_{\rm m}(T)$ can be calculated from the partition function $Z = \sum_{k} e^{-E_k(B)/(k_{\rm B}T)}$ for fixed B:

$$S_{\rm m}(T)_{\rm B} = \left\{ N_{\rm A} k_{\rm B} \, \frac{\partial}{\partial T} (T \ln Z) \right\}_{\rm B}$$

The entropy change is then $\Delta S_m(T) [0-7 T] = S_{m\nu}(T) - S_{m,7 T}(T)$. This curve can be compared with ΔS_m directly evaluated from the specific heat and magnetization data (Figure 3). Starting from the specific heat, the entropy is calculated

Figure 3. Entropy *S/R* versus *T* curves calculated for different magnetic fields *B* (solid lines). Entropy variation $\Delta S_{\rm m}$ for $\Delta H = 0-7$ T (markers). $\Delta S_{\rm m} [0-7$ T] directly evaluated from the specific heat and magnetization experimental data using Maxwell's relations (dashed line).

according to the formula $S(T)_B = \int (C/T)_B dT + S_0$, where S_0 is an additive constant that accounts for the experimental "blindness" of the specific heat curve for T < 0.3 K and that allows one to match the saturation value at high temperature. The entropy change for compound 1 can also be estimated according to the Maxwell equation, using the magnetization data $\Delta S_m(T)_{\Delta B} = \int [\partial M(T,H)/\partial H]_B dB$.

In Figure 3, the $\Delta S_{\rm m}$ values obtained with the different methods compare very well to one another. The entropy saturation is obtained for T > 10 K, and it corresponds to the expected value of 6*R* ln(16). The peak of $\Delta S_{\rm m}(T)$ is found at about 2.3 K with a maximum value of $\Delta S_{\rm m}[0-7 \text{ T}] = 13.8R$, in molar units, or $\Delta S_{\rm m}[0-7 \text{ T}] = 23.5 \text{ J kg}^{-1} \text{ K}^{-1}$. This value is comparable to those observed for other Co^{II}–Gd^{III} complexes recently reported.^{5b}

In conclusion, we obtained a novel dodecanuclear $[Cu^{II}_{6}Gd^{III}_{6}]$ nanocluster showing a significant MCE. This synthetic procedure can be applied for the other lanthanides and can be extended toward luminescent isostructural $[Zn^{II}_{6}Ln^{III}_{6}]$ clusters. The ability of the new supramolecular bicompartmental oximato ligand to generate various heterometallic complexes is currently under investigation in our laboratory.

ASSOCIATED CONTENT

S Supporting Information

X-ray crystallographic data in CIF format, synthesis of compound 1, crystallographic data, and magnetization versus field curves. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: marius.andruh@dnt.ro (Marius Andruh), marco. affronte@unimore.it (Marco Affronte).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

A.S.D. acknowledges POSDRU 107/1.5/S/80765 for financial support (a Ph.D. fellowship).

REFERENCES

 (1) (a) Andruh, M.; Costes, J.-P.; Gao, S. Inorg. Chem. 2009, 48, 3342. (b) Sessoli, R.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2328.
 (c) Sakamoto, M.; Manseki, K.; Okawa, H. Coord. Chem. Rev. 2001, 219–221, 379.

(2) Bencini, A.; Benelli, C.; Caneschi, A.; Carlin, R. L.; Dei, A.; Gatteschi, D. J. Am. Chem. Soc. **1985**, 107, 8128.

(3) Matsumoto, N.; Sakamoto, M.; Tamaki, H.; Okawa, H.; Kida, S. *Chem. Lett.* **1990**, 853.

(4) Gatteschi, D.; Sessoli, R.; Villain, J. *Molecular Nanomagnets*; Oxford University Press: Oxford, U.K., 2006.

(5) For example, see: (a) Sessoli, R. Angew. Chem., Int. Ed. 2012, inpress. (b) Evangelisti, M.; Brechin, E. K. Dalton Trans. 2010, 39, 4672 and references cited therein..

(6) (a) Manoli, M.; Johnstone, R. D. L.; Parsons, S.; Murrie, M.; Affronte, M.; Evangelisti, M.; Brechin, E. K. Angew. Chem., Int. Ed. 2007, 46, 4456. (b) Evangelisti, M.; Candini, A.; Ghirri, A.; Affronte, M.; Brechin, E. K.; Mcinnes, E. J. L. Appl. Phys. Lett. 2005, 87, 072504.
(c) Zheng, Y.-Z.; Evangelisti, M.; Tuna, F.; Winpenny, R. E. P. J. Am. Chem. Soc. 2012, 134, 1057. (d) Guo, F.-S.; Leng, J.-D.; Liu, J.-L.; Meng, Z.-H.; Tong, M.-L. Inorg. Chem. 2012, 51, 405. (e) Evangelisti, M.; Roubeau, O.; Palacios, E.; Camón, A.; Hooper, T. N.; Brechin, E. K.; Alonso, J. J. Angew. Chem., Int. Ed. 2011, 50, 6606. (f) Zheng, Y.-Z.; Evanghelisti, M.; Winpenny, R. E. P. Angew. Chem., Int. Ed. 2011, 50, 3692. (g) Langley, S. K.; Chilton, N. F.; Moubaraki, B.; Hooper, T.; Brechin, E. K.; Evanghelisti, M.; Murray, K. S. Chem. Sci. 2011, 2, 1166.

(7) Costes, J.-P.; Dahan, F.; Dupuis, A.; Laurent, J.-P. Inorg. Chem. 1996, 35, 2400.

(8) See, for example, the classical Kahn's heterobimetallics: (a) Kahn, O.; Galy, J.; Journaux, Y.; Morgenstern-Badarau, I. J. Am. Chem. Soc. **1982**, 104, 2165. (b) Morgenster-Badarau, I.; Rerat, M.; Kahn, O.; Jaud, J. Inorg. Chem. **1982**, 21, 3050.

(9) Evangelisti, M.; Luis, F.; de Jongh, L. J.; Affronte, M. J. Mater. Chem. 2006, 16, 2534.

(10) Stoian, S. A.; Paraschiv, C.; Kiritsakas, N.; Lloret, F.; Munck, E.; Bominaar, E. L.; Andruh, M. *Inorg. Chem.* **2010**, *49*, 3387.