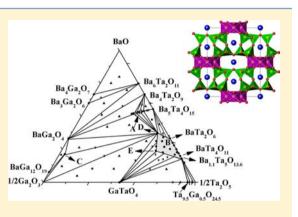
Inorganic Chemistry


Phase Relationships in the $BaO-Ga_2O_3-Ta_2O_5$ System and the Structure of $Ba_6Ga_{21}TaO_{40}$

Jiang Cao, Xiaodi Yu, Xiaojun Kuang,* and Qiang Su

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Supporting Information

ABSTRACT: Phase relationships in the BaO–Ga₂O₃–Ta₂O₅ ternary system at 1200 °C were determined. The A₆B₁₀O₃₀ tetragonal tungsten bronze (TTB) related solution in the BaO–Ta₂O₅ subsystem dissolved up to ~11 mol % Ga₂O₃, forming a ternary trapezoid-shaped TTB-related solid solution region defined by the BaTa₂O₆, Ba_{1.1}Ta₅O_{13.6}, Ba_{1.58}Ga_{0.92}Ta_{4.08}O_{13.16}, and Ba₆GaTa₉O₃₀ compositions in the BaO–Ga₂O₃–Ta₂O₅ system. Two ternary phases Ba₆Ga₂₁TaO₄₀ and eight-layer twinned hexagonal perovskite solid solution Ba₈Ga_{4-x}Ta_{4+0.6x}O₂₄ were confirmed in the BaO–Ga₂O₃–Ta₂O₅ system. Ba₆Ga₂₁TaO₄₀ crystallized in a monoclinic cell of *a* = 15.9130(2) Å, *b* = 11.7309(1) Å, *c* = 5.13593(6) Å, β = 107.7893(9)°, and *Z* = 1 in space group C2/*m*. The structure of Ba₆Ga₂₁TaO₄₀ was solved by the charge flipping method, and it represents a three-dimensional (3D) mixed GaO₄ tetrahedral and GaO₆/TaO₆ octahedral framework, forming mixed 1D

5/6-fold tunnels that accommodate the Ba cations along the *c* axis. The electrical property of $Ba_6Ga_{21}TaO_{40}$ was characterized by using ac impedance spectroscopy.

1. INTRODUCTION

Titanates, niobates, and tantalates have been widely investigated as important dielectric oxide materials.^{1,2} Although the cost of tantalum is higher than those of niobium and titanium, 2:1 ordered complex perovskite tantalates are attractive as microwave dielectric ceramic materials owing to their superior microwave dielectric performance.^{1,4,5} For example, the commercially available resonators Ba3ZnTa2O9 and $Ba_3MgTa_2O_9$ exhibit a permittivity of ~30, high quality factors $(Q \times f \ge 150\ 000\ \text{GHz}, \text{ where } Q \text{ is the quality factor, inverse}$ dielectric loss, and f is the resonant frequency), and zero temperature coefficients of resonant frequency τ_f^{-1} Hexagonal perovskites tantalates also display fascinating microwave dielectric properties such as eight-layer twinned hexagonal perovskite $Ba_8MTa_6O_{24}$ (M = Zn, Ni, Co)⁵⁻⁷, and $Ba_8Li_2Ta_6O_{24}^8$ demonstrated a permittivity of ~30, and high $Q \times f$ values of ~70 000–100 000 GHz, although their high τ_f values within ~25-45 ppm/°C may hinder their application in microwave dielectric resonators. Recently, we isolated an eightlayer twinned B-site deficient hexagonal perovskite $Ba_8Ga_{4-x}Ta_{4+0.6x}O_{24}$ (x = 1.8-3.4; referred to as 8H-BGT) in the BaO-Ga₂O₃-Ta₂O₅ ternary system.⁹ This 8H-BGT system displayed tunable τ_f from negative to positive over the solid solution limits and improved $Q \times f$ values with B-site deficiency. To our knowledge, the phase relationships in the BaO-Ga₂O₃-Ta₂O₅ ternary system have not been determined yet, and only one ternary phase Ba₆Ga₂₁TaO₄₀¹⁰ (ICDD PDF

47–0535) has been reported in this system in addition to the 8H-BGT phase. In this study, we report the complete phase relationships in the BaO–Ga₂O₃–Ta₂O₅ system at 1200 °C and the crystal structure of the Ba₆Ga₂₁TaO₄₀ ternary phase. The Ba₆Ga₂₁TaO₄₀ represents a three-dimensional mixed GaO₄ tetrahedral and GaO₆/TaO₆ octahedral network, forming mixed 5/6-fold tunnels that accommodate the Ba cations.

1.1. Review of Subsystems. The known compounds in the sub-binary systems of the BaO-Ga₂O₃-Ta₂O₅ ternary system are summarized in Table 1. The phase equilibria in the BaO-Ta₂O₅ binary system were initially studied by Kovba et al.¹¹ and recently revised by Vanderah et al.¹² in the study of the BaO-TiO₂-Ta₂O₅ ternary system from 1275 to 1500 °C. Five line phases, Ba₆Ta₂O₁₁, Ba₄Ta₂O₉, Ba₃Ta₂O₈, Ba₅Ta₄O₁₅, and BaTa₂O₆, have been reported in the BaO-Ta₂O₅ binary system. Kovba et al. observed one cubic and three tetragonal (with slightly different c/a ratio values) phases on Ba₆Ta₂O₁₁, and the cubic phase was thought to belong to the double perovskite structure.¹³ Ba₄Ta₂O₉ adopts hexagonal perovskite related structures, exhibiting three phases classified into a hexagonal Sr₄Ru₂O₉-type polymorph and a 6H-BaTiO₃ type polymorph with monoclinic and hexagonal modifications.¹⁴ $\mathrm{Ba}_3\mathrm{Ta}_2\mathrm{O}_8$ adopts a monoclinic structure derived from the rhombohedral Ba₃Nb₂O₈.¹¹ Ba₅Ta₄O₁₅ is a five-layer B-site

 Received:
 April 21, 2012

 Published:
 June 26, 2012

compound	cell parameters	space group	ICDD PDF number							
BaO–Ta ₂ O ₅ system										
$Ba_6Ta_2O_{11}$	a = 8.682 Å	$Fm\overline{3}m^{13}$								
	a = 6.176 Å, $c = 8.593$ Å	tetragonal	49-0902							
Ba4Ta2O9	a = 10.2690 Å, $c = 8.4729$ Å	$P\overline{6}2c^{14}$								
	a = 6.1885 Å, c = 16.1277 Å	$P6_3/m^{14}$								
	$a = 6.1106$ Å, $b = 16.1109$ Å, $c = 12.2127$ Å, $\beta = 120.332^{\circ}$	$P2_{1}/c^{14}$								
Ba ₅ Ta ₄ O ₁₅	a = 5.776 Å, $c = 11.82$ Å	$P\overline{3}m1^{15}$	72-0631							
$BaTa_2O_6$	a = 12.33 Å, $b = 10.26$ Å, $c = 7.67$ Å	orthorhombic16	20-1046							
	a = 12.6 Å, $c = 3.95$ Å	P4b2 ^{12,17}	50-1706							
	a = 21.116 Å, $c = 3.9157$ Å	$P6/mmm^{18}$								
$Ba_3Ta_2O_8$	$a = 10.14$ Å, $b = 7.449$ Å, $c = 5.815$ Å, $\gamma = 117.43^{\circ}$	$B2/m^{11}$	49-0889							
BaTa ₄ O ₁₁	a = 17.75 Å, $c = 3.914$ Å	tetragonal ¹¹	40-0905							
43BaO:57Ta ₂ O ₅	a = 12.513 Å, $c = 3.9296$ Å	$P4bm^{12}$								
32.5BaO:67.5Ta ₂ O ₅	a = 17.695 Å, c = 3.9188 Å	$P4bm^{12}$								
27.5BaO:72.5Ta ₂ O ₅	a = 12.517 Å, $b = 37.482$ Å, $c = 3.9296$ Å	Pbam ¹²								
BaO–Ga ₂ O ₃ system										
$Ba_4Ga_2O_7$	$a = 17.745$ Å, $b = 10.6719$ Å, $c = 7.2828$ Å, $\beta = 98.962^{\circ}$	$P2_1/c^{21}$								
BaGa ₂ O ₄	a = 5.393 Å, $c = 8.974$ Å	$P6_{3}22^{23}$								
	a = 18.6403 Å, $c = 8.6801$ Å	P63 ²⁴								
Ba ₃ Ga ₂ O ₆	a = 16.746 Å	Pa3 ²²								
BaGa ₁₂ O ₁₉	a = 5.8140 Å, $c = 23.038$ Å	$P6_3/mmc^{25}$	89-4674							
Ga_2O_3 - Ta_2O_5 system										
$GaTaO_4$	a = 4.636 Å, $c = 3.026$ Å	$P4_2/mnm^{27}$	15-0693							
	a = 4.612 Å, $b = 5.588$ Å, $c = 4.974$ Å	Pbcn ²⁶	81-1197							
	$a = 4.60$ Å, $b = 5.57$ Å, $c = 4.97$ Å, $\beta = 90.40^{\circ}$	$P2/c^{27}$	15-0691							

Table 1. Known Compounds in the Sub-Binary Systems of the BaO-Ga₂O₃-Ta₂O₅ System

deficient shifted hexagonal perovskite.¹⁵ BaTa₂O₆ has three polymorphs: an orthorhombic phase (isostructural with $BaNb_2O_6$) stable up to 1150 °C,¹⁶ a TTB $A_6B_{10}O_{30}$ type structure with a cell of ~12 Å × ~12 Å × ~4 Å within ~1150– 1300 °C,¹⁷ and a hexagonal phase above 1300 °C.¹⁸ Within a 26-43 mol % BaO range in the BaO-Ta2O5 system, three TTB-related solid solutions form within 1275-1500 °C. In the 43-39 mol % BaO region, the TTB-related phase has a simple TTB $A_6B_{10}X_{30}$ unit cell, similar to the TTB-type $BaTa_2O_{64}$ and was formulated as Ba_xTa_{(10-2x)/5}[Ta₁₀O₃₀] with Ba and the excess Ta distributed in a disordered manner over the square and pentagonal channels to avoid the oxygen vacancies in the octahedral network. In the 38-31 mol % BaO region, a doubled cell by $\sqrt{2}$ in the *ab* plane of the simple A₆B₁₀O₃₀ TTB cell forms in the TTB-related phase and the ordering of two [TaO] units per supercell within the pentagonal channels was proposed as the cause of the doubled cell, leading to a formula $Ba_x Ta_{(14-2x)/5} [Ta_{22}O_{62}]$ for the $\sqrt{2}$ -type solid solution. In the 30–26 mol % BaO region, a tripled cell by 3 times in the b axis of the simple TTB $A_6B_{10}O_{30}$ cell was observed in the TTB-type phase, and this triple-type solid solution was formulated as $Ba_xTa_{(18-2x)/5}[Ta_{34}O_{94}]$, which includes four ordered [TaO] units within pentagonal channels. These three TTB-related phases were also confirmed by Kolodiazhnyi et al.¹⁹ in a phase equilibrium study of the BaO-MgO-Ta₂O₅ ternary system at 1450 °C.

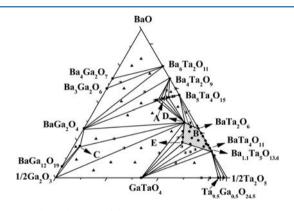
The phase equilibrium diagram in the BaO–Ga₂O₃ system has been constructed by Kovba et al.²⁰ Four barium gallates, Ba₄Ga₂O₇, Ba₃Ga₂O₆, BaGa₂O₄, and BaGa₁₂O₁₉, form in this binary system. Kahlenberg²¹ reported that Ba₄Ga₂O₇ has a monoclinic structure containing isolated Ga₂O₇ groups linked with Ba atoms from a single crystal X-ray diffraction study, contrary to the perovskite-related structure proposed by Kovba et al.²⁰ Ba₃Ga₂O₆ crystallizes a cubic structure consisting of isolated 12-membered rings formed by GaO₄ tetrahedra.²² BaGa₂O₄ displays three low temperature and one high temperature polymorph with three-dimensional tetrahedral structures.^{23,24} BaGa₁₂O₁₉ belongs to the magnetoplumbite structure family.²⁵ In the Ga₂O₃-Ta₂O₅ system, only GaTaO₄ forms, displaying one α -PbO₂ type polymorph at room temperature with orthorhombic²⁶ (ICDD PDF 15–0526) and monoclinic²⁷ (ICDD PDF 15–0691) modifications and one high temperature tetragonal rutile-type polymorph (ICDD PDF 15–0693).²⁷

2. EXPERIMENTAL PROCEDURES

Approximately 85 polycrystalline samples for phase relationship investigation were synthesized from the mixed oxide route using BaCO₃ (99.9%), Ga₂O₃ (99.999%), and Ta₂O₅ (99.99%) as starting materials, which were dried at 400 °C before weighing. Starting materials according to different stoichiometries in 1.5 g batches were weighed and mixed with ethanol with an agate mortar and pestle for ~10 min. The dried mixtures were calcined at 1200 °C for 24 h in alumina crucibles with heating and cooling rates of 5 °C/min, and the calcined mixtures were reground. This procedure was repeated to ensure that the equilibrations were reached, and no significant changes were observed in the powder X-ray diffraction (XRD) patterns.

The Ba₆Ga₂₁TaO₄₀ pellets for ac impedance spectroscopy measurement were made via the following process. Ba₆Ga₂₁TaO₄₀ powder was calcined at 1000 °C for 12 h and mixed with a polyvinylalcohol (PVA) binder and then pressed under ~200 MPa of pressure into pellets with a 10 mm diameter and ~3 mm thickness. The pellets were sintered at 1200 °C for 24 h and 1300 °C for 12 h followed by a final firing at 1350 °C for 12 h, leading to pellets with ~80% relative density.

The phase assemblages of the products were studied using powder XRD at room temperature (RT), using a D8 ADVANCE powder diffractometer with Cu K α radiation with 40 kV and 40 mA. The data for the structure analysis for Ba₆Ga₂₁TaO₄₀ were collected over a 2 θ range from 10° to 110° at intervals of 0.02°. All of the powder XRD data were analyzed using Topas Academic software.²⁸


Inorganic Chemistry

The structure solution for the Ba₆Ga₂₁TaO₄₀ was performed by the charge-flipping method, recently developed by Oszlányi and Sütő,^{29–31} for phasing using the SUPERFLIP program³² implemented in the JANA2006³³ software package combined with the Le Bail method³⁴ for decomposing the powder diffraction. The structure solution led to all of the metal sites and partial oxygen sites, which were refined by the Rietveld method³⁵ using Topas Academic software on the powder XRD data. The remaining two oxygen sites were located through difference Fourier map calculation. Minimum interatomic distance constraints of O–O (2.4 Å), Ga/Ta–O (1.7 Å), and Ba–O (2.4 Å) were applied during the refinement of the partial structure before successfully locating the missing two oxygen positions and then were removed for the refinement of the complete structure, where no rigid bodies or individual bond length and angle restraints were used for the tetrahedra and octahedra. Bond valence sums (BVSs) were calculated by Brown and Altermatt's method.³⁶

Ac impedance spectroscopy measurement was carried out by using a Solartron1260A impedance/gain-phase analyzer over 10^{-1} to 10^7 Hz from room temperature to 1000 °C. Prior to the IS measurement, the pellet was coated with platinum paste and fired at 800 °C for 30 min to burn out the organic components to form electrodes. For calculation of dielectric permittivity for the material itself, the measured capacitance from the impedance data was corrected by subtracting the blank contribution arising from the sample holder and connection cables, which was measured on an open circuit without the pellet.

3. RESULTS AND DISCUSSION

3.1. Phase Relationships in the $BaO-Ga_2O_3-Ta_2O_5$ System. Figure 1 shows the $BaO-Ga_2O_3-Ta_2O_5$ phase

Figure 1. Phase diagram of the BaO–Ga₂O₃–Ta₂O₅ ternary system at 1200 °C. A, B, C, D, and E denote the hexagonal perovskite solid solution 8H-BGT, the TTB-related solid solution, Ba₆Ga₂₁TaO₄₀, Ba₆GaTa₉O₃₀, and Ba_{1.58}Ga_{0.92}Ta_{4.08}O_{13.16}, respectively. The trapezoid-shaped ternary TTB-related solid solution region is marked by hatching. The half-filled square \square and filled triangle \blacktriangle symbols represent that the associated compositions are located in two-phase and three-phase regions, respectively.

diagram at 1200 °C. The phase diagram is divided into 14 three-phase regions, five two-phase regions, and an $A_6B_{10}O_{30}$ TTB-related solid solution region and contains the 8H-BGT solid solution and the ternary phase $Ba_6Ga_{21}TaO_{40}$. The compositions attempted and phases assemblages in the final products for the $BaO-Ga_2O_3-Ta_2O_5$ ternary system are summarized in Table S1, Supporting Information (SI).

In the BaO-Ta₂O₅ subsystem, Ba₆Ta₂O₁₁, Ba₄Ta₂O₉, Ba₅Ta₄O₁₅, and BaTa₂O₆ line phases were confirmed, and the formation of Ba₃Ta₂O₈ was not observed in this study. A single $A_6B_{10}O_{30}$ TTB-related phase was observed in samples within the 50-30.5 mol % BaO range, which compares to the 43-26

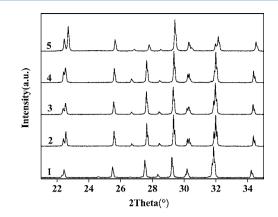


Figure 2. XRD patterns of the selected samples in the TTB-related solid solution. Patterns 1-5 correspond to samples $Ba_6GaTa_9O_{30}$, $BaTa_2O_6$, $Ba_{2.27}Ga_{0.45}Ta_{4.55}O_{14.32}$, $Ba_{1.58}Ga_{0.92}Ta_{4.08}O_{13.16}$, and $Ba_{1.1}Ta_5O_{13.60}$, respectively.

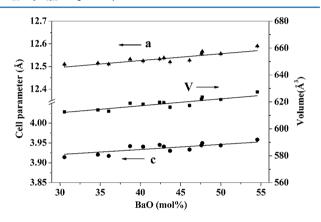
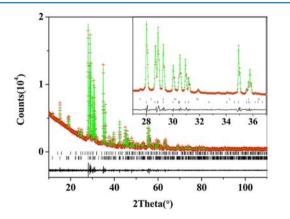
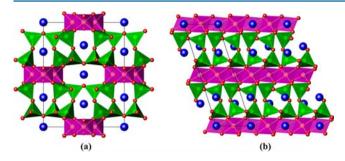



Figure 3. Cell parameters for the TTB-related solid solution.

Figure 4. Rietveld refinement of XRD data for $Ba_6Ga_{21}TaO_{40}$. The two rows of vertical tick marks from bottom to top correspond to the Bragg diffraction positions of the major phase $Ba_6Ga_{21}TaO_{40}$ and the minor phase TTB $Ba_6GaTa_9O_{30}$, respectively. The inset enlarges the fit over the $27-37^{\circ}$ 2 Θ range.


mol % BaO range of the TTB-related solid solution at 1275–1500 $^{\circ}\mathrm{C}$ reported by Vanderah et al.^{12}

As demonstrated in the studies of the BaO–TiO₂–Ta₂O₅ and BaO–MgO–Ta₂O₅ systems, the TTB-related phase in the BaO–Ta₂O₅ system can dissolve up to 12 mol % TiO₂ and 1.5–2 mol % MgO, respectively. In this study, the TTB-related phase extended into the ternary region by dissolving up to 11 mol % Ga₂O₃, which formed a trapezoid-shaped TTB-related

Table 2. Final Refined Structural Parameters for Ba₆Ga₂₁TaO₄₀^a

atom	site	x	у	z	occupancy	$B_{\rm iso}$ (Å ²)	BVS^b
Ba1	4 <i>i</i>	0.7194(1)	0	0.2431(4)	1	1.17(5)	1.86
Ba2	2 <i>c</i>	0	0	0.5	1	1.89(8)	1.78
Gal	2 <i>d</i>	0.5	0	0.5	0.709(5)	1.5(1)	3.29
Ta1	2d	0.5	0	0.5	0.291(5)	1.5(1)	5.50
Ga2	4g	0.5	0.1372(3)	0	0.895(5)	1.69(7)	2.77
Ta2	4g	0.5	0.1372(3)	0	0.105(5)	1.69(7)	4.63
Ga3	8j	0.3623(2)	0.2139(2)	0.3338(6)	1	1.43(7)	2.90
Ga4	8j	0.3533(2)	0.3626(2)	-0.1551(7)	1	1.44(6)	3.20
O1	8 <i>i</i>	0.0850(7)	0.2497(9)	-0.059(2)	1	1.3(1)	2.00
O2	4 <i>i</i>	-0.0618(7)	0.5	0.112(2)	1	1.3(1)	1.99
O3	4 <i>j</i>	0.097(1)	0	0.016(3)	1	1.3(1)	1.93
O4	8j	0.3577(7)	0.6491(4)	0.497(1)	1	1.3(1)	2.03
O5	8j	0.4270(7)	0.8860(5)	0.608(2)	1	1.3(1)	1.96
O6	8j	0.2614(5)	0.1364(9)	0.179(2)	1	1.3(1)	1.99

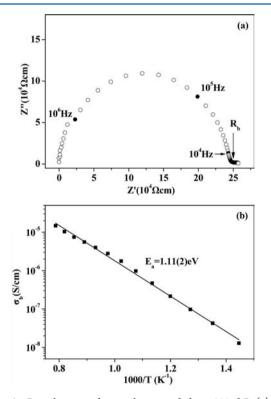

^aSpace group C2/m, Z = 1, a = 15.9130(2) Å, b = 11.7309(1) Å, c = 5.13593(6) Å, β = 107.7893(9)°, and V = 912.90(2) Å³; R_{wp} ~ 3.53% Rp ~ 2.36%, R_B ~ 1.43%. The atomic displacement factors B_{iso} for all the oxygen sites are constrained to be identical. ^bThe Ga/Ta occupancies on the mixed octahedral (Ga/Ta)1 and (Ga/Ta)2 sites are considered in the BVS calculation for the oxygen sites.

Figure 5. Projections along the *c* axis (a) and the *b* axis (b) of the structure of $Ba_6Ga_{21}TaO_{40}$. The blue and red spheres represent Ba and oxygen atoms, respectively. The GaO_4 tetrahedra and $(Ga/Ta)O_6$ octahedra are plotted in green and pink, respectively.

solid solution region defined by the four points at BaTa2O6/ Ba_{1.1}Ta₅O_{13.6}, Ba_{1.58}Ga_{0.92}Ta_{4.08}O_{13.16}, and Ba₆GaTa₉O₃₀. The XRD patterns of the selected samples of this solid solution are shown in Figure 2. In contrast with the three TTB-related solid solutions, all of the XRD patterns of the TTB-related phases can be indexed with the simple A₆B₁₀X₃₀ cell and did not show strong evidence of $\sqrt{2}$ -type or tripled TTB superstructures. The cell parameters as functions of BaO mol % are shown in Figure 3, which exhibit trends of higher BaO mol % and larger cell parameters. In the trapezoid-shaped TTB-related solid solution region, the tunnels in the TTB structure are free of Ta atoms in the materials along the Ba₆GaTa₉O₃₀-BaTa₂O₆ line, and the remaining materials may contain disordered Ta in the tunnels or [TaO] units in the pentagonal tunnels, as suggested by Vanderah et al.¹² Determining the Ta/O distribution over the tunnels in the TTB structure for this TTB-related solid solution in the BaO-Ga2O3-Ta2O5 system awaits further structural analysis using both X-ray and neutron diffraction data, which is not in the scope of this study.

In the Ga₂O₃-Ta₂O₅ subsystem, the GaTaO₄ phase was confirmed and Ta₂O₅ dissolved up to 5 mol % Ga₂O₃, forming a solid solution Ta_{2-x}Ga_xO_{5-2x} in a narrow range of $0 \le x \le 0.1$. In the BaO-Ga₂O₃ subsystem, formations of Ba₃Ga₂O₆, Ba₄Ga₂O₇, BaGa₂O₄, and BaGa₁₂O₁₉ were observed at 1200 °C. In the BaO-rich three phase region above the Ba₄Ga₂O₇-Ba₆Ta₂O₁₁ line, the samples were found unstable at room temperature in the air, turning into barium carbonate and

Figure 6. Complex impedance plot recorded at 800 °C (a) and Arrhenius plot of the bulk conductivity (b) for the $Ba_6Ga_{21}TaO_{40}$ pellet. R_b denotes bulk resistivity, and the selected frequencies for the data marked by the filled circles are shown in (a).

 $Ba(OH)_2 H_2O$ phases plus significant amorphous materials, as detected by XRD, which could be ascribed to the reaction of the BaO-rich phases and BaO with the moisture or CO_2 . The instability for the BaO-rich region was noticed by Kolodiazhnyi et al.¹⁹ in the BaO-MgO-Ta₂O₅ ternary system and Kovba et al.²⁰ in the BaO-Ga₂O₃ binary system.

Apart from the TTB-related solid solution in the BaO– Ga_2O_3 – Ta_2O_5 ternary system, the ternary 8H-BGT solid solution formed, and its limits obtained at 1200 °C agree well with our previous results obtained at 1450 °C.⁹ The 8H-BGT has a twinned eight-layer hexagonal perovskite structure,

consisting of cubic and hexagonal BaO₃ layers stacked in a sequence of $(ccch)_2$ in space group $P6_3cm$ and exhibits partial cation and vacancy ordering in the face-sharing octahedral sites, leading to expanded cell parameters by $\sqrt{3}$ in the *ab* plane with respect to those in the simple eight-layer hexagonal perovskite cell. The 8H-BGT structure details have been published in ref 9. The formation of the Ba₆Ga₂₁TaO₄₀ ternary phase was also confirmed, and its structure is described in the following section.

3.2. Structure and Impedance Data of Ba₆Ga₂₁TaO₄₀. The XRD pattern for Ba₆Ga₂₁TaO₄₀ had been indexed in a monoclinic cell of $a_{\rm I}$ = 15.1649 Å, $b_{\rm I}$ = 11.7315 Å, $c_{\rm I}$ = 5.1365 Å, and $\beta_{\rm I} = 91.0180^{\circ}$ in space group $I2/m^{10}$ (ICDD PDF 47– 0535). In this study, the standard C-centered cell in space group C2/m ($a = -a_I - c_I$, $b = -b_I$; $c = c_I$) was employed for Ba₆Ga₂₁TaO₄₀ and the refined C-centered cell parameters are a = 15.9130(2) Å, b = 11.7309(1) Å, c = 5.13593(6) Å, and $\beta =$ 107.7893(9)°. The structural model of $Ba_6Ga_{21}TaO_{40}$ consists of 12 crystallographically distinct atoms: two Ba sites, four sites for Ga and Ta, and six oxygen sites. Refinement showed that among the sites for Ga and Ta, two 8j sites are tetrahedral Ga sites, and the remaining two sites (2d and 4g) are mixed octahedral Ga/Ta sites. The TTB $Ba_6GaTa_9O_{30}$ (1.53(5) wt%) was observed as a minor second phase in the sample and was added in the refinement, which converged to $R_{\rm wp} \sim 3.53\%$ and $R_{\rm B} \sim 1.43\%$. The Rietveld plot for Ba₆Ga₂₁TaO₄₀ is shown in Figure 4. Table 2 lists the final refined structural parameters for Ba₆Ga₂₁TaO₄₀. The bond lengths and angles for Ba₆Ga₂₁TaO₄₀ are given in Tables S2 and S3, respectively in the SI.

The structure of Ba₆Ga₂₁TaO₄₀, shown in Figure 5, displays three-dimensional mixed GaO4 tetrahedral and GaO6/TaO6 octahedral framework. Along the c axis, the $(Ga/Ta)O_6$ octahedra form one-dimensional sheets via sharing the edges. In GaO₄ tetrahedra, all of the oxygen atoms are bridging oxygen. The GaO4 tetrahedra form a 2D corner-sharing tetrahedral block, linked with the (Ga/Ta)O₆ octahedral sheets via sharing corners. The linkage of tetrahedral blocks and octahedral sheets forms 4/5/6-fold tunnels along the c axis, among which the Ba atoms occupy the 5/6-fold tunnels as chains of cations, leaving the 4-fold tunnels unoccupied. The coexistence of GaO₄ and GaO₆ polyhedra in Ba₆Ga₂₁TaO₄₀ is similar to the mixed GaO_n polyhedra observed in the magnetoplumbite-type $BaGa_{12}O_{19}$ (mixed GaO_6 and GaO_5)²⁵ and the recently identified interstitial oxygen conducting melilite $La_{1+x}A_{1-x}Ga_3O_{7+0.5x}$ (A = Sr, Ca) (mixed GaO_4 and GaO_5).^{37,38} $Ba_6Ga_{21}TaO_{40}$ represents a structure type with a general formula $A_6B'_6B''_{16}O_{40}$, where B cations have a mixed polyhedral B"O4 and B'O6 environment and the large A cations sit in the 1D pentagonal and hexagonal tunnels formed by the 3D mixed polyhedral framework.

Figure 6a shows a typical complex impedance plot measured at 800 °C, which comprises a large and a small semicircular arc. The large semicircular arc could be modeled with parallel resistor (R) and capacitor (C) elements. The R was estimated as the intercept at low frequency of the large semicircular arc, and the C, estimated from the equation ω RC = 1 (ω is angular frequency, $2\pi f_{max}$, where f_{max} is the frequency corresponding to the maximum Z") is ~2.5 pF/cm, consistent with the bulk response.³⁹ The small semicircular arc shows large capacitance with a magnitude of 10⁻¹¹ to 10⁻⁸ F/cm over the 10² to 10⁻¹ Hz frequency range, ascribed to the grain boundary response. The Ba₆Ga₂₁TaO₄₀ pellet shows insulator behavior: the bulk conductivity is in the range 10⁻⁸ to 10⁻⁵ S/cm over the 400– 1000 °C range with an activation energy E_a of 1.11(2) eV (Figure 6b). The dielectric permittivity ε_r at 1 MHz, calculated from the capacitance corrected by subtracting the blank capacitance arising from the sample holder and connection cables, is ~13 at room temperature. The temperature coefficient of dielectric permittivity is ~6185 ppm/ °C from room temperature to 1000 °C. As shown in Figure 6a, the bulk response dominates the impedance data in the high frequency region >10³ Hz; therefore, the permittivity in the high frequency region is mainly from the bulk contribution. Given the low pellet density (~80%), the bulk permittivity and conductivity from the impedance measurement would be smaller than those for the well-sintered pellet if available.

4. CONCLUSIONS

Phase relationships in the BaO-Ga₂O₃-Ta₂O₅ ternary system at 1200 °C were determined on the basis of the powder XRD data. The A₆B₁₀O₃₀ TTB-related solution in the BaO-Ta₂O₅ subsystem dissolved up to ~11 mol % Ga_2O_3 , forming a ternary trapezoid-shaped TTB-related solid solution region in the BaO-Ga₂O₃-Ta₂O₅ system. Two ternary phases Ba₆Ga₂₁TaO₄₀ and eight-layer twinned hexagonal perovskite solid solution Ba₈Ga_{4-x}Ta_{4+0.6x}O₂₄ were confirmed in the BaO-Ga₂O₃-Ta₂O₅ system. Ba₆Ga₂₁TaO₄₀ crystallized in a monoclinic C2/m structure consisting of a 3D mixed GaO₄ tetrahedral and GaO₆/TaO₆ octahedral framework with mixed 5/6-fold tunnels accommodating the Ba cations along the c axis, representing a structure type with a general formula $A_6B'_6B''_{16}O_{40}$, where the corner-shared $B''O_4$ tetrahedral layers link with the edge-shared B'O₆ octahedral sheets to form a 3D framework with 1D pentagonal and hexagonal tunnels to accommodate the large A cations.

ASSOCIATED CONTENT

S Supporting Information

Composition attempted and phase assemblages in the final products in the $BaO-Ga_2O_3-Ta_2O_5$ ternary system, bond lengths and bond angles of Ga-O-Ga in $Ba_6Ga_{21}TaO_{40}$, and a crystallographic information file in CIF format for $Ba_6Ga_{21}TaO_{40}$. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: kuangxj@mail.sysu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The Guangdong Natural Science Foundation is acknowledged for the financial support (S2011010001310). We thank Xiaolan Yu (Sun Yat-Sen University) for assistance on the measurement of XRD.

REFERENCES

Reaney, I. M.; Iddles, D. J. Am. Chem. Soc. 2006, 89, 2063–2072.
 Chi, E. O.; Gandini, A.; Ok, K. M.; Lei, Z.; Halasyamani, P. S. Chem. Mater. 2004, 16, 3616–3622.

(3) Hughes, H.; Iddles, D. M.; Reaney, I. M. Appl. Phys. Lett. 2001, 79, 2952–2954.

(4) Lufaso, M. W. Chem. Mater. 2004, 16, 2148-2156.

Inorganic Chemistry

(5) Moussa, S. M.; Claridge, J. B.; Rosseinsky, M. J.; Clarke, S.; Ibberson, R. M.; Price, T.; Iddles, D. M.; Sinclair, D. C. *Appl. Phys. Lett.* **2003**, 82, 4537–4539.

- (6) Kan, A.; Ogawa, H.; Yokoi, A.; Ohsato, H. Jpn. J. Appl. Phys. 2006, 45, 7494-7498.
- (7) Kawaguchi, S.; Ogawa, H.; Kan, A.; Ishihara, S. J. Eur. Ceram. Soc. 2006, 26, 2045–2049.
- (8) Fang, L.; Li, C. C.; Peng, X. Y.; Hu, C. Z.; Wu, B. L.; Zhou, H. F. J. Am. Ceram. Soc. 2010, 93, 1229–1231.
- (9) Cao, J.; Kuang, X.; Allix, M.; Dickinson, C.; Claridge, J. B.; Rosseinsky, M. J.; Iddles, D. M.; Su, Q. *Chem. Mater.* **2011**, *23*, 5058– 5067.
- (10) Kaminskii, A. A.; Mill, B. V.; Belokoneva, E. L.; Butashin, A. V.; Sarkisov, S. E.; Kurbanov, K.; Khodzhabagyan, G. G. *Izv. Akad. Nauk* SSSR, Neorg. Mater. **1986**, 22, 1869–1873.
- (11) Kovba, L. M.; Lykova, L. N.; Paromova, M. V.; Lopato, L. M.; Shevchenko, A. V. Russ. J. Inorg. Chem. **1977**, 20, 2845–2847.
- (12) Vanderah, T. A.; Roth, R. S.; Siegrist, T.; Febo, W.; Loezos, J. M.; Wong-Ng, W. Solid State Sci. 2003, 5, 149–164.
- (13) Brixner, L. H. J. Am. Chem. Soc. 1958, 80, 3214-3215.
- (14) Ling, C. D.; Avdeev, M.; Kharton, V. V.; Yaremchenko, A. A.; Macquart, R. B.; Hoelzel, M. *Chem. Mater.* **2010**, *22*, 532–540.
- (15) Shannon, J.; Katz, L. Acta Crystallogr., Sect. B 1970, 26, 102– 105
- (16) Layden, G. K. Mater. Res. Bull. 1967, 2, 533-539.
- (17) Galasso, F.; Katz, L.; Ward, R. J. Am. Chem. Soc. 1959, 81, 5898-5899.
- (18) Mumme, W. G.; Grey, I. E.; Roth, R. S.; Vanderah, T. A. J. Solid State Chem. 2007, 180, 2429–2436.
- (19) Kolodiazhnyi, T.; Belik, A. A.; Ozawa, T. C.; Takayama-Muromachi, E. J. Mater. Chem. 2009, 19, 8212–8215.
- (20) Kovba, L. M.; Lykova, L. N.; Kobzareva, V. P.; Lopato, L. M. Russ. J. Inorg. Chem. **1975**, 20, 1098–1100.
- (21) Kahlenberg, V. Z. Anorg. Allg. Chem. 2001, 32, 2386-2390.
- (22) Kahlenberg, V. Cryst. Res. Technol. 2001, 36, 316-329.
- (23) Kahlenberg, V.; Weidentthaler, C. Solid State Sci. 2002, 4, 963–968.
- (24) Kahlenberg, V.; Fischer, R. X.; Parise, J. B. J. Solid State Chem. 2000, 154, 612–618.
- (25) Wagner, T. R. J. Solid State Chem. 1998, 136, 120-124.
- (26) Harneit, O.; Müller-Buschbaum, H. J. Alloys Compd. 1993, 194, 101-103.
- (27) Plotkin, S. S.; Plyushchev, V. E. Powder Metall. Met. Ceram. 1972, 11, 137-140.
- (28) Coelho, A. A. TOPAS Academic V4; Coelho Software: Brisbane, Australia, 2005.
- (29) Baerlocher, C.; McCusker, L. B.; Palatinus, L. Z. Kristallogr. 2007, 222, 47-53.
- (30) Wu, J. S.; Leinenweber, K.; Spence, J. C. H.; O'Keeffe, M. Nat. Mater. 2006, 5, 647–652.
- (31) Oszlanyi, G.; Suto, A. Acta Crystallogr., Sect. A. 2004, 60, 134–141.
- (32) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790.
- (33) Petricek, V.; Dusek, M.; Palatinus, L. *Jana2006, The Crystallographic Computing System*; Institute of Physics: Praha, Czech Republic, 2006.
- (34) Le Bail, A.; Duroy, H.; Fourquet, J. L. Mater. Res. Bull. 1988, 23, 447–452452.
- (35) Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65-7171.
- (36) Brown, I. D.; Altermatt, D. Acta Crystallogr., Sect. B 1985, 41, 244–247.
- (37) Kuang, X. J.; Green, M. A.; Niu, H.; Zajdel, P.; Dickinson, C.; Claridge, J. B.; Jantsky, L.; Rosseinsky, M. J. *Nat. Mater.* **2008**, *7*, 498–504.
- (38) Li, M. R.; Kuang, X. J.; Chong, S. Y.; Xu, Z. L.; Thomas, C. I.; Niu, H. J.; Claridge, J. B.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2010, 49, 2362–2366.

(39) Irvine, J. T. S.; Sinclair, D. C.; West, A. R. Adv. Mater. 1990, 2, 132–138.

Article